blob: dc37a8c717cca10b898eaa38e2aef5b553761484 [file] [log] [blame]
/*
* Copyright (c) 2010-2012, 2015, 2017 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2011 Advanced Micro Devices, Inc.
* Copyright (c) 2003-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Nathan Binkert
*/
#include "sim/pseudo_inst.hh"
#include <fcntl.h>
#include <unistd.h>
#include <cerrno>
#include <fstream>
#include <string>
#include <vector>
#include <gem5/asm/generic/m5ops.h>
#include "arch/kernel_stats.hh"
#include "arch/pseudo_inst.hh"
#include "arch/utility.hh"
#include "arch/vtophys.hh"
#include "base/debug.hh"
#include "base/output.hh"
#include "config/the_isa.hh"
#include "cpu/base.hh"
#include "cpu/quiesce_event.hh"
#include "cpu/thread_context.hh"
#include "debug/Loader.hh"
#include "debug/PseudoInst.hh"
#include "debug/Quiesce.hh"
#include "debug/WorkItems.hh"
#include "dev/net/dist_iface.hh"
#include "params/BaseCPU.hh"
#include "sim/full_system.hh"
#include "sim/initparam_keys.hh"
#include "sim/process.hh"
#include "sim/serialize.hh"
#include "sim/sim_events.hh"
#include "sim/sim_exit.hh"
#include "sim/stat_control.hh"
#include "sim/stats.hh"
#include "sim/system.hh"
#include "sim/vptr.hh"
using namespace std;
using namespace Stats;
using namespace TheISA;
namespace PseudoInst {
static inline void
panicFsOnlyPseudoInst(const char *name)
{
panic("Pseudo inst \"%s\" is only available in Full System mode.");
}
uint64_t
pseudoInst(ThreadContext *tc, uint8_t func, uint8_t subfunc)
{
uint64_t args[4];
DPRINTF(PseudoInst, "PseudoInst::pseudoInst(%i, %i)\n", func, subfunc);
// We need to do this in a slightly convoluted way since
// getArgument() might have side-effects on arg_num. We could have
// used the Argument class, but due to the possible side effects
// from getArgument, it'd most likely break.
int arg_num(0);
for (int i = 0; i < sizeof(args) / sizeof(*args); ++i) {
args[arg_num] = getArgument(tc, arg_num, sizeof(uint64_t), false);
++arg_num;
}
switch (func) {
case M5OP_ARM:
arm(tc);
break;
case M5OP_QUIESCE:
quiesce(tc);
break;
case M5OP_QUIESCE_NS:
quiesceNs(tc, args[0]);
break;
case M5OP_QUIESCE_CYCLE:
quiesceCycles(tc, args[0]);
break;
case M5OP_QUIESCE_TIME:
return quiesceTime(tc);
case M5OP_RPNS:
return rpns(tc);
case M5OP_WAKE_CPU:
wakeCPU(tc, args[0]);
break;
case M5OP_EXIT:
m5exit(tc, args[0]);
break;
case M5OP_FAIL:
m5fail(tc, args[0], args[1]);
break;
case M5OP_INIT_PARAM:
return initParam(tc, args[0], args[1]);
case M5OP_LOAD_SYMBOL:
loadsymbol(tc);
break;
case M5OP_RESET_STATS:
resetstats(tc, args[0], args[1]);
break;
case M5OP_DUMP_STATS:
dumpstats(tc, args[0], args[1]);
break;
case M5OP_DUMP_RESET_STATS:
dumpresetstats(tc, args[0], args[1]);
break;
case M5OP_CHECKPOINT:
m5checkpoint(tc, args[0], args[1]);
break;
case M5OP_WRITE_FILE:
return writefile(tc, args[0], args[1], args[2], args[3]);
case M5OP_READ_FILE:
return readfile(tc, args[0], args[1], args[2]);
case M5OP_DEBUG_BREAK:
debugbreak(tc);
break;
case M5OP_SWITCH_CPU:
switchcpu(tc);
break;
case M5OP_ADD_SYMBOL:
addsymbol(tc, args[0], args[1]);
break;
case M5OP_PANIC:
panic("M5 panic instruction called at %s\n", tc->pcState());
case M5OP_WORK_BEGIN:
workbegin(tc, args[0], args[1]);
break;
case M5OP_WORK_END:
workend(tc, args[0], args[1]);
break;
case M5OP_ANNOTATE:
case M5OP_RESERVED2:
case M5OP_RESERVED3:
case M5OP_RESERVED4:
case M5OP_RESERVED5:
warn("Unimplemented m5 op (0x%x)\n", func);
break;
/* SE mode functions */
case M5OP_SE_SYSCALL:
m5Syscall(tc);
break;
case M5OP_SE_PAGE_FAULT:
m5PageFault(tc);
break;
/* dist-gem5 functions */
case M5OP_DIST_TOGGLE_SYNC:
togglesync(tc);
break;
default:
warn("Unhandled m5 op: 0x%x\n", func);
break;
}
return 0;
}
void
arm(ThreadContext *tc)
{
DPRINTF(PseudoInst, "PseudoInst::arm()\n");
if (!FullSystem)
panicFsOnlyPseudoInst("arm");
if (tc->getKernelStats())
tc->getKernelStats()->arm();
}
void
quiesce(ThreadContext *tc)
{
DPRINTF(PseudoInst, "PseudoInst::quiesce()\n");
tc->quiesce();
}
void
quiesceSkip(ThreadContext *tc)
{
DPRINTF(PseudoInst, "PseudoInst::quiesceSkip()\n");
tc->quiesceTick(tc->getCpuPtr()->nextCycle() + 1);
}
void
quiesceNs(ThreadContext *tc, uint64_t ns)
{
DPRINTF(PseudoInst, "PseudoInst::quiesceNs(%i)\n", ns);
tc->quiesceTick(curTick() + SimClock::Int::ns * ns);
}
void
quiesceCycles(ThreadContext *tc, uint64_t cycles)
{
DPRINTF(PseudoInst, "PseudoInst::quiesceCycles(%i)\n", cycles);
tc->quiesceTick(tc->getCpuPtr()->clockEdge(Cycles(cycles)));
}
uint64_t
quiesceTime(ThreadContext *tc)
{
DPRINTF(PseudoInst, "PseudoInst::quiesceTime()\n");
return (tc->readLastActivate() - tc->readLastSuspend()) /
SimClock::Int::ns;
}
uint64_t
rpns(ThreadContext *tc)
{
DPRINTF(PseudoInst, "PseudoInst::rpns()\n");
return curTick() / SimClock::Int::ns;
}
void
wakeCPU(ThreadContext *tc, uint64_t cpuid)
{
DPRINTF(PseudoInst, "PseudoInst::wakeCPU(%i)\n", cpuid);
System *sys = tc->getSystemPtr();
if (sys->numContexts() <= cpuid) {
warn("PseudoInst::wakeCPU(%i), cpuid greater than number of contexts"
"(%i)\n",cpuid, sys->numContexts());
return;
}
ThreadContext *other_tc = sys->threadContexts[cpuid];
if (other_tc->status() == ThreadContext::Suspended)
other_tc->activate();
}
void
m5exit(ThreadContext *tc, Tick delay)
{
DPRINTF(PseudoInst, "PseudoInst::m5exit(%i)\n", delay);
if (DistIface::readyToExit(delay)) {
Tick when = curTick() + delay * SimClock::Int::ns;
exitSimLoop("m5_exit instruction encountered", 0, when, 0, true);
}
}
void
m5fail(ThreadContext *tc, Tick delay, uint64_t code)
{
DPRINTF(PseudoInst, "PseudoInst::m5fail(%i, %i)\n", delay, code);
Tick when = curTick() + delay * SimClock::Int::ns;
exitSimLoop("m5_fail instruction encountered", code, when, 0, true);
}
void
loadsymbol(ThreadContext *tc)
{
DPRINTF(PseudoInst, "PseudoInst::loadsymbol()\n");
if (!FullSystem)
panicFsOnlyPseudoInst("loadsymbol");
const string &filename = tc->getCpuPtr()->system->params()->symbolfile;
if (filename.empty()) {
return;
}
std::string buffer;
ifstream file(filename.c_str());
if (!file)
fatal("file error: Can't open symbol table file %s\n", filename);
