blob: 29b39b89e38cf72ad913d0e7e137d7f00c3c7f11 [file] [log] [blame]
/*
* Copyright (c) 2009-2014, 2016-2018 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
*/
#include "arch/arm/utility.hh"
#include <memory>
#include "arch/arm/faults.hh"
#include "arch/arm/isa_traits.hh"
#include "arch/arm/system.hh"
#include "arch/arm/tlb.hh"
#include "arch/arm/vtophys.hh"
#include "cpu/base.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/thread_context.hh"
#include "mem/fs_translating_port_proxy.hh"
#include "sim/full_system.hh"
namespace ArmISA {
void
initCPU(ThreadContext *tc, int cpuId)
{
// Reset CP15?? What does that mean -- ali
// FPEXC.EN = 0
static Fault reset = std::make_shared<Reset>();
reset->invoke(tc);
}
uint64_t
getArgument(ThreadContext *tc, int &number, uint16_t size, bool fp)
{
if (!FullSystem) {
panic("getArgument() only implemented for full system mode.\n");
M5_DUMMY_RETURN
}
if (fp)
panic("getArgument(): Floating point arguments not implemented\n");
if (inAArch64(tc)) {
if (size == (uint16_t)(-1))
size = sizeof(uint64_t);
if (number < 8 /*NumArgumentRegs64*/) {
return tc->readIntReg(number);
} else {
panic("getArgument(): No support reading stack args for AArch64\n");
}
} else {
if (size == (uint16_t)(-1))
// todo: should this not be sizeof(uint32_t) rather?
size = ArmISA::MachineBytes;
if (number < NumArgumentRegs) {
// If the argument is 64 bits, it must be in an even regiser
// number. Increment the number here if it isn't even.
if (size == sizeof(uint64_t)) {
if ((number % 2) != 0)
number++;
// Read the two halves of the data. Number is inc here to
// get the second half of the 64 bit reg.
uint64_t tmp;
tmp = tc->readIntReg(number++);
tmp |= tc->readIntReg(number) << 32;
return tmp;
} else {
return tc->readIntReg(number);
}
} else {
Addr sp = tc->readIntReg(StackPointerReg);
FSTranslatingPortProxy &vp = tc->getVirtProxy();
uint64_t arg;
if (size == sizeof(uint64_t)) {
// If the argument is even it must be aligned
if ((number % 2) != 0)
number++;
arg = vp.read<uint64_t>(sp +
(number-NumArgumentRegs) * sizeof(uint32_t));
// since two 32 bit args == 1 64 bit arg, increment number
number++;
} else {
arg = vp.read<uint32_t>(sp +
(number-NumArgumentRegs) * sizeof(uint32_t));
}
return arg;
}
}
panic("getArgument() should always return\n");
}
void
skipFunction(ThreadContext *tc)
{
PCState newPC = tc->pcState();
if (inAArch64(tc)) {
newPC.set(tc->readIntReg(INTREG_X30));
} else {
newPC.set(tc->readIntReg(ReturnAddressReg) & ~ULL(1));
}
CheckerCPU *checker = tc->getCheckerCpuPtr();
if (checker) {
tc->pcStateNoRecord(newPC);
} else {
tc->pcState(newPC);
}
}
static void
copyVecRegs(ThreadContext *src, ThreadContext *dest)
{
auto src_mode = RenameMode<ArmISA::ISA>::mode(src->pcState());
// The way vector registers are copied (VecReg vs VecElem) is relevant
// in the O3 model only.
if (src_mode == Enums::Full) {
for (auto idx = 0; idx < NumVecRegs; idx++)
dest->setVecRegFlat(idx, src->readVecRegFlat(idx));
} else {
for (auto idx = 0; idx < NumVecRegs; idx++)
for (auto elem_idx = 0; elem_idx < NumVecElemPerVecReg; elem_idx++)
dest->setVecElemFlat(
idx, elem_idx, src->readVecElemFlat(idx, elem_idx));
}
}
void
copyRegs(ThreadContext *src, ThreadContext *dest)
{
for (int i = 0; i < NumIntRegs; i++)
dest->setIntRegFlat(i, src->readIntRegFlat(i));
for (int i = 0; i < NumFloatRegs; i++)
dest->setFloatRegFlat(i, src->readFloatRegFlat(i));
for (int i = 0; i < NumCCRegs; i++)
dest->setCCReg(i, src->readCCReg(i));
for (int i = 0; i < NumMiscRegs; i++)
dest->setMiscRegNoEffect(i, src->readMiscRegNoEffect(i));
copyVecRegs(src, dest);
// setMiscReg "with effect" will set the misc register mapping correctly.
