blob: e15459370cab6b1b1e924ebd38b32c257b4018f2 [file] [log] [blame]
# Copyright (c) 2010-2012, 2015-2019 ARM Limited
# Copyright (c) 2020 Barkhausen Institut
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2010-2011 Advanced Micro Devices, Inc.
# Copyright (c) 2006-2008 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import print_function
from __future__ import absolute_import
import six
import m5
from m5.objects import *
from m5.util import *
from common.Benchmarks import *
from common import ObjectList
if six.PY3:
long = int
# Populate to reflect supported os types per target ISA
os_types = { 'mips' : [ 'linux' ],
'riscv' : [ 'linux' ], # TODO that's a lie
'sparc' : [ 'linux' ],
'x86' : [ 'linux' ],
'arm' : [ 'linux',
'android-gingerbread',
'android-ics',
'android-jellybean',
'android-kitkat',
'android-nougat', ],
}
class CowIdeDisk(IdeDisk):
image = CowDiskImage(child=RawDiskImage(read_only=True),
read_only=False)
def childImage(self, ci):
self.image.child.image_file = ci
class MemBus(SystemXBar):
badaddr_responder = BadAddr()
default = Self.badaddr_responder.pio
def attach_9p(parent, bus):
viopci = PciVirtIO()
viopci.vio = VirtIO9PDiod()
viodir = os.path.join(m5.options.outdir, '9p')
viopci.vio.root = os.path.join(viodir, 'share')
viopci.vio.socketPath = os.path.join(viodir, 'socket')
if not os.path.exists(viopci.vio.root):
os.makedirs(viopci.vio.root)
if os.path.exists(viopci.vio.socketPath):
os.remove(viopci.vio.socketPath)
parent.viopci = viopci
parent.attachPciDevice(viopci, bus)
def fillInCmdline(mdesc, template, **kwargs):
kwargs.setdefault('rootdev', mdesc.rootdev())
kwargs.setdefault('mem', mdesc.mem())
kwargs.setdefault('script', mdesc.script())
return template % kwargs
def makeCowDisks(disk_paths):
disks = []
for disk_path in disk_paths:
disk = CowIdeDisk(driveID='master')
disk.childImage(disk_path);
disks.append(disk)
return disks
def makeSparcSystem(mem_mode, mdesc=None, cmdline=None):
# Constants from iob.cc and uart8250.cc
iob_man_addr = 0x9800000000
uart_pio_size = 8
class CowMmDisk(MmDisk):
image = CowDiskImage(child=RawDiskImage(read_only=True),
read_only=False)
def childImage(self, ci):
self.image.child.image_file = ci
self = System()
if not mdesc:
# generic system
mdesc = SysConfig()
self.readfile = mdesc.script()
self.iobus = IOXBar()
self.membus = MemBus()
self.bridge = Bridge(delay='50ns')
self.t1000 = T1000()
self.t1000.attachOnChipIO(self.membus)
self.t1000.attachIO(self.iobus)
self.mem_ranges = [AddrRange(Addr('1MB'), size = '64MB'),
AddrRange(Addr('2GB'), size ='256MB')]
self.bridge.master = self.iobus.slave
self.bridge.slave = self.membus.master
self.intrctrl = IntrControl()
self.disk0 = CowMmDisk()
self.disk0.childImage(mdesc.disks()[0])
