blob: 89e40f328517dd62e6efb8d8f3e0f1850c18ba45 [file] [log] [blame]
/*
* Copyright (c) 2010-2019 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Erik Hallnor
* Dave Greene
* Nathan Binkert
* Steve Reinhardt
* Ron Dreslinski
* Andreas Sandberg
* Nikos Nikoleris
*/
/**
* @file
* Cache definitions.
*/
#include "mem/cache/cache.hh"
#include <cassert>
#include "base/compiler.hh"
#include "base/logging.hh"
#include "base/trace.hh"
#include "base/types.hh"
#include "debug/Cache.hh"
#include "debug/CacheTags.hh"
#include "debug/CacheVerbose.hh"
#include "enums/Clusivity.hh"
#include "mem/cache/cache_blk.hh"
#include "mem/cache/mshr.hh"
#include "mem/cache/tags/base.hh"
#include "mem/cache/write_queue_entry.hh"
#include "mem/request.hh"
#include "params/Cache.hh"
Cache::Cache(const CacheParams *p)
: BaseCache(p, p->system->cacheLineSize()),
doFastWrites(true)
{
}
void
Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
bool deferred_response, bool pending_downgrade)
{
BaseCache::satisfyRequest(pkt, blk);
if (pkt->isRead()) {
// determine if this read is from a (coherent) cache or not
if (pkt->fromCache()) {
assert(pkt->getSize() == blkSize);
// special handling for coherent block requests from
// upper-level caches
if (pkt->needsWritable()) {
// sanity check
assert(pkt->cmd == MemCmd::ReadExReq ||
pkt->cmd == MemCmd::SCUpgradeFailReq);
assert(!pkt->hasSharers());
// if we have a dirty copy, make sure the recipient
// keeps it marked dirty (in the modified state)
if (blk->isDirty()) {
pkt->setCacheResponding();
blk->status &= ~BlkDirty;
}
} else if (blk->isWritable() && !pending_downgrade &&
!pkt->hasSharers() &&
pkt->cmd != MemCmd::ReadCleanReq) {
// we can give the requester a writable copy on a read
// request if:
// - we have a writable copy at this level (& below)
// - we don't have a pending snoop from below
// signaling another read request
// - no other cache above has a copy (otherwise it
// would have set hasSharers flag when
// snooping the packet)
// - the read has explicitly asked for a clean
// copy of the line
if (blk->isDirty()) {
// special considerations if we're owner:
if (!deferred_response) {
// respond with the line in Modified state
// (cacheResponding set, hasSharers not set)
pkt->setCacheResponding();
// if this cache is mostly inclusive, we
// keep the block in the Exclusive state,
// and pass it upwards as Modified
// (writable and dirty), hence we have
// multiple caches, all on the same path
// towards memory, all considering the
// same block writable, but only one
// considering it Modified
// we get away with multiple caches (on
// the same path to memory) considering
// the block writeable as we always enter
// the cache hierarchy through a cache,
// and first snoop upwards in all other
// branches
blk->status &= ~BlkDirty;
} else {
// if we're responding after our own miss,
// there's a window where the recipient didn't
// know it was getting ownership and may not
// have responded to snoops correctly, so we
// have to respond with a shared line
pkt->setHasSharers();
}
}
} else {
// otherwise only respond with a shared copy
pkt->setHasSharers();
}
}
}
}
/////////////////////////////////////////////////////
//
// Access path: requests coming in from the CPU side
//
/////////////////////////////////////////////////////
bool
Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
PacketList &writebacks)
{
if (pkt->req->isUncacheable()) {
assert(pkt->isRequest());
chatty_assert(!(isReadOnly && pkt->isWrite()),
"Should never see a write in a read-only cache %s\n",
name());
DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
// flush and invalidate any existing block
CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
if (old_blk && old_blk->isValid()) {
BaseCache::evictBlock(old_blk, writebacks);
}
blk = nullptr;
// lookupLatency is the latency in case the request is uncacheable.
lat = lookupLatency;
return false;
}
return BaseCache::access(pkt, blk, lat, writebacks);
}
void
Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
{
while (!writebacks.empty()) {
PacketPtr wbPkt = writebacks.front();
// We use forwardLatency here because we are copying writebacks to
// write buffer.
// Call isCachedAbove for Writebacks, CleanEvicts and
// WriteCleans to discover if the block is cached above.
if (isCachedAbove(wbPkt)) {
if (wbPkt->cmd == MemCmd::CleanEvict) {
// Delete CleanEvict because cached copies exist above. The
// packet destructor will delete the request object because
// this is a non-snoop request packet which does not require a
// response.
delete wbPkt;
} else if (wbPkt->cmd == MemCmd::WritebackClean) {
// clean writeback, do not send since the block is
// still cached above
assert(writebackClean);
delete wbPkt;
} else {
assert(wbPkt->cmd == MemCmd::WritebackDirty ||
wbPkt->cmd == MemCmd::WriteClean);
// Set BLOCK_CACHED flag in Writeback and send below, so that
// the Writeback does not reset the bit corresponding to this
// address in the snoop filter below.