// e.g. updateRegMap(val)
dest->setMiscReg(MISCREG_CPSR, src->readMiscRegNoEffect(MISCREG_CPSR));
// Copy over the PC State
dest->pcState(src->pcState());
// Invalidate the tlb misc register cache
dynamic_cast<TLB *>(dest->getITBPtr())->invalidateMiscReg();
dynamic_cast<TLB *>(dest->getDTBPtr())->invalidateMiscReg();
}
bool
inSecureState(ThreadContext *tc)
{
SCR scr = inAArch64(tc) ? tc->readMiscReg(MISCREG_SCR_EL3) :
tc->readMiscReg(MISCREG_SCR);
return ArmSystem::haveSecurity(tc) && inSecureState(
scr, tc->readMiscReg(MISCREG_CPSR));
}
inline bool
isSecureBelowEL3(ThreadContext *tc)
{
SCR scr = tc->readMiscReg(MISCREG_SCR_EL3);
return ArmSystem::haveEL(tc, EL3) && scr.ns == 0;
}
bool
inAArch64(ThreadContext *tc)
{
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
return opModeIs64((OperatingMode) (uint8_t) cpsr.mode);
}
bool
longDescFormatInUse(ThreadContext *tc)
{
TTBCR ttbcr = tc->readMiscReg(MISCREG_TTBCR);
return ArmSystem::haveLPAE(tc) && ttbcr.eae;
}
RegVal
readMPIDR(ArmSystem *arm_sys, ThreadContext *tc)
{
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
const ExceptionLevel current_el =
opModeToEL((OperatingMode) (uint8_t) cpsr.mode);
const bool is_secure = isSecureBelowEL3(tc);
switch (current_el) {
case EL0:
// Note: in MsrMrs instruction we read the register value before
// checking access permissions. This means that EL0 entry must
// be part of the table even if MPIDR is not accessible in user
// mode.
warn_once("Trying to read MPIDR at EL0\n");
M5_FALLTHROUGH;
case EL1:
if (ArmSystem::haveEL(tc, EL2) && !is_secure)
return tc->readMiscReg(MISCREG_VMPIDR_EL2);
else
return getMPIDR(arm_sys, tc);
case EL2:
case EL3:
return getMPIDR(arm_sys, tc);
default:
panic("Invalid EL for reading MPIDR register\n");
}
}
RegVal
getMPIDR(ArmSystem *arm_sys, ThreadContext *tc)
{
// Multiprocessor Affinity Register MPIDR from Cortex(tm)-A15 Technical
// Reference Manual
//
// bit 31 - Multi-processor extensions available
// bit 30 - Uni-processor system
// bit 24 - Multi-threaded cores
// bit 11-8 - Cluster ID
// bit 1-0 - CPU ID
//
// We deliberately extend both the Cluster ID and CPU ID fields to allow
// for simulation of larger systems
assert((0 <= tc->cpuId()) && (tc->cpuId() < 256));
assert(tc->socketId() < 65536);
if (arm_sys->multiThread) {
return 0x80000000 | // multiprocessor extensions available
0x01000000 | // multi-threaded cores
tc->contextId();
} else if (arm_sys->multiProc) {
return 0x80000000 | // multiprocessor extensions available
tc->cpuId() | tc->socketId() << 8;
} else {
return 0x80000000 | // multiprocessor extensions available
0x40000000 | // in up system
tc->cpuId() | tc->socketId() << 8;
}
}
bool
ELIs64(ThreadContext *tc, ExceptionLevel el)
{
return !ELIs32(tc, el);
}
bool
ELIs32(ThreadContext *tc, ExceptionLevel el)
{
bool known, aarch32;
std::tie(known, aarch32) = ELUsingAArch32K(tc, el);
panic_if(!known, "EL state is UNKNOWN");
return aarch32;
}
bool
ELIsInHost(ThreadContext *tc, ExceptionLevel el)
{
if (!ArmSystem::haveVirtualization(tc)) {
return false;
}
HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
return (!isSecureBelowEL3(tc) && !ELIs32(tc, EL2) && hcr.e2h == 1 &&
(el == EL2 || (el == EL0 && hcr.tge == 1)));
}
std::pair<bool, bool>
ELUsingAArch32K(ThreadContext *tc, ExceptionLevel el)
{
// Return true if the specified EL is in aarch32 state.