self.disk0.pio = self.iobus.master
# The puart0 and hvuart are placed on the IO bus, so create ranges
# for them. The remaining IO range is rather fragmented, so poke
# holes for the iob and partition descriptors etc.
self.bridge.ranges = \
[
AddrRange(self.t1000.puart0.pio_addr,
self.t1000.puart0.pio_addr + uart_pio_size - 1),
AddrRange(self.disk0.pio_addr,
self.t1000.fake_jbi.pio_addr +
self.t1000.fake_jbi.pio_size - 1),
AddrRange(self.t1000.fake_clk.pio_addr,
iob_man_addr - 1),
AddrRange(self.t1000.fake_l2_1.pio_addr,
self.t1000.fake_ssi.pio_addr +
self.t1000.fake_ssi.pio_size - 1),
AddrRange(self.t1000.hvuart.pio_addr,
self.t1000.hvuart.pio_addr + uart_pio_size - 1)
]
workload = SparcFsWorkload()
# ROM for OBP/Reset/Hypervisor
self.rom = SimpleMemory(image_file=binary('t1000_rom.bin'),
range=AddrRange(0xfff0000000, size='8MB'))
# nvram
self.nvram = SimpleMemory(image_file=binary('nvram1'),
range=AddrRange(0x1f11000000, size='8kB'))
# hypervisor description
self.hypervisor_desc = SimpleMemory(image_file=binary('1up-hv.bin'),
range=AddrRange(0x1f12080000, size='8kB'))
# partition description
self.partition_desc = SimpleMemory(image_file=binary('1up-md.bin'),
range=AddrRange(0x1f12000000, size='8kB'))
self.rom.port = self.membus.master
self.nvram.port = self.membus.master
self.hypervisor_desc.port = self.membus.master
self.partition_desc.port = self.membus.master
self.system_port = self.membus.slave
self.workload = workload
return self
def makeArmSystem(mem_mode, machine_type, num_cpus=1, mdesc=None,
dtb_filename=None, bare_metal=False, cmdline=None,
external_memory="", ruby=False, security=False,
vio_9p=None, bootloader=None):
assert machine_type
pci_devices = []
self = ArmSystem()
if not mdesc:
# generic system
mdesc = SysConfig()
self.readfile = mdesc.script()
self.iobus = IOXBar()
if not ruby:
self.bridge = Bridge(delay='50ns')
self.bridge.master = self.iobus.slave
self.membus = MemBus()
self.membus.badaddr_responder.warn_access = "warn"
self.bridge.slave = self.membus.master
self.mem_mode = mem_mode
platform_class = ObjectList.platform_list.get(machine_type)
# Resolve the real platform name, the original machine_type
# variable might have been an alias.
machine_type = platform_class.__name__
self.realview = platform_class()
self._bootmem = self.realview.bootmem
# Attach any PCI devices this platform supports
self.realview.attachPciDevices()
disks = makeCowDisks(mdesc.disks())
# Old platforms have a built-in IDE or CF controller. Default to
# the IDE controller if both exist. New platforms expect the
# storage controller to be added from the config script.
if hasattr(self.realview, "ide"):
self.realview.ide.disks = disks
elif hasattr(self.realview, "cf_ctrl"):
self.realview.cf_ctrl.disks = disks
else:
self.pci_ide = IdeController(disks=disks)
pci_devices.append(self.pci_ide)
self.mem_ranges = []
size_remain = long(Addr(mdesc.mem()))
for region in self.realview._mem_regions:
if size_remain > long(region.size()):
self.mem_ranges.append(region)
size_remain = size_remain - long(region.size())
else:
self.mem_ranges.append(AddrRange(region.start, size=size_remain))
size_remain = 0
break
warn("Memory size specified spans more than one region. Creating" \
" another memory controller for that range.")
if size_remain > 0:
fatal("The currently selected ARM platforms doesn't support" \
" the amount of DRAM you've selected. Please try" \
" another platform")
self.have_security = security
if bare_metal:
# EOT character on UART will end the simulation
self.realview.uart[0].end_on_eot = True
self.workload = ArmFsWorkload(atags_addr=0)
else:
workload = ArmFsLinux()
if dtb_filename:
workload.dtb_filename = binary(dtb_filename)
workload.machine_type = \
machine_type if machine_type in ArmMachineType.map else "DTOnly"
# Ensure that writes to the UART actually go out early in the boot
if not cmdline:
cmdline = 'earlyprintk=pl011,0x1c090000 console=ttyAMA0 ' + \
'lpj=19988480 norandmaps rw loglevel=8 ' + \
'mem=%(mem)s root=%(rootdev)s'
if hasattr(self.realview.gic, 'cpu_addr'):