wbPkt->setBlockCached();
allocateWriteBuffer(wbPkt, forward_time);
}
} else {
// If the block is not cached above, send packet below. Both
// CleanEvict and Writeback with BLOCK_CACHED flag cleared will
// reset the bit corresponding to this address in the snoop filter
// below.
allocateWriteBuffer(wbPkt, forward_time);
}
writebacks.pop_front();
}
}
void
Cache::doWritebacksAtomic(PacketList& writebacks)
{
while (!writebacks.empty()) {
PacketPtr wbPkt = writebacks.front();
// Call isCachedAbove for both Writebacks and CleanEvicts. If
// isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
// and discard CleanEvicts.
if (isCachedAbove(wbPkt, false)) {
if (wbPkt->cmd == MemCmd::WritebackDirty ||
wbPkt->cmd == MemCmd::WriteClean) {
// Set BLOCK_CACHED flag in Writeback and send below,
// so that the Writeback does not reset the bit
// corresponding to this address in the snoop filter
// below. We can discard CleanEvicts because cached
// copies exist above. Atomic mode isCachedAbove
// modifies packet to set BLOCK_CACHED flag
memSidePort.sendAtomic(wbPkt);
}
} else {
// If the block is not cached above, send packet below. Both
// CleanEvict and Writeback with BLOCK_CACHED flag cleared will
// reset the bit corresponding to this address in the snoop filter
// below.
memSidePort.sendAtomic(wbPkt);
}
writebacks.pop_front();
// In case of CleanEvicts, the packet destructor will delete the
// request object because this is a non-snoop request packet which
// does not require a response.
delete wbPkt;
}
}
void
Cache::recvTimingSnoopResp(PacketPtr pkt)
{
DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
// determine if the response is from a snoop request we created
// (in which case it should be in the outstandingSnoop), or if we
// merely forwarded someone else's snoop request
const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
outstandingSnoop.end();
if (!forwardAsSnoop) {
// the packet came from this cache, so sink it here and do not
// forward it
assert(pkt->cmd == MemCmd::HardPFResp);
outstandingSnoop.erase(pkt->req);
DPRINTF(Cache, "Got prefetch response from above for addr "
"%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
recvTimingResp(pkt);
return;
}
// forwardLatency is set here because there is a response from an
// upper level cache.
// To pay the delay that occurs if the packet comes from the bus,
// we charge also headerDelay.
Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
// Reset the timing of the packet.
pkt->headerDelay = pkt->payloadDelay = 0;
memSidePort.schedTimingSnoopResp(pkt, snoop_resp_time);
}
void
Cache::promoteWholeLineWrites(PacketPtr pkt)
{
// Cache line clearing instructions
if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
(pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
pkt->cmd = MemCmd::WriteLineReq;
DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
}
}
void
Cache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
{
// should never be satisfying an uncacheable access as we
// flush and invalidate any existing block as part of the
// lookup
assert(!pkt->req->isUncacheable());
BaseCache::handleTimingReqHit(pkt, blk, request_time);
}
void
Cache::handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, Tick forward_time,
Tick request_time)
{
if (pkt->req->isUncacheable()) {
// ignore any existing MSHR if we are dealing with an
// uncacheable request
// should have flushed and have no valid block
assert(!blk || !blk->isValid());
mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
if (pkt->isWrite()) {
allocateWriteBuffer(pkt, forward_time);
} else {
assert(pkt->isRead());
// uncacheable accesses always allocate a new MSHR
// Here we are using forward_time, modelling the latency of
// a miss (outbound) just as forwardLatency, neglecting the
// lookupLatency component.
allocateMissBuffer(pkt, forward_time);
}
return;
}
Addr blk_addr = pkt->getBlockAddr(blkSize);
MSHR *mshr = mshrQueue.findMatch(blk_addr, pkt->isSecure());
// Software prefetch handling:
// To keep the core from waiting on data it won't look at
// anyway, send back a response with dummy data. Miss handling
// will continue asynchronously. Unfortunately, the core will
// insist upon freeing original Packet/Request, so we have to
// create a new pair with a different lifecycle. Note that this
// processing happens before any MSHR munging on the behalf of
// this request because this new Request will be the one stored
// into the MSHRs, not the original.
if (pkt->cmd.isSWPrefetch()) {
assert(pkt->needsResponse());
assert(pkt->req->hasPaddr());
assert(!pkt->req->isUncacheable());
// There's no reason to add a prefetch as an additional target
// to an existing MSHR. If an outstanding request is already
// in progress, there is nothing for the prefetch to do.
// If this is the case, we don't even create a request at all.