while (!file.eof()) {
getline(file, buffer);
if (buffer.empty())
continue;
string::size_type idx = buffer.find(' ');
if (idx == string::npos)
continue;
string address = "0x" + buffer.substr(0, idx);
eat_white(address);
if (address.empty())
continue;
// Skip over letter and space
string symbol = buffer.substr(idx + 3);
eat_white(symbol);
if (symbol.empty())
continue;
Addr addr;
if (!to_number(address, addr))
continue;
if (!tc->getSystemPtr()->kernelSymtab->insert(addr, symbol))
continue;
DPRINTF(Loader, "Loaded symbol: %s @ %#llx\n", symbol, addr);
}
file.close();
}
void
addsymbol(ThreadContext *tc, Addr addr, Addr symbolAddr)
{
DPRINTF(PseudoInst, "PseudoInst::addsymbol(0x%x, 0x%x)\n",
addr, symbolAddr);
if (!FullSystem)
panicFsOnlyPseudoInst("addSymbol");
char symb[100];
CopyStringOut(tc, symb, symbolAddr, 100);
std::string symbol(symb);
DPRINTF(Loader, "Loaded symbol: %s @ %#llx\n", symbol, addr);
tc->getSystemPtr()->kernelSymtab->insert(addr,symbol);
debugSymbolTable->insert(addr,symbol);
}
uint64_t
initParam(ThreadContext *tc, uint64_t key_str1, uint64_t key_str2)
{
DPRINTF(PseudoInst, "PseudoInst::initParam() key:%s%s\n", (char *)&key_str1,
(char *)&key_str2);
if (!FullSystem) {
panicFsOnlyPseudoInst("initParam");
return 0;
}
// The key parameter string is passed in via two 64-bit registers. We copy
// out the characters from the 64-bit integer variables here and concatenate
// them in the key_str character buffer
const int len = 2 * sizeof(uint64_t) + 1;
char key_str[len];
memset(key_str, '\0', len);
if (key_str1 == 0) {
assert(key_str2 == 0);
} else {
strncpy(key_str, (char *)&key_str1, sizeof(uint64_t));
}
if (strlen(key_str) == sizeof(uint64_t)) {
strncpy(key_str + sizeof(uint64_t), (char *)&key_str2,
sizeof(uint64_t));
} else {
assert(key_str2 == 0);
}
// Compare the key parameter with the known values to select the return
// value
uint64_t val;
if (strcmp(key_str, InitParamKey::DEFAULT) == 0) {
val = tc->getCpuPtr()->system->init_param;
} else if (strcmp(key_str, InitParamKey::DIST_RANK) == 0) {
val = DistIface::rankParam();
} else if (strcmp(key_str, InitParamKey::DIST_SIZE) == 0) {
val = DistIface::sizeParam();
} else {
panic("Unknown key for initparam pseudo instruction:\"%s\"", key_str);
}
return val;
}
void
resetstats(ThreadContext *tc, Tick delay, Tick period)
{
DPRINTF(PseudoInst, "PseudoInst::resetstats(%i, %i)\n", delay, period);
if (!tc->getCpuPtr()->params()->do_statistics_insts)
return;
Tick when = curTick() + delay * SimClock::Int::ns;
Tick repeat = period * SimClock::Int::ns;
Stats::schedStatEvent(false, true, when, repeat);
}
void
dumpstats(ThreadContext *tc, Tick delay, Tick period)
{
DPRINTF(PseudoInst, "PseudoInst::dumpstats(%i, %i)\n", delay, period);
if (!tc->getCpuPtr()->params()->do_statistics_insts)
return;
Tick when = curTick() + delay * SimClock::Int::ns;
Tick repeat = period * SimClock::Int::ns;
Stats::schedStatEvent(true, false, when, repeat);
}
void
dumpresetstats(ThreadContext *tc, Tick delay, Tick period)
{