self.gic_cpu_addr = self.realview.gic.cpu_addr
self.flags_addr = self.realview.realview_io.pio_addr + 0x30
# This check is for users who have previously put 'android' in
# the disk image filename to tell the config scripts to
# prepare the kernel with android-specific boot options. That
# behavior has been replaced with a more explicit option per
# the error message below. The disk can have any name now and
# doesn't need to include 'android' substring.
if (mdesc.disks() and
os.path.split(mdesc.disks()[0])[-1].lower().count('android')):
if 'android' not in mdesc.os_type():
fatal("It looks like you are trying to boot an Android " \
"platform. To boot Android, you must specify " \
"--os-type with an appropriate Android release on " \
"the command line.")
# android-specific tweaks
if 'android' in mdesc.os_type():
# generic tweaks
cmdline += " init=/init"
# release-specific tweaks
if 'kitkat' in mdesc.os_type():
cmdline += " androidboot.hardware=gem5 qemu=1 qemu.gles=0 " + \
"android.bootanim=0 "
elif 'nougat' in mdesc.os_type():
cmdline += " androidboot.hardware=gem5 qemu=1 qemu.gles=0 " + \
"android.bootanim=0 " + \
"vmalloc=640MB " + \
"android.early.fstab=/fstab.gem5 " + \
"androidboot.selinux=permissive " + \
"video=Virtual-1:1920x1080-16"
workload.command_line = fillInCmdline(mdesc, cmdline)
self.workload = workload
self.realview.setupBootLoader(self, binary, bootloader)
if external_memory:
# I/O traffic enters iobus
self.external_io = ExternalMaster(port_data="external_io",
port_type=external_memory)
self.external_io.port = self.iobus.slave
# Ensure iocache only receives traffic destined for (actual) memory.
self.iocache = ExternalSlave(port_data="iocache",
port_type=external_memory,
addr_ranges=self.mem_ranges)
self.iocache.port = self.iobus.master
# Let system_port get to nvmem and nothing else.
self.bridge.ranges = [self.realview.nvmem.range]
self.realview.attachOnChipIO(self.iobus)
# Attach off-chip devices
self.realview.attachIO(self.iobus)
elif ruby:
self._dma_ports = [ ]
self._mem_ports = [ ]
self.realview.attachOnChipIO(self.iobus,
dma_ports=self._dma_ports, mem_ports=self._mem_ports)
self.realview.attachIO(self.iobus, dma_ports=self._dma_ports)
else:
self.realview.attachOnChipIO(self.membus, self.bridge)
# Attach off-chip devices
self.realview.attachIO(self.iobus)
for dev in pci_devices:
self.realview.attachPciDevice(
dev, self.iobus,
dma_ports=self._dma_ports if ruby else None)
self.intrctrl = IntrControl()
self.terminal = Terminal()
self.vncserver = VncServer()
if vio_9p:
attach_9p(self.realview, self.iobus)
if not ruby:
self.system_port = self.membus.slave
if ruby:
if buildEnv['PROTOCOL'] == 'MI_example' and num_cpus > 1:
fatal("The MI_example protocol cannot implement Load/Store "
"Exclusive operations. Multicore ARM systems configured "
"with the MI_example protocol will not work properly.")
warn("You are trying to use Ruby on ARM, which is not working "
"properly yet.")