PacketPtr pf = nullptr;
if (!mshr) {
// copy the request and create a new SoftPFReq packet
RequestPtr req = std::make_shared<Request>(pkt->req->getPaddr(),
pkt->req->getSize(),
pkt->req->getFlags(),
pkt->req->masterId());
pf = new Packet(req, pkt->cmd);
pf->allocate();
assert(pf->getAddr() == pkt->getAddr());
assert(pf->getSize() == pkt->getSize());
}
pkt->makeTimingResponse();
// request_time is used here, taking into account lat and the delay
// charged if the packet comes from the xbar.
cpuSidePort.schedTimingResp(pkt, request_time);
// If an outstanding request is in progress (we found an
// MSHR) this is set to null
pkt = pf;
}
BaseCache::handleTimingReqMiss(pkt, mshr, blk, forward_time, request_time);
}
void
Cache::recvTimingReq(PacketPtr pkt)
{
DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
promoteWholeLineWrites(pkt);
if (pkt->cacheResponding()) {
// a cache above us (but not where the packet came from) is
// responding to the request, in other words it has the line
// in Modified or Owned state
DPRINTF(Cache, "Cache above responding to %s: not responding\n",
pkt->print());
// if the packet needs the block to be writable, and the cache
// that has promised to respond (setting the cache responding
// flag) is not providing writable (it is in Owned rather than
// the Modified state), we know that there may be other Shared
// copies in the system; go out and invalidate them all
assert(pkt->needsWritable() && !pkt->responderHadWritable());
// an upstream cache that had the line in Owned state
// (dirty, but not writable), is responding and thus
// transferring the dirty line from one branch of the
// cache hierarchy to another
// send out an express snoop and invalidate all other
// copies (snooping a packet that needs writable is the
// same as an invalidation), thus turning the Owned line
// into a Modified line, note that we don't invalidate the
// block in the current cache or any other cache on the
// path to memory
// create a downstream express snoop with cleared packet
// flags, there is no need to allocate any data as the
// packet is merely used to co-ordinate state transitions
Packet *snoop_pkt = new Packet(pkt, true, false);
// also reset the bus time that the original packet has
// not yet paid for
snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
// make this an instantaneous express snoop, and let the
// other caches in the system know that the another cache
// is responding, because we have found the authorative
// copy (Modified or Owned) that will supply the right
// data
snoop_pkt->setExpressSnoop();
snoop_pkt->setCacheResponding();
// this express snoop travels towards the memory, and at
// every crossbar it is snooped upwards thus reaching
// every cache in the system
bool M5_VAR_USED success = memSidePort.sendTimingReq(snoop_pkt);
// express snoops always succeed
assert(success);
// main memory will delete the snoop packet
// queue for deletion, as opposed to immediate deletion, as
// the sending cache is still relying on the packet
pendingDelete.reset(pkt);
// no need to take any further action in this particular cache
// as an upstram cache has already committed to responding,
// and we have already sent out any express snoops in the
// section above to ensure all other copies in the system are
// invalidated
return;
}
BaseCache::recvTimingReq(pkt);
}
PacketPtr
Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
bool needsWritable,
bool is_whole_line_write) const
{
// should never see evictions here
assert(!cpu_pkt->isEviction());
bool blkValid = blk && blk->isValid();
if (cpu_pkt->req->isUncacheable() ||
(!blkValid && cpu_pkt->isUpgrade()) ||
cpu_pkt->cmd == MemCmd::InvalidateReq || cpu_pkt->isClean()) {
// uncacheable requests and upgrades from upper-level caches
// that missed completely just go through as is
return nullptr;
}
assert(cpu_pkt->needsResponse());
MemCmd cmd;
// @TODO make useUpgrades a parameter.
// Note that ownership protocols require upgrade, otherwise a
// write miss on a shared owned block will generate a ReadExcl,
// which will clobber the owned copy.
const bool useUpgrades = true;
assert(cpu_pkt->cmd != MemCmd::WriteLineReq || is_whole_line_write);
if (is_whole_line_write) {
assert(!blkValid || !blk->isWritable());
// forward as invalidate to all other caches, this gives us
// the line in Exclusive state, and invalidates all other
// copies
cmd = MemCmd::InvalidateReq;
} else if (blkValid && useUpgrades) {
// only reason to be here is that blk is read only and we need
// it to be writable
assert(needsWritable);
assert(!blk->isWritable());
cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
} else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
// Even though this SC will fail, we still need to send out the
// request and get the data to supply it to other snoopers in the case
// where the determination the StoreCond fails is delayed due to
// all caches not being on the same local bus.
cmd = MemCmd::SCUpgradeFailReq;
} else {
// block is invalid
// If the request does not need a writable there are two cases
// where we need to ensure the response will not fetch the
// block in dirty state:
// * this cache is read only and it does not perform
// writebacks,
// * this cache is mostly exclusive and will not fill (since
// it does not fill it will have to writeback the dirty data
// immediately which generates uneccesary writebacks).
