blob: f9b66b827a2150b7559e38a44d1c8f6b7811a862 [file] [log] [blame]
/*
* Copyright (c) 2010, 2013, 2015-2018 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
*/
/** @file
* Implementation of a GICv2
*/
#ifndef __DEV_ARM_GICV2_H__
#define __DEV_ARM_GICV2_H__
#include <vector>
#include "base/addr_range.hh"
#include "base/bitunion.hh"
#include "cpu/intr_control.hh"
#include "dev/arm/base_gic.hh"
#include "dev/io_device.hh"
#include "dev/platform.hh"
#include "params/GicV2.hh"
class GicV2 : public BaseGic, public BaseGicRegisters
{
protected:
// distributor memory addresses
enum {
GICD_CTLR = 0x000, // control register
GICD_TYPER = 0x004, // controller type
GICD_IIDR = 0x008, // implementer id
GICD_SGIR = 0xf00, // software generated interrupt
GICD_PIDR0 = 0xfe0, // distributor peripheral ID0
GICD_PIDR1 = 0xfe4, // distributor peripheral ID1
GICD_PIDR2 = 0xfe8, // distributor peripheral ID2
GICD_PIDR3 = 0xfec, // distributor peripheral ID3
DIST_SIZE = 0x1000,
};
const uint32_t gicdPIDR;
const uint32_t gicdIIDR;
const uint32_t giccIIDR;
static const AddrRange GICD_IGROUPR; // interrupt group (unimplemented)
static const AddrRange GICD_ISENABLER; // interrupt set enable
static const AddrRange GICD_ICENABLER; // interrupt clear enable
static const AddrRange GICD_ISPENDR; // set pending interrupt
static const AddrRange GICD_ICPENDR; // clear pending interrupt
static const AddrRange GICD_ISACTIVER; // active bit registers
static const AddrRange GICD_ICACTIVER; // clear bit registers
static const AddrRange GICD_IPRIORITYR; // interrupt priority registers
static const AddrRange GICD_ITARGETSR; // processor target registers
static const AddrRange GICD_ICFGR; // interrupt config registers
// cpu memory addresses
enum {
GICC_CTLR = 0x00, // CPU control register
GICC_PMR = 0x04, // Interrupt priority mask
GICC_BPR = 0x08, // binary point register
GICC_IAR = 0x0C, // interrupt ack register
GICC_EOIR = 0x10, // end of interrupt
GICC_RPR = 0x14, // running priority
GICC_HPPIR = 0x18, // highest pending interrupt
GICC_ABPR = 0x1c, // aliased binary point
GICC_APR0 = 0xd0, // active priority register 0
GICC_APR1 = 0xd4, // active priority register 1
GICC_APR2 = 0xd8, // active priority register 2
GICC_APR3 = 0xdc, // active priority register 3
GICC_IIDR = 0xfc, // cpu interface id register
GICC_DIR = 0x1000, // deactive interrupt register
};
static const int SGI_MAX = 16; // Number of Software Gen Interrupts
static const int PPI_MAX = 16; // Number of Private Peripheral Interrupts
/** Mask off SGI's when setting/clearing pending bits */
static const int SGI_MASK = 0xFFFF0000;
/** Mask for bits that config N:N mode in GICD_ICFGR's */
static const int NN_CONFIG_MASK = 0x55555555;
static const int CPU_MAX = 256; // Max number of supported CPU interfaces
static const int SPURIOUS_INT = 1023;
static const int INT_BITS_MAX = 32;
static const int INT_LINES_MAX = 1020;
static const int GLOBAL_INT_LINES = INT_LINES_MAX - SGI_MAX - PPI_MAX;
/** minimum value for Binary Point Register ("IMPLEMENTATION DEFINED");
chosen for consistency with Linux's in-kernel KVM GIC model */
static const int GICC_BPR_MINIMUM = 2;
BitUnion32(SWI)
Bitfield<3,0> sgi_id;
Bitfield<23,16> cpu_list;
Bitfield<25,24> list_type;
EndBitUnion(SWI)
BitUnion32(IAR)
Bitfield<9,0> ack_id;