return self
def makeLinuxMipsSystem(mem_mode, mdesc=None, cmdline=None):
class BaseMalta(Malta):
ethernet = NSGigE(pci_bus=0, pci_dev=1, pci_func=0)
ide = IdeController(disks=Parent.disks,
pci_func=0, pci_dev=0, pci_bus=0)
self = System()
if not mdesc:
# generic system
mdesc = SysConfig()
self.readfile = mdesc.script()
self.iobus = IOXBar()
self.membus = MemBus()
self.bridge = Bridge(delay='50ns')
self.mem_ranges = [AddrRange('1GB')]
self.bridge.master = self.iobus.slave
self.bridge.slave = self.membus.master
self.disks = makeCowDisks(mdesc.disks())
self.malta = BaseMalta()
self.malta.attachIO(self.iobus)
self.malta.ide.pio = self.iobus.master
self.malta.ide.dma = self.iobus.slave
self.malta.ethernet.pio = self.iobus.master
self.malta.ethernet.dma = self.iobus.slave
self.simple_disk = SimpleDisk(disk=RawDiskImage(
image_file = mdesc.disks()[0], read_only = True))
self.intrctrl = IntrControl()
self.mem_mode = mem_mode
self.terminal = Terminal()
self.console = binary('mips/console')
if not cmdline:
cmdline = 'root=/dev/hda1 console=ttyS0'
self.workload = KernelWorkload(command_line=fillInCmdline(mdesc, cmdline))
self.system_port = self.membus.slave
return self
def x86IOAddress(port):
IO_address_space_base = 0x8000000000000000
return IO_address_space_base + port
def connectX86ClassicSystem(x86_sys, numCPUs):
# Constants similar to x86_traits.hh
IO_address_space_base = 0x8000000000000000
pci_config_address_space_base = 0xc000000000000000
interrupts_address_space_base = 0xa000000000000000
APIC_range_size = 1 << 12;
x86_sys.membus = MemBus()
# North Bridge
x86_sys.iobus = IOXBar()
x86_sys.bridge = Bridge(delay='50ns')
x86_sys.bridge.master = x86_sys.iobus.slave
x86_sys.bridge.slave = x86_sys.membus.master
# Allow the bridge to pass through:
# 1) kernel configured PCI device memory map address: address range
# [0xC0000000, 0xFFFF0000). (The upper 64kB are reserved for m5ops.)
# 2) the bridge to pass through the IO APIC (two pages, already contained in 1),
# 3) everything in the IO address range up to the local APIC, and
# 4) then the entire PCI address space and beyond.
x86_sys.bridge.ranges = \
[
AddrRange(0xC0000000, 0xFFFF0000),
AddrRange(IO_address_space_base,
interrupts_address_space_base - 1),
AddrRange(pci_config_address_space_base,
Addr.max)
]
# Create a bridge from the IO bus to the memory bus to allow access to
# the local APIC (two pages)
x86_sys.apicbridge = Bridge(delay='50ns')
x86_sys.apicbridge.slave = x86_sys.iobus.master
x86_sys.apicbridge.master = x86_sys.membus.slave
x86_sys.apicbridge.ranges = [AddrRange(interrupts_address_space_base,
interrupts_address_space_base +
numCPUs * APIC_range_size
- 1)]
# connect the io bus
x86_sys.pc.attachIO(x86_sys.iobus)
x86_sys.system_port = x86_sys.membus.slave
def connectX86RubySystem(x86_sys):
# North Bridge
x86_sys.iobus = IOXBar()
# add the ide to the list of dma devices that later need to attach to
# dma controllers
x86_sys._dma_ports = [x86_sys.pc.south_bridge.ide.dma]
x86_sys.pc.attachIO(x86_sys.iobus, x86_sys._dma_ports)
def makeX86System(mem_mode, numCPUs=1, mdesc=None, workload=None, Ruby=False):
self = System()
if workload is None:
workload = X86FsWorkload()
self.workload = workload
if not mdesc:
# generic system
mdesc = SysConfig()
self.readfile = mdesc.script()