bool force_clean_rsp = isReadOnly || clusivity == Enums::mostly_excl;
cmd = needsWritable ? MemCmd::ReadExReq :
(force_clean_rsp ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
}
PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
// if there are upstream caches that have already marked the
// packet as having sharers (not passing writable), pass that info
// downstream
if (cpu_pkt->hasSharers() && !needsWritable) {
// note that cpu_pkt may have spent a considerable time in the
// MSHR queue and that the information could possibly be out
// of date, however, there is no harm in conservatively
// assuming the block has sharers
pkt->setHasSharers();
DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
__func__, cpu_pkt->print(), pkt->print());
}
// the packet should be block aligned
assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
pkt->allocate();
DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
cpu_pkt->print());
return pkt;
}
Cycles
Cache::handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk,
PacketList &writebacks)
{
// deal with the packets that go through the write path of
// the cache, i.e. any evictions and writes
if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
(pkt->req->isUncacheable() && pkt->isWrite())) {
Cycles latency = ticksToCycles(memSidePort.sendAtomic(pkt));
// at this point, if the request was an uncacheable write
// request, it has been satisfied by a memory below and the
// packet carries the response back
assert(!(pkt->req->isUncacheable() && pkt->isWrite()) ||
pkt->isResponse());
return latency;
}
// only misses left
PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable(),
pkt->isWholeLineWrite(blkSize));
bool is_forward = (bus_pkt == nullptr);
if (is_forward) {
// just forwarding the same request to the next level
// no local cache operation involved
bus_pkt = pkt;
}
DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
bus_pkt->print());
#if TRACING_ON
CacheBlk::State old_state = blk ? blk->status : 0;
#endif
Cycles latency = ticksToCycles(memSidePort.sendAtomic(bus_pkt));
bool is_invalidate = bus_pkt->isInvalidate();
// We are now dealing with the response handling
DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
bus_pkt->print(), old_state);
// If packet was a forward, the response (if any) is already
// in place in the bus_pkt == pkt structure, so we don't need
// to do anything. Otherwise, use the separate bus_pkt to
// generate response to pkt and then delete it.
if (!is_forward) {
if (pkt->needsResponse()) {
assert(bus_pkt->isResponse());
if (bus_pkt->isError()) {
pkt->makeAtomicResponse();
pkt->copyError(bus_pkt);
} else if (pkt->isWholeLineWrite(blkSize)) {
// note the use of pkt, not bus_pkt here.
// write-line request to the cache that promoted
// the write to a whole line
const bool allocate = allocOnFill(pkt->cmd) &&
(!writeAllocator || writeAllocator->allocate());
blk = handleFill(bus_pkt, blk, writebacks, allocate);
assert(blk != NULL);
is_invalidate = false;
satisfyRequest(pkt, blk);
} else if (bus_pkt->isRead() ||
bus_pkt->cmd == MemCmd::UpgradeResp) {
// we're updating cache state to allow us to
// satisfy the upstream request from the cache
blk = handleFill(bus_pkt, blk, writebacks,
allocOnFill(pkt->cmd));
satisfyRequest(pkt, blk);
maintainClusivity(pkt->fromCache(), blk);
} else {
// we're satisfying the upstream request without
// modifying cache state, e.g., a write-through
pkt->makeAtomicResponse();
}
}
delete bus_pkt;
}
if (is_invalidate && blk && blk->isValid()) {
invalidateBlock(blk);
}
return latency;
}
Tick
Cache::recvAtomic(PacketPtr pkt)
{
promoteWholeLineWrites(pkt);
// follow the same flow as in recvTimingReq, and check if a cache
// above us is responding
if (pkt->cacheResponding()) {
assert(!pkt->req->isCacheInvalidate());
DPRINTF(Cache, "Cache above responding to %s: not responding\n",
pkt->print());
// if a cache is responding, and it had the line in Owned
// rather than Modified state, we need to invalidate any
// copies that are not on the same path to memory
assert(pkt->needsWritable() && !pkt->responderHadWritable());
return memSidePort.sendAtomic(pkt);
}
return BaseCache::recvAtomic(pkt);
}
/////////////////////////////////////////////////////
//
// Response handling: responses from the memory side
//
/////////////////////////////////////////////////////
void
Cache::serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, CacheBlk *blk)
{
MSHR::Target *initial_tgt = mshr->getTarget();
// First offset for critical word first calculations
const int initial_offset = initial_tgt->pkt->getOffset(blkSize);
const bool is_error = pkt->isError();
// allow invalidation responses originating from write-line
// requests to be discarded
bool is_invalidate = pkt->isInvalidate() &&
!mshr->wasWholeLineWrite;
MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
for (auto &target: targets) {
Packet *tgt_pkt = target.pkt;
switch (target.source) {
case MSHR::Target::FromCPU:
Tick completion_time;
// Here we charge on completion_time the delay of the xbar if the
// packet comes from it, charged on headerDelay.
completion_time = pkt->headerDelay;
// Software prefetch handling for cache closest to core
if (tgt_pkt->cmd.isSWPrefetch()) {
// a software prefetch would have already been ack'd
// immediately with dummy data so the core would be able to
// retire it. This request completes right here, so we
// deallocate it.
delete tgt_pkt;
break; // skip response
}
// unlike the other packet flows, where data is found in other
// caches or memory and brought back, write-line requests always
// have the data right away, so the above check for "is fill?"