Bitfield<12,10> cpu_id;
EndBitUnion(IAR)
BitUnion32(CTLR)
Bitfield<3> fiqEn;
Bitfield<1> enableGrp1;
Bitfield<0> enableGrp0;
EndBitUnion(CTLR)
protected: /* Params */
/** Address range for the distributor interface */
const AddrRange distRange;
/** Address range for the CPU interfaces */
const AddrRange cpuRange;
/** All address ranges used by this GIC */
const AddrRangeList addrRanges;
/** Latency for a distributor operation */
const Tick distPioDelay;
/** Latency for a cpu operation */
const Tick cpuPioDelay;
/** Latency for a interrupt to get to CPU */
const Tick intLatency;
protected:
/** Gic enabled */
bool enabled;
/** Are gem5 extensions available? */
const bool haveGem5Extensions;
/** gem5 many-core extension enabled by driver */
bool gem5ExtensionsEnabled;
/** Number of itLines enabled */
uint32_t itLines;
/** Registers "banked for each connected processor" per ARM IHI0048B */
struct BankedRegs : public Serializable {
/** GICD_I{S,C}ENABLER0
* interrupt enable bits for first 32 interrupts, 1b per interrupt */
uint32_t intEnabled;
/** GICD_I{S,C}PENDR0
* interrupt pending bits for first 32 interrupts, 1b per interrupt */
uint32_t pendingInt;
/** GICD_I{S,C}ACTIVER0
* interrupt active bits for first 32 interrupts, 1b per interrupt */
uint32_t activeInt;
/** GICD_IGROUPR0
* interrupt group bits for first 32 interrupts, 1b per interrupt */
uint32_t intGroup;
/** GICD_IPRIORITYR{0..7}
* interrupt priority for SGIs and PPIs */
uint8_t intPriority[SGI_MAX + PPI_MAX];
void serialize(CheckpointOut &cp) const override;
void unserialize(CheckpointIn &cp) override;
BankedRegs() :
intEnabled(0), pendingInt(0), activeInt(0),
intGroup(0), intPriority {0}
{}
};
std::vector<BankedRegs*> bankedRegs;
BankedRegs& getBankedRegs(ContextID);
/** GICD_I{S,C}ENABLER{1..31}
* interrupt enable bits for global interrupts
* 1b per interrupt, 32 bits per word, 31 words */
uint32_t intEnabled[INT_BITS_MAX-1];
uint32_t& getIntEnabled(ContextID ctx, uint32_t ix) {
if (ix == 0) {
return getBankedRegs(ctx).intEnabled;
} else {
return intEnabled[ix - 1];
}
}
/** GICD_I{S,C}PENDR{1..31}
* interrupt pending bits for global interrupts
* 1b per interrupt, 32 bits per word, 31 words */
uint32_t pendingInt[INT_BITS_MAX-1];
uint32_t& getPendingInt(ContextID ctx, uint32_t ix) {
assert(ix < INT_BITS_MAX);
if (ix == 0) {
return getBankedRegs(ctx).pendingInt;
} else {
return pendingInt[ix - 1];
}
}
/** GICD_I{S,C}ACTIVER{1..31}
* interrupt active bits for global interrupts
* 1b per interrupt, 32 bits per word, 31 words */
uint32_t activeInt[INT_BITS_MAX-1];
uint32_t& getActiveInt(ContextID ctx, uint32_t ix) {
assert(ix < INT_BITS_MAX);
if (ix == 0) {
return getBankedRegs(ctx).activeInt;
} else {
return activeInt[ix - 1];
}
}
/** GICD_IGROUPR{1..31}
* interrupt group bits for global interrupts
* 1b per interrupt, 32 bits per word, 31 words */
uint32_t intGroup[INT_BITS_MAX-1];
uint32_t& getIntGroup(ContextID ctx, uint32_t ix) {
assert(ix < INT_BITS_MAX);
if (ix == 0) {
return getBankedRegs(ctx).intGroup;
} else {
return intGroup[ix - 1];
}
}
/** read only running priority register, 1 per cpu*/
uint32_t iccrpr[CPU_MAX];
/** GICD_IPRIORITYR{8..255}
* an 8 bit priority (lower is higher priority) for each
* of the global (not replicated per CPU) interrupts.
