blob: 4809c8a476db346cf699c11f17353984d0ec57d0 [file] [log] [blame]
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mem/ruby/structures/TimerTable.hh"
#include "mem/ruby/system/RubySystem.hh"
TimerTable::TimerTable()
: m_next_time(0)
{
m_consumer_ptr = NULL;
m_next_valid = false;
m_next_address = 0;
}
bool
TimerTable::isReady(Tick curTime) const
{
if (m_map.empty())
return false;
if (!m_next_valid) {
updateNext();
}
assert(m_next_valid);
return (curTime >= m_next_time);
}
Addr
TimerTable::nextAddress() const
{
if (!m_next_valid) {
updateNext();
}
assert(m_next_valid);
return m_next_address;
}
void
TimerTable::set(Addr address, Tick ready_time)
{
assert(address == makeLineAddress(address));
assert(!m_map.count(address));
m_map[address] = ready_time;
assert(m_consumer_ptr != NULL);
m_consumer_ptr->scheduleEventAbsolute(ready_time);
m_next_valid = false;
// Don't always recalculate the next ready address
if (ready_time <= m_next_time) {
m_next_valid = false;
}
}
void
TimerTable::unset(Addr address)
{
assert(address == makeLineAddress(address));
assert(m_map.count(address));
m_map.erase(address);
// Don't always recalculate the next ready address
if (address == m_next_address) {
m_next_valid = false;
}
}
void
TimerTable::print(std::ostream& out) const
{
}
void
TimerTable::updateNext() const
{
if (m_map.empty()) {
assert(!m_next_valid);
return;
}
AddressMap::const_iterator i = m_map.begin();
AddressMap::const_iterator end = m_map.end();
m_next_address = i->first;
m_next_time = i->second;
++i;
for (; i != end; ++i) {
if (i->second < m_next_time) {
m_next_address = i->first;
m_next_time = i->second;
}
}
m_next_valid = true;
}