// cannot actually be determined until examining the stored MSHR
// state. We "catch up" with that logic here, which is duplicated
// from above.
if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
assert(!is_error);
assert(blk);
assert(blk->isWritable());
}
if (blk && blk->isValid() && !mshr->isForward) {
satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
// How many bytes past the first request is this one
int transfer_offset =
tgt_pkt->getOffset(blkSize) - initial_offset;
if (transfer_offset < 0) {
transfer_offset += blkSize;
}
// If not critical word (offset) return payloadDelay.
// responseLatency is the latency of the return path
// from lower level caches/memory to an upper level cache or
// the core.
completion_time += clockEdge(responseLatency) +
(transfer_offset ? pkt->payloadDelay : 0);
assert(!tgt_pkt->req->isUncacheable());
assert(tgt_pkt->req->masterId() < system->maxMasters());
missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
completion_time - target.recvTime;
} else if (pkt->cmd == MemCmd::UpgradeFailResp) {
// failed StoreCond upgrade
assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
// responseLatency is the latency of the return path
// from lower level caches/memory to an upper level cache or
// the core.
completion_time += clockEdge(responseLatency) +
pkt->payloadDelay;
tgt_pkt->req->setExtraData(0);
} else {
// We are about to send a response to a cache above
// that asked for an invalidation; we need to
// invalidate our copy immediately as the most
// up-to-date copy of the block will now be in the
// cache above. It will also prevent this cache from
// responding (if the block was previously dirty) to
// snoops as they should snoop the caches above where
// they will get the response from.
if (is_invalidate && blk && blk->isValid()) {
invalidateBlock(blk);
}
// not a cache fill, just forwarding response
// responseLatency is the latency of the return path
// from lower level cahces/memory to the core.
completion_time += clockEdge(responseLatency) +
pkt->payloadDelay;
if (pkt->isRead() && !is_error) {
// sanity check
assert(pkt->getAddr() == tgt_pkt->getAddr());
assert(pkt->getSize() >= tgt_pkt->getSize());
tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
}
// this response did not allocate here and therefore
// it was not consumed, make sure that any flags are
// carried over to cache above
tgt_pkt->copyResponderFlags(pkt);
}
tgt_pkt->makeTimingResponse();
// if this packet is an error copy that to the new packet
if (is_error)
tgt_pkt->copyError(pkt);
if (tgt_pkt->cmd == MemCmd::ReadResp &&
(is_invalidate || mshr->hasPostInvalidate())) {
// If intermediate cache got ReadRespWithInvalidate,
// propagate that. Response should not have
// isInvalidate() set otherwise.
tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
tgt_pkt->print());
}
// Reset the bus additional time as it is now accounted for
tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
cpuSidePort.schedTimingResp(tgt_pkt, completion_time);
break;
case MSHR::Target::FromPrefetcher:
assert(tgt_pkt->cmd == MemCmd::HardPFReq);
if (blk)
blk->status |= BlkHWPrefetched;
delete tgt_pkt;
break;
case MSHR::Target::FromSnoop:
// I don't believe that a snoop can be in an error state
assert(!is_error);
// response to snoop request
DPRINTF(Cache, "processing deferred snoop...\n");
// If the response is invalidating, a snooping target can
// be satisfied if it is also invalidating. If the reponse is, not
// only invalidating, but more specifically an InvalidateResp and
// the MSHR was created due to an InvalidateReq then a cache above
// is waiting to satisfy a WriteLineReq. In this case even an
// non-invalidating snoop is added as a target here since this is
// the ordering point. When the InvalidateResp reaches this cache,
// the snooping target will snoop further the cache above with the
// WriteLineReq.
assert(!is_invalidate || pkt->cmd == MemCmd::InvalidateResp ||
pkt->req->isCacheMaintenance() ||
mshr->hasPostInvalidate());
handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
break;
default:
panic("Illegal target->source enum %d\n", target.source);
}
}
maintainClusivity(targets.hasFromCache, blk);
if (blk && blk->isValid()) {
// an invalidate response stemming from a write line request
// should not invalidate the block, so check if the
// invalidation should be discarded
if (is_invalidate || mshr->hasPostInvalidate()) {
invalidateBlock(blk);
} else if (mshr->hasPostDowngrade()) {
blk->status &= ~BlkWritable;
}
}
}
PacketPtr
Cache::evictBlock(CacheBlk *blk)
{
PacketPtr pkt = (blk->isDirty() || writebackClean) ?
writebackBlk(blk) : cleanEvictBlk(blk);
invalidateBlock(blk);
return pkt;
}
PacketPtr
Cache::cleanEvictBlk(CacheBlk *blk)
{
assert(!writebackClean);
assert(blk && blk->isValid() && !blk->isDirty());
// Creating a zero sized write, a message to the snoop filter
RequestPtr req = std::make_shared<Request>(
regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
if (blk->isSecure())
req->setFlags(Request::SECURE);
req->taskId(blk->task_id);
PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
pkt->allocate();
DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
return pkt;
}
/////////////////////////////////////////////////////
//
// Snoop path: requests coming in from the memory side
//
/////////////////////////////////////////////////////
void
Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
bool already_copied, bool pending_inval)
{
// sanity check
assert(req_pkt->isRequest());
assert(req_pkt->needsResponse());
DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
// timing-mode snoop responses require a new packet, unless we
// already made a copy...