const bool have_el3 = ArmSystem::haveSecurity(tc);
const bool have_el2 = ArmSystem::haveVirtualization(tc);
panic_if(el == EL2 && !have_el2, "Asking for EL2 when it doesn't exist");
panic_if(el == EL3 && !have_el3, "Asking for EL3 when it doesn't exist");
bool known, aarch32;
known = aarch32 = false;
if (ArmSystem::highestELIs64(tc) && ArmSystem::highestEL(tc) == el) {
// Target EL is the highest one in a system where
// the highest is using AArch64.
known = true; aarch32 = false;
} else if (!ArmSystem::highestELIs64(tc)) {
// All ELs are using AArch32:
known = true; aarch32 = true;
} else {
SCR scr = tc->readMiscReg(MISCREG_SCR_EL3);
bool aarch32_below_el3 = (have_el3 && scr.rw == 0);
HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
bool aarch32_at_el1 = (aarch32_below_el3
|| (have_el2
&& !isSecureBelowEL3(tc) && hcr.rw == 0));
// Only know if EL0 using AArch32 from PSTATE
if (el == EL0 && !aarch32_at_el1) {
// EL0 controlled by PSTATE
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
known = (cpsr.el == EL0);
aarch32 = (cpsr.width == 1);
} else {
known = true;
aarch32 = (aarch32_below_el3 && el != EL3)
|| (aarch32_at_el1 && (el == EL0 || el == EL1) );
}
}
return std::make_pair(known, aarch32);
}
bool
isBigEndian64(ThreadContext *tc)
{
switch (opModeToEL(currOpMode(tc))) {
case EL3:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL3)).ee;
case EL2:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL2)).ee;
case EL1:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).ee;
case EL0:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).e0e;
default:
panic("Invalid exception level");
break;
}
}
bool
badMode32(ThreadContext *tc, OperatingMode mode)
{
return unknownMode32(mode) || !ArmSystem::haveEL(tc, opModeToEL(mode));
}
bool
badMode(ThreadContext *tc, OperatingMode mode)
{
return unknownMode(mode) || !ArmSystem::haveEL(tc, opModeToEL(mode));
}
Addr
purifyTaggedAddr(Addr addr, ThreadContext *tc, ExceptionLevel el,
TTBCR tcr)
{
switch (el) {
case EL0:
case EL1:
if (bits(addr, 55, 48) == 0xFF && tcr.tbi1)
return addr | mask(63, 55);
else if (!bits(addr, 55, 48) && tcr.tbi0)
return bits(addr,55, 0);
break;
case EL2:
assert(ArmSystem::haveVirtualization(tc));
tcr = tc->readMiscReg(MISCREG_TCR_EL2);
if (tcr.tbi)
return addr & mask(56);
break;
case EL3:
assert(ArmSystem::haveSecurity(tc));
if (tcr.tbi)
return addr & mask(56);
break;
default:
panic("Invalid exception level");
break;
}
return addr; // Nothing to do if this is not a tagged address
}
Addr
purifyTaggedAddr(Addr addr, ThreadContext *tc, ExceptionLevel el)
{
TTBCR tcr;
switch (el) {
case EL0:
case EL1:
tcr = tc->readMiscReg(MISCREG_TCR_EL1);
if (bits(addr, 55, 48) == 0xFF && tcr.tbi1)
return addr | mask(63, 55);
else if (!bits(addr, 55, 48) && tcr.tbi0)
return bits(addr,55, 0);
break;
case EL2:
assert(ArmSystem::haveVirtualization(tc));