*/
uint8_t intPriority[GLOBAL_INT_LINES];
uint8_t& getIntPriority(ContextID ctx, uint32_t ix) {
assert(ix < INT_LINES_MAX);
if (ix < SGI_MAX + PPI_MAX) {
return getBankedRegs(ctx).intPriority[ix];
} else {
return intPriority[ix - (SGI_MAX + PPI_MAX)];
}
}
/** GICD_ICFGRn
* get 2 bit config associated to an interrupt.
*/
uint8_t getIntConfig(ContextID ctx, uint32_t ix) {
assert(ix < INT_LINES_MAX);
const uint8_t cfg_low = intNumToBit(ix * 2);
const uint8_t cfg_hi = cfg_low + 1;
return bits(intConfig[intNumToWord(ix * 2)], cfg_hi, cfg_low);
}
/** GICD_ITARGETSR{8..255}
* an 8 bit cpu target id for each global interrupt.
*/
uint8_t cpuTarget[GLOBAL_INT_LINES];
uint8_t getCpuTarget(ContextID ctx, uint32_t ix) {
assert(ctx < sys->numRunningContexts());
assert(ix < INT_LINES_MAX);
if (ix < SGI_MAX + PPI_MAX) {
// "GICD_ITARGETSR0 to GICD_ITARGETSR7 are read-only, and each
// field returns a value that corresponds only to the processor
// reading the register."
uint32_t ctx_mask;
if (gem5ExtensionsEnabled) {
ctx_mask = ctx;
} else {
// convert the CPU id number into a bit mask
ctx_mask = power(2, ctx);
}
return ctx_mask;
} else {
return cpuTarget[ix - 32];
}
}
/** 2 bit per interrupt signaling if it's level or edge sensitive
* and if it is 1:N or N:N */
uint32_t intConfig[INT_BITS_MAX*2];
bool isLevelSensitive(ContextID ctx, uint32_t ix) {
if (ix == SPURIOUS_INT) {
return false;
} else {
return bits(getIntConfig(ctx, ix), 1) == 0;
}
}
bool isGroup0(ContextID ctx, uint32_t int_num) {
const uint32_t group_reg = getIntGroup(ctx, intNumToWord(int_num));
return !bits(group_reg, intNumToBit(int_num));
}
/**
* This method checks if an interrupt ID must be signaled or has been
* signaled as a FIQ to the cpu. It does that by reading:
*
* 1) GICD_IGROUPR: controls if the interrupt is part of group0 or
* group1. Only group0 interrupts can be signaled as FIQs.
*
* 2) GICC_CTLR.FIQEn: controls whether the CPU interface signals Group 0
* interrupts to a target processor using the FIQ or the IRQ signal
*/
bool isFiq(ContextID ctx, uint32_t int_num) {
const bool is_group0 = isGroup0(ctx, int_num);
const bool use_fiq = cpuControl[ctx].fiqEn;
if (is_group0 && use_fiq) {
return true;
} else {
return false;
}
}
/** CPU enabled:
* Checks if GICC_CTLR.EnableGrp0 or EnableGrp1 are set
*/
bool cpuEnabled(ContextID ctx) const {
return cpuControl[ctx].enableGrp0 ||
cpuControl[ctx].enableGrp1;
}
/** GICC_CTLR:
* CPU interface control register
*/
CTLR cpuControl[CPU_MAX];
/** CPU priority */
uint8_t cpuPriority[CPU_MAX];
uint8_t getCpuPriority(unsigned cpu); // BPR-adjusted priority value
/** Binary point registers */
uint8_t cpuBpr[CPU_MAX];
/** highest interrupt that is interrupting CPU */
uint32_t cpuHighestInt[CPU_MAX];
/** One bit per cpu per software interrupt that is pending for each
* possible sgi source. Indexed by SGI number. Each byte in generating cpu
* id and bits in position is destination id. e.g. 0x4 = CPU 0 generated
* interrupt for CPU 2. */
uint64_t cpuSgiPending[SGI_MAX];
uint64_t cpuSgiActive[SGI_MAX];
/** SGI pending arrays for gem5 GIC extension mode, which instead keeps
* 16 SGI pending bits for each of the (large number of) CPUs.