PacketPtr pkt = req_pkt;
if (!already_copied)
// do not clear flags, and allocate space for data if the
// packet needs it (the only packets that carry data are read
// responses)
pkt = new Packet(req_pkt, false, req_pkt->isRead());
assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
pkt->hasSharers());
pkt->makeTimingResponse();
if (pkt->isRead()) {
pkt->setDataFromBlock(blk_data, blkSize);
}
if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
// Assume we defer a response to a read from a far-away cache
// A, then later defer a ReadExcl from a cache B on the same
// bus as us. We'll assert cacheResponding in both cases, but
// in the latter case cacheResponding will keep the
// invalidation from reaching cache A. This special response
// tells cache A that it gets the block to satisfy its read,
// but must immediately invalidate it.
pkt->cmd = MemCmd::ReadRespWithInvalidate;
}
// Here we consider forward_time, paying for just forward latency and
// also charging the delay provided by the xbar.
// forward_time is used as send_time in next allocateWriteBuffer().
Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
// Here we reset the timing of the packet.
pkt->headerDelay = pkt->payloadDelay = 0;
DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
pkt->print(), forward_time);
memSidePort.schedTimingSnoopResp(pkt, forward_time);
}
uint32_t
Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
bool is_deferred, bool pending_inval)
{
DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
// deferred snoops can only happen in timing mode
assert(!(is_deferred && !is_timing));
// pending_inval only makes sense on deferred snoops
assert(!(pending_inval && !is_deferred));
assert(pkt->isRequest());
// the packet may get modified if we or a forwarded snooper
// responds in atomic mode, so remember a few things about the
// original packet up front
bool invalidate = pkt->isInvalidate();
bool M5_VAR_USED needs_writable = pkt->needsWritable();
// at the moment we could get an uncacheable write which does not
// have the invalidate flag, and we need a suitable way of dealing
// with this case
panic_if(invalidate && pkt->req->isUncacheable(),
"%s got an invalidating uncacheable snoop request %s",
name(), pkt->print());
uint32_t snoop_delay = 0;
if (forwardSnoops) {
// first propagate snoop upward to see if anyone above us wants to
// handle it. save & restore packet src since it will get
// rewritten to be relative to cpu-side bus (if any)
if (is_timing) {
// copy the packet so that we can clear any flags before
// forwarding it upwards, we also allocate data (passing
// the pointer along in case of static data), in case
// there is a snoop hit in upper levels
Packet snoopPkt(pkt, true, true);
snoopPkt.setExpressSnoop();
// the snoop packet does not need to wait any additional
// time
snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
cpuSidePort.sendTimingSnoopReq(&snoopPkt);
// add the header delay (including crossbar and snoop
// delays) of the upward snoop to the snoop delay for this
// cache
snoop_delay += snoopPkt.headerDelay;
// If this request is a prefetch or clean evict and an upper level
// signals block present, make sure to propagate the block
// presence to the requester.
if (snoopPkt.isBlockCached()) {
pkt->setBlockCached();
}
// If the request was satisfied by snooping the cache
// above, mark the original packet as satisfied too.
if (snoopPkt.satisfied()) {
pkt->setSatisfied();
}
// Copy over flags from the snoop response to make sure we
// inform the final destination
pkt->copyResponderFlags(&snoopPkt);
} else {
bool already_responded = pkt->cacheResponding();
cpuSidePort.sendAtomicSnoop(pkt);
if (!already_responded && pkt->cacheResponding()) {
// cache-to-cache response from some upper cache:
// forward response to original requester
assert(pkt->isResponse());
}
}
}
bool respond = false;
bool blk_valid = blk && blk->isValid();
if (pkt->isClean()) {
if (blk_valid && blk->isDirty()) {
DPRINTF(CacheVerbose, "%s: packet (snoop) %s found block: %s\n",
__func__, pkt->print(), blk->print());
PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
PacketList writebacks;
writebacks.push_back(wb_pkt);
if (is_timing) {
// anything that is merely forwarded pays for the forward
// latency and the delay provided by the crossbar
Tick forward_time = clockEdge(forwardLatency) +
pkt->headerDelay;
doWritebacks(writebacks, forward_time);
} else {
doWritebacksAtomic(writebacks);
}
pkt->setSatisfied();
}
} else if (!blk_valid) {
DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
pkt->print());
if (is_deferred) {
// we no longer have the block, and will not respond, but a
// packet was allocated in MSHR::handleSnoop and we have
// to delete it
assert(pkt->needsResponse());
// we have passed the block to a cache upstream, that
// cache should be responding
assert(pkt->cacheResponding());
delete pkt;
}
return snoop_delay;
} else {
DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
pkt->print(), blk->print());
// We may end up modifying both the block state and the packet (if
// we respond in atomic mode), so just figure out what to do now
// and then do it later. We respond to all snoops that need
// responses provided we have the block in dirty state. The
// invalidation itself is taken care of below. We don't respond to
// cache maintenance operations as this is done by the destination
// xbar.