self.mem_mode = mem_mode
# Physical memory
# On the PC platform, the memory region 0xC0000000-0xFFFFFFFF is reserved
# for various devices. Hence, if the physical memory size is greater than
# 3GB, we need to split it into two parts.
excess_mem_size = \
convert.toMemorySize(mdesc.mem()) - convert.toMemorySize('3GB')
if excess_mem_size <= 0:
self.mem_ranges = [AddrRange(mdesc.mem())]
else:
warn("Physical memory size specified is %s which is greater than " \
"3GB. Twice the number of memory controllers would be " \
"created." % (mdesc.mem()))
self.mem_ranges = [AddrRange('3GB'),
AddrRange(Addr('4GB'), size = excess_mem_size)]
# Platform
self.pc = Pc()
# Create and connect the busses required by each memory system
if Ruby:
connectX86RubySystem(self)
else:
connectX86ClassicSystem(self, numCPUs)
self.intrctrl = IntrControl()
# Disks
disks = makeCowDisks(mdesc.disks())
self.pc.south_bridge.ide.disks = disks
# Add in a Bios information structure.
structures = [X86SMBiosBiosInformation()]
workload.smbios_table.structures = structures
# Set up the Intel MP table
base_entries = []
ext_entries = []
for i in range(numCPUs):
bp = X86IntelMPProcessor(
local_apic_id = i,
local_apic_version = 0x14,
enable = True,
bootstrap = (i == 0))
base_entries.append(bp)
io_apic = X86IntelMPIOAPIC(
id = numCPUs,
version = 0x11,
enable = True,
address = 0xfec00000)
self.pc.south_bridge.io_apic.apic_id = io_apic.id
base_entries.append(io_apic)
# In gem5 Pc::calcPciConfigAddr(), it required "assert(bus==0)",
# but linux kernel cannot config PCI device if it was not connected to
# PCI bus, so we fix PCI bus id to 0, and ISA bus id to 1.
pci_bus = X86IntelMPBus(bus_id = 0, bus_type='PCI ')
base_entries.append(pci_bus)
isa_bus = X86IntelMPBus(bus_id = 1, bus_type='ISA ')
base_entries.append(isa_bus)
connect_busses = X86IntelMPBusHierarchy(bus_id=1,
subtractive_decode=True, parent_bus=0)
ext_entries.append(connect_busses)
pci_dev4_inta = X86IntelMPIOIntAssignment(
interrupt_type = 'INT',
polarity = 'ConformPolarity',
trigger = 'ConformTrigger',
source_bus_id = 0,
source_bus_irq = 0 + (4 << 2),
dest_io_apic_id = io_apic.id,
dest_io_apic_intin = 16)
base_entries.append(pci_dev4_inta)
def assignISAInt(irq, apicPin):
assign_8259_to_apic = X86IntelMPIOIntAssignment(
interrupt_type = 'ExtInt',
polarity = 'ConformPolarity',
trigger = 'ConformTrigger',
source_bus_id = 1,
source_bus_irq = irq,
dest_io_apic_id = io_apic.id,
dest_io_apic_intin = 0)
base_entries.append(assign_8259_to_apic)
assign_to_apic = X86IntelMPIOIntAssignment(
interrupt_type = 'INT',
polarity = 'ConformPolarity',
trigger = 'ConformTrigger',
source_bus_id = 1,
source_bus_irq = irq,
dest_io_apic_id = io_apic.id,
dest_io_apic_intin = apicPin)
base_entries.append(assign_to_apic)
assignISAInt(0, 2)
assignISAInt(1, 1)
for i in range(3, 15):
assignISAInt(i, i)
workload.intel_mp_table.base_entries = base_entries
workload.intel_mp_table.ext_entries = ext_entries
return self
def makeLinuxX86System(mem_mode, numCPUs=1, mdesc=None, Ruby=False,
cmdline=None):
# Build up the x86 system and then specialize it for Linux
self = makeX86System(mem_mode, numCPUs, mdesc, X86FsLinux(), Ruby)