tcr = tc->readMiscReg(MISCREG_TCR_EL2);
if (tcr.tbi)
return addr & mask(56);
break;
case EL3:
assert(ArmSystem::haveSecurity(tc));
tcr = tc->readMiscReg(MISCREG_TCR_EL3);
if (tcr.tbi)
return addr & mask(56);
break;
default:
panic("Invalid exception level");
break;
}
return addr; // Nothing to do if this is not a tagged address
}
Addr
truncPage(Addr addr)
{
return addr & ~(PageBytes - 1);
}
Addr
roundPage(Addr addr)
{
return (addr + PageBytes - 1) & ~(PageBytes - 1);
}
bool
mcrMrc15TrapToHyp(const MiscRegIndex miscReg, HCR hcr, CPSR cpsr, SCR scr,
HDCR hdcr, HSTR hstr, HCPTR hcptr, uint32_t iss)
{
bool isRead;
uint32_t crm;
IntRegIndex rt;
uint32_t crn;
uint32_t opc1;
uint32_t opc2;
bool trapToHype = false;
if (!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP)) {
mcrMrcIssExtract(iss, isRead, crm, rt, crn, opc1, opc2);
trapToHype = ((uint32_t) hstr) & (1 << crn);
trapToHype |= hdcr.tpm && (crn == 9) && (crm >= 12);
trapToHype |= hcr.tidcp && (
((crn == 9) && ((crm <= 2) || ((crm >= 5) && (crm <= 8)))) ||
((crn == 10) && ((crm <= 1) || (crm == 4) || (crm == 8))) ||
((crn == 11) && ((crm <= 8) || (crm == 15))) );
if (!trapToHype) {
switch (unflattenMiscReg(miscReg)) {
case MISCREG_CPACR:
trapToHype = hcptr.tcpac;
break;
case MISCREG_REVIDR:
case MISCREG_TCMTR:
case MISCREG_TLBTR:
case MISCREG_AIDR:
trapToHype = hcr.tid1;
break;
case MISCREG_CTR:
case MISCREG_CCSIDR:
case MISCREG_CLIDR:
case MISCREG_CSSELR:
trapToHype = hcr.tid2;
break;
case MISCREG_ID_PFR0:
case MISCREG_ID_PFR1:
case MISCREG_ID_DFR0:
case MISCREG_ID_AFR0:
case MISCREG_ID_MMFR0:
case MISCREG_ID_MMFR1:
case MISCREG_ID_MMFR2:
case MISCREG_ID_MMFR3:
case MISCREG_ID_ISAR0:
case MISCREG_ID_ISAR1:
case MISCREG_ID_ISAR2:
case MISCREG_ID_ISAR3:
case MISCREG_ID_ISAR4:
case MISCREG_ID_ISAR5:
trapToHype = hcr.tid3;
break;
case MISCREG_DCISW:
case MISCREG_DCCSW:
case MISCREG_DCCISW:
trapToHype = hcr.tsw;
break;
case MISCREG_DCIMVAC:
case MISCREG_DCCIMVAC:
case MISCREG_DCCMVAC:
trapToHype = hcr.tpc;
break;
case MISCREG_ICIMVAU:
case MISCREG_ICIALLU:
case MISCREG_ICIALLUIS:
case MISCREG_DCCMVAU:
trapToHype = hcr.tpu;
break;
case MISCREG_TLBIALLIS:
case MISCREG_TLBIMVAIS:
case MISCREG_TLBIASIDIS:
case MISCREG_TLBIMVAAIS:
case MISCREG_TLBIMVALIS:
case MISCREG_TLBIMVAALIS:
case MISCREG_DTLBIALL:
case MISCREG_ITLBIALL:
case MISCREG_DTLBIMVA:
case MISCREG_ITLBIMVA:
case MISCREG_DTLBIASID:
case MISCREG_ITLBIASID:
case MISCREG_TLBIMVAA:
case MISCREG_TLBIALL:
case MISCREG_TLBIMVA:
case MISCREG_TLBIMVAL:
case MISCREG_TLBIMVAAL:
case MISCREG_TLBIASID:
trapToHype = hcr.ttlb;
break;
case MISCREG_ACTLR:
trapToHype = hcr.tac;
break;
case MISCREG_SCTLR:
case MISCREG_TTBR0:
case MISCREG_TTBR1:
case MISCREG_TTBCR:
case MISCREG_DACR:
case MISCREG_DFSR:
case MISCREG_IFSR:
case MISCREG_DFAR:
case MISCREG_IFAR:
case MISCREG_ADFSR:
case MISCREG_AIFSR:
case MISCREG_PRRR:
case MISCREG_NMRR:
case MISCREG_MAIR0:
case MISCREG_MAIR1:
case MISCREG_CONTEXTIDR:
trapToHype = hcr.tvm & !isRead;
break;
case MISCREG_PMCR:
trapToHype = hdcr.tpmcr;
break;
// No default action needed
default:
break;
}
}
}
return trapToHype;
}
bool
mcrMrc14TrapToHyp(const MiscRegIndex miscReg, HCR hcr, CPSR cpsr, SCR scr,
HDCR hdcr, HSTR hstr, HCPTR hcptr, uint32_t iss)
{
bool isRead;
uint32_t crm;
IntRegIndex rt;
uint32_t crn;
uint32_t opc1;
uint32_t opc2;
bool trapToHype = false;
if (!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP)) {
mcrMrcIssExtract(iss, isRead, crm, rt, crn, opc1, opc2);
inform("trap check M:%x N:%x 1:%x 2:%x hdcr %x, hcptr %x, hstr %x\n",
crm, crn, opc1, opc2, hdcr, hcptr, hstr);
trapToHype = hdcr.tda && (opc1 == 0);
trapToHype |= hcptr.tta && (opc1 == 1);
if (!trapToHype) {
switch (unflattenMiscReg(miscReg)) {
case MISCREG_DBGOSLSR:
case MISCREG_DBGOSLAR:
case MISCREG_DBGOSDLR:
case MISCREG_DBGPRCR:
trapToHype = hdcr.tdosa;
break;
case MISCREG_DBGDRAR:
case MISCREG_DBGDSAR:
trapToHype = hdcr.tdra;
break;
case MISCREG_JIDR:
trapToHype = hcr.tid0;
break;
case MISCREG_JOSCR:
case MISCREG_JMCR:
trapToHype = hstr.tjdbx;
break;
case MISCREG_TEECR:
case MISCREG_TEEHBR:
trapToHype = hstr.ttee;
break;
// No default action needed
default:
break;
}
}
}
return trapToHype;
}
bool
mcrrMrrc15TrapToHyp(const MiscRegIndex miscReg, CPSR cpsr, SCR scr, HSTR hstr,
HCR hcr, uint32_t iss)
{
uint32_t crm;
IntRegIndex rt;
uint32_t crn;
uint32_t opc1;
uint32_t opc2;
bool isRead;
bool trapToHype = false;
if (!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP)) {
// This is technically the wrong function, but we can re-use it for
// the moment because we only need one field, which overlaps with the
// mcrmrc layout
mcrMrcIssExtract(iss, isRead, crm, rt, crn, opc1, opc2);
trapToHype = ((uint32_t) hstr) & (1 << crm);
if (!trapToHype) {
switch (unflattenMiscReg(miscReg)) {
case MISCREG_SCTLR:
case MISCREG_TTBR0:
case MISCREG_TTBR1:
case MISCREG_TTBCR:
case MISCREG_DACR:
case MISCREG_DFSR:
case MISCREG_IFSR:
case MISCREG_DFAR:
case MISCREG_IFAR:
case MISCREG_ADFSR:
case MISCREG_AIFSR:
case MISCREG_PRRR:
case MISCREG_NMRR:
case MISCREG_MAIR0:
case MISCREG_MAIR1:
case MISCREG_CONTEXTIDR:
trapToHype = hcr.tvm & !isRead;
break;
// No default action needed
default:
break;
}
}
}
return trapToHype;
}
bool
decodeMrsMsrBankedReg(uint8_t sysM, bool r, bool &isIntReg, int &regIdx,
CPSR cpsr, SCR scr, NSACR nsacr, bool checkSecurity)
{
OperatingMode mode = MODE_UNDEFINED;
bool ok = true;
// R mostly indicates if its a int register or a misc reg, we override
// below if the few corner cases
isIntReg = !r;
// Loosely based on ARM ARM issue C section B9.3.10
if (r) {
switch (sysM)
{
case 0xE:
regIdx = MISCREG_SPSR_FIQ;
mode = MODE_FIQ;
break;
case 0x10:
regIdx = MISCREG_SPSR_IRQ;
mode = MODE_IRQ;
break;
case 0x12:
regIdx = MISCREG_SPSR_SVC;