respond = blk->isDirty() && pkt->needsResponse();
chatty_assert(!(isReadOnly && blk->isDirty()), "Should never have "
"a dirty block in a read-only cache %s\n", name());
}
// Invalidate any prefetch's from below that would strip write permissions
// MemCmd::HardPFReq is only observed by upstream caches. After missing
// above and in it's own cache, a new MemCmd::ReadReq is created that
// downstream caches observe.
if (pkt->mustCheckAbove()) {
DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
"from lower cache\n", pkt->getAddr(), pkt->print());
pkt->setBlockCached();
return snoop_delay;
}
if (pkt->isRead() && !invalidate) {
// reading without requiring the line in a writable state
assert(!needs_writable);
pkt->setHasSharers();
// if the requesting packet is uncacheable, retain the line in
// the current state, otherwhise unset the writable flag,
// which means we go from Modified to Owned (and will respond
// below), remain in Owned (and will respond below), from
// Exclusive to Shared, or remain in Shared
if (!pkt->req->isUncacheable())
blk->status &= ~BlkWritable;
DPRINTF(Cache, "new state is %s\n", blk->print());
}
if (respond) {
// prevent anyone else from responding, cache as well as
// memory, and also prevent any memory from even seeing the
// request
pkt->setCacheResponding();
if (!pkt->isClean() && blk->isWritable()) {
// inform the cache hierarchy that this cache had the line
// in the Modified state so that we avoid unnecessary
// invalidations (see Packet::setResponderHadWritable)
pkt->setResponderHadWritable();
// in the case of an uncacheable request there is no point
// in setting the responderHadWritable flag, but since the
// recipient does not care there is no harm in doing so
} else {
// if the packet has needsWritable set we invalidate our
// copy below and all other copies will be invalidates
// through express snoops, and if needsWritable is not set
// we already called setHasSharers above
}
// if we are returning a writable and dirty (Modified) line,
// we should be invalidating the line
panic_if(!invalidate && !pkt->hasSharers(),
"%s is passing a Modified line through %s, "
"but keeping the block", name(), pkt->print());
if (is_timing) {
doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
} else {
pkt->makeAtomicResponse();
// packets such as upgrades do not actually have any data
// payload
if (pkt->hasData())
pkt->setDataFromBlock(blk->data, blkSize);
}
}
if (!respond && is_deferred) {
assert(pkt->needsResponse());
delete pkt;
}
// Do this last in case it deallocates block data or something
// like that
if (blk_valid && invalidate) {
invalidateBlock(blk);
DPRINTF(Cache, "new state is %s\n", blk->print());
}
return snoop_delay;
}
void
Cache::recvTimingSnoopReq(PacketPtr pkt)
{
DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
// no need to snoop requests that are not in range
if (!inRange(pkt->getAddr())) {
return;
}
bool is_secure = pkt->isSecure();
CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
Addr blk_addr = pkt->getBlockAddr(blkSize);
MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
// Update the latency cost of the snoop so that the crossbar can
// account for it. Do not overwrite what other neighbouring caches
// have already done, rather take the maximum. The update is
// tentative, for cases where we return before an upward snoop
// happens below.
pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
lookupLatency * clockPeriod());
// Inform request(Prefetch, CleanEvict or Writeback) from below of
// MSHR hit, set setBlockCached.
if (mshr && pkt->mustCheckAbove()) {
DPRINTF(Cache, "Setting block cached for %s from lower cache on "
"mshr hit\n", pkt->print());
pkt->setBlockCached();
return;
}
// Bypass any existing cache maintenance requests if the request
// has been satisfied already (i.e., the dirty block has been
// found).
if (mshr && pkt->req->isCacheMaintenance() && pkt->satisfied()) {
return;
}
// Let the MSHR itself track the snoop and decide whether we want
// to go ahead and do the regular cache snoop
if (mshr && mshr->handleSnoop(pkt, order++)) {
DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
"mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
mshr->print());
if (mshr->getNumTargets() > numTarget)
warn("allocating bonus target for snoop"); //handle later
return;
}
//We also need to check the writeback buffers and handle those
WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
if (wb_entry) {
DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
pkt->getAddr(), is_secure ? "s" : "ns");
// Expect to see only Writebacks and/or CleanEvicts here, both of
// which should not be generated for uncacheable data.
assert(!wb_entry->isUncacheable());
// There should only be a single request responsible for generating
// Writebacks/CleanEvicts.
assert(wb_entry->getNumTargets() == 1);
PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean);
if (pkt->isEviction()) {
// if the block is found in the write queue, set the BLOCK_CACHED
// flag for Writeback/CleanEvict snoop. On return the snoop will
// propagate the BLOCK_CACHED flag in Writeback packets and prevent
// any CleanEvicts from travelling down the memory hierarchy.