DPRINTF(PseudoInst, "PseudoInst::dumpresetstats(%i, %i)\n", delay, period);
if (!tc->getCpuPtr()->params()->do_statistics_insts)
return;
Tick when = curTick() + delay * SimClock::Int::ns;
Tick repeat = period * SimClock::Int::ns;
Stats::schedStatEvent(true, true, when, repeat);
}
void
m5checkpoint(ThreadContext *tc, Tick delay, Tick period)
{
DPRINTF(PseudoInst, "PseudoInst::m5checkpoint(%i, %i)\n", delay, period);
if (!tc->getCpuPtr()->params()->do_checkpoint_insts)
return;
if (DistIface::readyToCkpt(delay, period)) {
Tick when = curTick() + delay * SimClock::Int::ns;
Tick repeat = period * SimClock::Int::ns;
exitSimLoop("checkpoint", 0, when, repeat);
}
}
uint64_t
readfile(ThreadContext *tc, Addr vaddr, uint64_t len, uint64_t offset)
{
DPRINTF(PseudoInst, "PseudoInst::readfile(0x%x, 0x%x, 0x%x)\n",
vaddr, len, offset);
if (!FullSystem) {
panicFsOnlyPseudoInst("readfile");
return 0;
}
const string &file = tc->getSystemPtr()->params()->readfile;
if (file.empty()) {
return ULL(0);
}
uint64_t result = 0;
int fd = ::open(file.c_str(), O_RDONLY, 0);
if (fd < 0)
panic("could not open file %s\n", file);
if (::lseek(fd, offset, SEEK_SET) < 0)
panic("could not seek: %s", strerror(errno));
char *buf = new char[len];
char *p = buf;
while (len > 0) {
int bytes = ::read(fd, p, len);
if (bytes <= 0)
break;
p += bytes;
result += bytes;
len -= bytes;
}
close(fd);
CopyIn(tc, vaddr, buf, result);
delete [] buf;
return result;
}
uint64_t
writefile(ThreadContext *tc, Addr vaddr, uint64_t len, uint64_t offset,
Addr filename_addr)
{
DPRINTF(PseudoInst, "PseudoInst::writefile(0x%x, 0x%x, 0x%x, 0x%x)\n",
vaddr, len, offset, filename_addr);
// copy out target filename
char fn[100];
std::string filename;
CopyStringOut(tc, fn, filename_addr, 100);
filename = std::string(fn);
OutputStream *out;
if (offset == 0) {
// create a new file (truncate)
out = simout.create(filename, true, true);
} else {
// do not truncate file if offset is non-zero
// (ios::in flag is required as well to keep the existing data
// intact, otherwise existing data will be zeroed out.)
out = simout.open(filename, ios::in | ios::out | ios::binary, true);
}
ostream *os(out->stream());
if (!os)
panic("could not open file %s\n", filename);
// seek to offset
os->seekp(offset);
// copy out data and write to file
char *buf = new char[len];
CopyOut(tc, buf, vaddr, len);
os->write(buf, len);
if (os->fail() || os->bad())
panic("Error while doing writefile!\n");
simout.close(out);
delete [] buf;
return len;
}
void
debugbreak(ThreadContext *tc)
{
DPRINTF(PseudoInst, "PseudoInst::debugbreak()\n");
Debug::breakpoint();
}
void
switchcpu(ThreadContext *tc)
{
DPRINTF(PseudoInst, "PseudoInst::switchcpu()\n");
exitSimLoop("switchcpu");
}
void
togglesync(ThreadContext *tc)
{
DPRINTF(PseudoInst, "PseudoInst::togglesync()\n");
DistIface::toggleSync(tc);
}
//
// This function is executed when annotated work items begin. Depending on
// what the user specified at the command line, the simulation may exit and/or
// take a checkpoint when a certain work item begins.