*/
uint32_t cpuSgiPendingExt[CPU_MAX];
uint32_t cpuSgiActiveExt[CPU_MAX];
/** One bit per private peripheral interrupt. Only upper 16 bits
* will be used since PPI interrupts are numberred from 16 to 32 */
uint32_t cpuPpiPending[CPU_MAX];
uint32_t cpuPpiActive[CPU_MAX];
/** software generated interrupt
* @param data data to decode that indicates which cpus to interrupt
*/
void softInt(ContextID ctx, SWI swi);
/** See if some processor interrupt flags need to be enabled/disabled
* @param hint which set of interrupts needs to be checked
*/
virtual void updateIntState(int hint);
/** Update the register that records priority of the highest priority
* active interrupt*/
void updateRunPri();
/** generate a bit mask to check cpuSgi for an interrupt. */
uint64_t genSwiMask(int cpu);
int intNumToWord(int num) const { return num >> 5; }
int intNumToBit(int num) const { return num % 32; }
/** Clears a cpu IRQ or FIQ signal */
void clearInt(ContextID ctx, uint32_t int_num);
/**
* Post an interrupt to a CPU with a delay
*/
void postInt(uint32_t cpu, Tick when);
void postFiq(uint32_t cpu, Tick when);
/**
* Deliver a delayed interrupt to the target CPU
*/
void postDelayedInt(uint32_t cpu);
void postDelayedFiq(uint32_t cpu);
EventFunctionWrapper *postIntEvent[CPU_MAX];
EventFunctionWrapper *postFiqEvent[CPU_MAX];
int pendingDelayedInterrupts;
public:
typedef GicV2Params Params;
const Params *
params() const
{
return dynamic_cast<const Params *>(_params);
}
GicV2(const Params *p);
~GicV2();
DrainState drain() override;
void drainResume() override;
void serialize(CheckpointOut &cp) const override;
void unserialize(CheckpointIn &cp) override;
public: /* PioDevice */
AddrRangeList getAddrRanges() const override { return addrRanges; }
/** A PIO read to the device, immediately split up into
* readDistributor() or readCpu()
*/
Tick read(PacketPtr pkt) override;
/** A PIO read to the device, immediately split up into
* writeDistributor() or writeCpu()
*/
Tick write(PacketPtr pkt) override;
public: /* BaseGic */
void sendInt(uint32_t number) override;
void clearInt(uint32_t number) override;
void sendPPInt(uint32_t num, uint32_t cpu) override;
void clearPPInt(uint32_t num, uint32_t cpu) override;
protected:
/** Handle a read to the distributor portion of the GIC
* @param pkt packet to respond to
*/
Tick readDistributor(PacketPtr pkt);
uint32_t readDistributor(ContextID ctx, Addr daddr,
size_t resp_sz);
uint32_t readDistributor(ContextID ctx, Addr daddr) override {
return readDistributor(ctx, daddr, 4);
}
/** Handle a read to the cpu portion of the GIC
* @param pkt packet to respond to
*/
Tick readCpu(PacketPtr pkt);
uint32_t readCpu(ContextID ctx, Addr daddr) override;
/** Handle a write to the distributor portion of the GIC
* @param pkt packet to respond to
*/
Tick writeDistributor(PacketPtr pkt);
void writeDistributor(ContextID ctx, Addr daddr,
uint32_t data, size_t data_sz);
void writeDistributor(ContextID ctx, Addr daddr,
uint32_t data) override {
return writeDistributor(ctx, daddr, data, 4);
}
/** Handle a write to the cpu portion of the GIC
* @param pkt packet to respond to
*/
Tick writeCpu(PacketPtr pkt);
void writeCpu(ContextID ctx, Addr daddr, uint32_t data) override;
};
#endif //__DEV_ARM_GIC_H__