pkt->setBlockCached();
DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
"hit\n", __func__, pkt->print());
return;
}
// conceptually writebacks are no different to other blocks in
// this cache, so the behaviour is modelled after handleSnoop,
// the difference being that instead of querying the block
// state to determine if it is dirty and writable, we use the
// command and fields of the writeback packet
bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
pkt->needsResponse();
bool have_writable = !wb_pkt->hasSharers();
bool invalidate = pkt->isInvalidate();
if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
assert(!pkt->needsWritable());
pkt->setHasSharers();
wb_pkt->setHasSharers();
}
if (respond) {
pkt->setCacheResponding();
if (have_writable) {
pkt->setResponderHadWritable();
}
doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
false, false);
}
if (invalidate && wb_pkt->cmd != MemCmd::WriteClean) {
// Invalidation trumps our writeback... discard here
// Note: markInService will remove entry from writeback buffer.
markInService(wb_entry);
delete wb_pkt;
}
}
// If this was a shared writeback, there may still be
// other shared copies above that require invalidation.
// We could be more selective and return here if the
// request is non-exclusive or if the writeback is
// exclusive.
uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
// Override what we did when we first saw the snoop, as we now
// also have the cost of the upwards snoops to account for
pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
lookupLatency * clockPeriod());
}
Tick
Cache::recvAtomicSnoop(PacketPtr pkt)
{
// no need to snoop requests that are not in range.
if (!inRange(pkt->getAddr())) {
return 0;
}
CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
return snoop_delay + lookupLatency * clockPeriod();
}
bool
Cache::isCachedAbove(PacketPtr pkt, bool is_timing)
{
if (!forwardSnoops)
return false;
// Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
// Writeback snoops into upper level caches to check for copies of the
// same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
// packet, the cache can inform the crossbar below of presence or absence
// of the block.
if (is_timing) {
Packet snoop_pkt(pkt, true, false);
snoop_pkt.setExpressSnoop();
// Assert that packet is either Writeback or CleanEvict and not a
// prefetch request because prefetch requests need an MSHR and may
// generate a snoop response.
assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
snoop_pkt.senderState = nullptr;
cpuSidePort.sendTimingSnoopReq(&snoop_pkt);
// Writeback/CleanEvict snoops do not generate a snoop response.
assert(!(snoop_pkt.cacheResponding()));
return snoop_pkt.isBlockCached();
} else {
cpuSidePort.sendAtomicSnoop(pkt);
return pkt->isBlockCached();
}
}
bool
Cache::sendMSHRQueuePacket(MSHR* mshr)
{
assert(mshr);
// use request from 1st target
PacketPtr tgt_pkt = mshr->getTarget()->pkt;
if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
// we should never have hardware prefetches to allocated
// blocks
assert(!tags->findBlock(mshr->blkAddr, mshr->isSecure));
// We need to check the caches above us to verify that
// they don't have a copy of this block in the dirty state
// at the moment. Without this check we could get a stale
// copy from memory that might get used in place of the
// dirty one.
Packet snoop_pkt(tgt_pkt, true, false);
snoop_pkt.setExpressSnoop();
// We are sending this packet upwards, but if it hits we will
// get a snoop response that we end up treating just like a
// normal response, hence it needs the MSHR as its sender
// state
snoop_pkt.senderState = mshr;
cpuSidePort.sendTimingSnoopReq(&snoop_pkt);
// Check to see if the prefetch was squashed by an upper cache (to
// prevent us from grabbing the line) or if a Check to see if a
// writeback arrived between the time the prefetch was placed in
// the MSHRs and when it was selected to be sent or if the
// prefetch was squashed by an upper cache.
// It is important to check cacheResponding before
// prefetchSquashed. If another cache has committed to
// responding, it will be sending a dirty response which will
// arrive at the MSHR allocated for this request. Checking the
// prefetchSquash first may result in the MSHR being
// prematurely deallocated.
if (snoop_pkt.cacheResponding()) {
auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
assert(r.second);
// if we are getting a snoop response with no sharers it
// will be allocated as Modified
bool pending_modified_resp = !snoop_pkt.hasSharers();
markInService(mshr, pending_modified_resp);
DPRINTF(Cache, "Upward snoop of prefetch for addr"
" %#x (%s) hit\n",
tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
return false;
}
if (snoop_pkt.isBlockCached()) {
DPRINTF(Cache, "Block present, prefetch squashed by cache. "
"Deallocating mshr target %#x.\n",
mshr->blkAddr);
// Deallocate the mshr target
if (mshrQueue.forceDeallocateTarget(mshr)) {
// Clear block if this deallocation resulted freed an
// mshr when all had previously been utilized
clearBlocked(Blocked_NoMSHRs);
}
// given that no response is expected, delete Request and Packet
delete tgt_pkt;
return false;
}
}
return BaseCache::sendMSHRQueuePacket(mshr);
}
Cache*
CacheParams::create()
{
assert(tags);
assert(replacement_policy);
return new Cache(this);
}