mode = MODE_SVC;
break;
case 0x14:
regIdx = MISCREG_SPSR_ABT;
mode = MODE_ABORT;
break;
case 0x16:
regIdx = MISCREG_SPSR_UND;
mode = MODE_UNDEFINED;
break;
case 0x1C:
regIdx = MISCREG_SPSR_MON;
mode = MODE_MON;
break;
case 0x1E:
regIdx = MISCREG_SPSR_HYP;
mode = MODE_HYP;
break;
default:
ok = false;
break;
}
} else {
int sysM4To3 = bits(sysM, 4, 3);
if (sysM4To3 == 0) {
mode = MODE_USER;
regIdx = intRegInMode(mode, bits(sysM, 2, 0) + 8);
} else if (sysM4To3 == 1) {
mode = MODE_FIQ;
regIdx = intRegInMode(mode, bits(sysM, 2, 0) + 8);
} else if (sysM4To3 == 3) {
if (bits(sysM, 1) == 0) {
mode = MODE_MON;
regIdx = intRegInMode(mode, 14 - bits(sysM, 0));
} else {
mode = MODE_HYP;
if (bits(sysM, 0) == 1) {
regIdx = intRegInMode(mode, 13); // R13 in HYP
} else {
isIntReg = false;
regIdx = MISCREG_ELR_HYP;
}
}
} else { // Other Banked registers
int sysM2 = bits(sysM, 2);
int sysM1 = bits(sysM, 1);
mode = (OperatingMode) ( ((sysM2 || sysM1) << 0) |
(1 << 1) |
((sysM2 && !sysM1) << 2) |
((sysM2 && sysM1) << 3) |
(1 << 4) );
regIdx = intRegInMode(mode, 14 - bits(sysM, 0));
// Don't flatten the register here. This is going to go through
// setIntReg() which will do the flattening
ok &= mode != cpsr.mode;
}
}
// Check that the requested register is accessable from the current mode
if (ok && checkSecurity && mode != cpsr.mode) {
switch (cpsr.mode)
{
case MODE_USER:
ok = false;
break;
case MODE_FIQ:
ok &= mode != MODE_HYP;
ok &= (mode != MODE_MON) || !scr.ns;
break;
case MODE_HYP:
ok &= mode != MODE_MON;
ok &= (mode != MODE_FIQ) || !nsacr.rfr;
break;
case MODE_IRQ:
case MODE_SVC:
case MODE_ABORT:
case MODE_UNDEFINED:
case MODE_SYSTEM:
ok &= mode != MODE_HYP;
ok &= (mode != MODE_MON) || !scr.ns;
ok &= (mode != MODE_FIQ) || !nsacr.rfr;
break;
// can access everything, no further checks required
case MODE_MON:
break;
default:
panic("unknown Mode 0x%x\n", cpsr.mode);
break;
}
}
return (ok);
}
bool
SPAlignmentCheckEnabled(ThreadContext* tc)
{
switch (opModeToEL(currOpMode(tc))) {
case EL3:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL3)).sa;
case EL2:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL2)).sa;
case EL1:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).sa;
case EL0:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).sa0;
default:
panic("Invalid exception level");
break;
}
}
int
decodePhysAddrRange64(uint8_t pa_enc)
{
switch (pa_enc) {
case 0x0:
return 32;
case 0x1:
return 36;
case 0x2:
return 40;
case 0x3:
return 42;
case 0x4:
return 44;
case 0x5:
case 0x6:
case 0x7:
return 48;
default:
panic("Invalid phys. address range encoding");
}
}
uint8_t
encodePhysAddrRange64(int pa_size)
{
switch (pa_size) {
case 32:
return 0x0;
case 36:
return 0x1;
case 40:
return 0x2;
case 42:
return 0x3;
case 44:
return 0x4;
case 48:
return 0x5;
default:
panic("Invalid phys. address range");
}
}
} // namespace ArmISA