//
void
workbegin(ThreadContext *tc, uint64_t workid, uint64_t threadid)
{
DPRINTF(PseudoInst, "PseudoInst::workbegin(%i, %i)\n", workid, threadid);
System *sys = tc->getSystemPtr();
const System::Params *params = sys->params();
if (params->exit_on_work_items) {
exitSimLoop("workbegin", static_cast<int>(workid));
return;
}
DPRINTF(WorkItems, "Work Begin workid: %d, threadid %d\n", workid,
threadid);
tc->getCpuPtr()->workItemBegin();
sys->workItemBegin(threadid, workid);
//
// If specified, determine if this is the specific work item the user
// identified
//
if (params->work_item_id == -1 || params->work_item_id == workid) {
uint64_t systemWorkBeginCount = sys->incWorkItemsBegin();
int cpuId = tc->getCpuPtr()->cpuId();
if (params->work_cpus_ckpt_count != 0 &&
sys->markWorkItem(cpuId) >= params->work_cpus_ckpt_count) {
//
// If active cpus equals checkpoint count, create checkpoint
//
exitSimLoop("checkpoint");
}
if (systemWorkBeginCount == params->work_begin_ckpt_count) {
//
// Note: the string specified as the cause of the exit event must
// exactly equal "checkpoint" inorder to create a checkpoint
//
exitSimLoop("checkpoint");
}
if (systemWorkBeginCount == params->work_begin_exit_count) {
//
// If a certain number of work items started, exit simulation
//
exitSimLoop("work started count reach");
}
if (cpuId == params->work_begin_cpu_id_exit) {
//
// If work started on the cpu id specified, exit simulation
//
exitSimLoop("work started on specific cpu");
}
}
}
//
// This function is executed when annotated work items end. Depending on
// what the user specified at the command line, the simulation may exit and/or
// take a checkpoint when a certain work item ends.
//
void
workend(ThreadContext *tc, uint64_t workid, uint64_t threadid)
{
DPRINTF(PseudoInst, "PseudoInst::workend(%i, %i)\n", workid, threadid);
System *sys = tc->getSystemPtr();
const System::Params *params = sys->params();
if (params->exit_on_work_items) {
exitSimLoop("workend", static_cast<int>(workid));
return;
}
DPRINTF(WorkItems, "Work End workid: %d, threadid %d\n", workid, threadid);
tc->getCpuPtr()->workItemEnd();
sys->workItemEnd(threadid, workid);
//
// If specified, determine if this is the specific work item the user
// identified
//
if (params->work_item_id == -1 || params->work_item_id == workid) {
uint64_t systemWorkEndCount = sys->incWorkItemsEnd();
int cpuId = tc->getCpuPtr()->cpuId();
if (params->work_cpus_ckpt_count != 0 &&
sys->markWorkItem(cpuId) >= params->work_cpus_ckpt_count) {
//
// If active cpus equals checkpoint count, create checkpoint
//
exitSimLoop("checkpoint");
}
if (params->work_end_ckpt_count != 0 &&
systemWorkEndCount == params->work_end_ckpt_count) {
//
// If total work items completed equals checkpoint count, create
// checkpoint
//
exitSimLoop("checkpoint");
}
if (params->work_end_exit_count != 0 &&
systemWorkEndCount == params->work_end_exit_count) {
//
// If total work items completed equals exit count, exit simulation
//
exitSimLoop("work items exit count reached");
}
}
}
} // namespace PseudoInst