# We assume below that there's at least 1MB of memory. We'll require 2
# just to avoid corner cases.
phys_mem_size = sum([r.size() for r in self.mem_ranges])
assert(phys_mem_size >= 0x200000)
assert(len(self.mem_ranges) <= 2)
entries = \
[
# Mark the first megabyte of memory as reserved
X86E820Entry(addr = 0, size = '639kB', range_type = 1),
X86E820Entry(addr = 0x9fc00, size = '385kB', range_type = 2),
# Mark the rest of physical memory as available
X86E820Entry(addr = 0x100000,
size = '%dB' % (self.mem_ranges[0].size() - 0x100000),
range_type = 1),
]
# Mark [mem_size, 3GB) as reserved if memory less than 3GB, which force
# IO devices to be mapped to [0xC0000000, 0xFFFF0000). Requests to this
# specific range can pass though bridge to iobus.
if len(self.mem_ranges) == 1:
entries.append(X86E820Entry(addr = self.mem_ranges[0].size(),
size='%dB' % (0xC0000000 - self.mem_ranges[0].size()),
range_type=2))
# Reserve the last 16kB of the 32-bit address space for the m5op interface
entries.append(X86E820Entry(addr=0xFFFF0000, size='64kB', range_type=2))
# In case the physical memory is greater than 3GB, we split it into two
# parts and add a separate e820 entry for the second part. This entry
# starts at 0x100000000, which is the first address after the space
# reserved for devices.
if len(self.mem_ranges) == 2:
entries.append(X86E820Entry(addr = 0x100000000,
size = '%dB' % (self.mem_ranges[1].size()), range_type = 1))
self.workload.e820_table.entries = entries
# Command line
if not cmdline:
cmdline = 'earlyprintk=ttyS0 console=ttyS0 lpj=7999923 root=/dev/hda1'
self.workload.command_line = fillInCmdline(mdesc, cmdline)
return self
def makeBareMetalRiscvSystem(mem_mode, mdesc=None, cmdline=None):
self = System()
if not mdesc:
# generic system
mdesc = SysConfig()
self.mem_mode = mem_mode
self.mem_ranges = [AddrRange(mdesc.mem())]
self.workload = RiscvBareMetal()
self.iobus = IOXBar()
self.membus = MemBus()
self.bridge = Bridge(delay='50ns')
self.bridge.master = self.iobus.slave
self.bridge.slave = self.membus.master
# Sv39 has 56 bit physical addresses; use the upper 8 bit for the IO space
IO_address_space_base = 0x00FF000000000000
self.bridge.ranges = [AddrRange(IO_address_space_base, Addr.max)]
self.system_port = self.membus.slave
return self
def makeDualRoot(full_system, testSystem, driveSystem, dumpfile):
self = Root(full_system = full_system)
self.testsys = testSystem
self.drivesys = driveSystem
self.etherlink = EtherLink()
if hasattr(testSystem, 'realview'):
self.etherlink.int0 = Parent.testsys.realview.ethernet.interface
self.etherlink.int1 = Parent.drivesys.realview.ethernet.interface
elif hasattr(testSystem, 'tsunami'):
self.etherlink.int0 = Parent.testsys.tsunami.ethernet.interface
self.etherlink.int1 = Parent.drivesys.tsunami.ethernet.interface
else:
fatal("Don't know how to connect these system together")
if dumpfile:
self.etherdump = EtherDump(file=dumpfile)
self.etherlink.dump = Parent.etherdump
return self
def makeDistRoot(testSystem,
rank,
size,
server_name,
server_port,
sync_repeat,
sync_start,
linkspeed,
linkdelay,
dumpfile):
self = Root(full_system = True)
self.testsys = testSystem
self.etherlink = DistEtherLink(speed = linkspeed,
delay = linkdelay,
dist_rank = rank,
dist_size = size,
server_name = server_name,
server_port = server_port,
sync_start = sync_start,
sync_repeat = sync_repeat)
if hasattr(testSystem, 'realview'):
self.etherlink.int0 = Parent.testsys.realview.ethernet.interface
elif hasattr(testSystem, 'tsunami'):
self.etherlink.int0 = Parent.testsys.tsunami.ethernet.interface
else:
fatal("Don't know how to connect DistEtherLink to this system")
if dumpfile:
self.etherdump = EtherDump(file=dumpfile)
self.etherlink.dump = Parent.etherdump
return self