blob: 579511146a34f9aebe04cbba829c9212850aa32d [file] [log] [blame]
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/optical/SWMRLink.h"
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/optical_graph/OpticalGraph.h"
#include "model/optical_graph/OpticalWaveguide.h"
#include "model/optical/RingModulator.h"
#include "model/optical/RingFilter.h"
#include "model/optical/RingDetector.h"
#include "model/optical/LaserSource.h"
#include "model/optical/ThrottledLaserSource.h"
namespace DSENT
{
SWMRLink::SWMRLink(const String& instance_name_, const TechModel* tech_model_)
: OpticalModel(instance_name_, tech_model_)
{
initParameters();
initProperties();
}
SWMRLink::~SWMRLink()
{}
void SWMRLink::initParameters()
{
addParameterName("NumberReaders");
addParameterName("NumberWavelengths");
addParameterName("DataRate");
addParameterName("LaserType");
addParameterName("MaxReaders");
addParameterName("MinReaders");
addParameterName("OptimizeLoss", "TRUE");
return;
}
void SWMRLink::initProperties()
{
addPropertyName("Length");
addPropertyName("OptUtil", 0.5); // default to 50% utilization (a new word 50% of the time)
addPropertyName("ExtinctionRatio", 6); // default properties
addPropertyName("InsertionLoss", 2); // default properties
return;
}
void SWMRLink::constructModel()
{
// Get parameters
unsigned int number_wavelengths = getParameter("NumberWavelengths");
unsigned int number_readers = getParameter("NumberReaders");
unsigned int number_max_readers = std::min(number_readers, getParameter("MaxReaders").toUInt());
unsigned int number_min_readers = std::min(number_max_readers, getParameter("MinReaders").toUInt());
// Create electrical ports
createInputPort("CK");
createInputPort("In", makeNetIndex(0, number_wavelengths-1));
for (unsigned int i = 0; i < number_readers; ++i)
createOutputPort("Out" + (String) i, makeNetIndex(0, number_wavelengths-1));
// Create Waveguides
// Temporarily assume its all on one waveguide
createWaveguide("LaserToMod", makeWavelengthGroup(0, number_wavelengths-1));
for (unsigned int i = 0; i <= number_readers; ++i)
createWaveguide("WaveguideSegment[" + (String) i + "]", makeWavelengthGroup(0, number_wavelengths-1));
// Add area results
addAreaResult(new Result("Photonic"));
createElectricalResults();
// Setup idle event
getEventInfo("Idle")->setStaticTransitionInfos();
// Create a waveguide area result
addAreaResult(new AtomicResult("Waveguide"));
getAreaResult("Photonic")->addSubResult(getAreaResult("Waveguide"), "Waveguide", 1.0);
// Add results
addNddPowerResult(new Result("Laser"));
// Add event result
createElectricalEventResult("BroadcastFlit");
for (unsigned int i = number_min_readers; i <= number_max_readers; ++i)
createElectricalEventResult("MulticastFlit" + (String) i);
buildLaser();
buildModulator();
buildDetectors();
return;
}
void SWMRLink::updateModel()
{
// Get parameters
double data_rate = getParameter("DataRate");
unsigned int number_readers = getParameter("NumberReaders");
// Get properties
double length = getProperty("Length");
const String& extinction_ratio = getProperty("ExtinctionRatio");
const String& insertion_loss = getProperty("InsertionLoss");
const double opt_util = getProperty("OptUtil");
// Calculate loss for each waveguide segment
double segment_length = (double) length / number_readers;
double segment_loss = getTechModel()->get("Waveguide->LossPerMeter").toDouble() * segment_length;
// Set loss of each waveguide segment
for (unsigned int i = 0; i < number_readers; ++i)
getWaveguide("WaveguideSegment[" + (String) i + "]")->setLoss(segment_loss);
// Calculate waveguide area
double waveguide_area = length * getTechModel()->get("Waveguide->Pitch").toDouble();
getAreaResult("Waveguide")->setValue(waveguide_area);
// Update the laser
Model* laser = getSubInstance("Laser");
laser->setProperty("LaserEventTime", 1.0 / data_rate);
laser->setProperty("OptUtil", opt_util);
laser->update();
// Update the modulator
Model* modulator = getSubInstance("Modulator");
modulator->setProperty("ExtinctionRatio", extinction_ratio);
modulator->setProperty("InsertionLoss", insertion_loss);
modulator->update();
// Update all receivers
for (unsigned int i = 0; i < number_readers; ++i)
{
Model* detector = getSubInstance("Detector_" + (String) i);
detector->update();
}
return;
}
void SWMRLink::propagateTransitionInfo()
{
// Get parameters
const String& laser_type = getParameter("LaserType");
unsigned int number_readers = getParameter("NumberReaders");
// Set transition info for the modulator
OpticalModel* modulator = (OpticalModel*) getSubInstance("Modulator");
propagatePortTransitionInfo(modulator, "In", "In");
modulator->use();
// Modulator out transition info
const TransitionInfo& mod_out_transitions = modulator->getOpticalOutputPort("Out")->getTransitionInfo();
// Set transition info for all receivers
for (unsigned int i = 0; i < number_readers; ++i)
{
OpticalModel* detector = (OpticalModel*) getSubInstance("Detector_" + (String) i);
detector->getOpticalInputPort("In")->setTransitionInfo(mod_out_transitions);
detector->use();
// Propagate output transition info to output
propagatePortTransitionInfo("Out" + (String) i, detector, "Out");
}
// Set enable signals for the laser, if applicable
if (laser_type == "Throttled")
{
// Figure out how many cycles the laser needs to be on
double cycles = getInputPort("In")->getTransitionInfo().getFrequencyMultiplier();
OpticalModel* laser = (OpticalModel*) getSubInstance("Laser");
laser->getInputPort("LaserEnable")->setTransitionInfo(TransitionInfo(0.0, 1.0, cycles - 1.0));
laser->use();
}
return;
}
void SWMRLink::buildLaser()
{
// Get parameters
unsigned int number_wavelengths = getParameter("NumberWavelengths");
unsigned int number_readers = getParameter("NumberReaders");
unsigned int number_max_readers = std::min(number_readers, getParameter("MaxReaders").toUInt());
unsigned int number_min_readers = std::min(number_max_readers, getParameter("MinReaders").toUInt());
const String& laser_type = getParameter("LaserType");
// Create laser
OpticalModel* laser = NULL;
if (laser_type == "Throttled")
laser = new ThrottledLaserSource("Laser", getTechModel());
else if (laser_type == "Standard")
laser = new LaserSource("Laser", getTechModel());
else
ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown laser type '" + laser_type + "'!");
laser->setParameter("OutStart", 0);
laser->setParameter("OutEnd", number_wavelengths-1);
laser->setParameter("MaxDetectors", number_max_readers);
laser->setParameter("MinDetectors", number_min_readers);
laser->construct();
addSubInstances(laser, 1.0);
getAreaResult("Photonic")->addSubResult(laser->getAreaResult("Photonic"), "Laser", 1.0);
// Connect laser output port
opticalPortConnect(laser, "Out", "LaserToMod");
// Without laser gating, laser is pure NDD power
if (laser_type == "Standard")
getNddPowerResult("Laser")->addSubResult(laser->getNddPowerResult("Laser"), "Laser", 1.0);
// With laser power gating, laser is an event
else
{
// If laser is throttled, only pay for the amount needed to reach some number of readers
getEventResult("BroadcastFlit")->addSubResult(laser->getEventResult("Laser" + (String) number_max_readers), "Laser", 1.0);
for (unsigned int i = number_min_readers; i <= number_max_readers; ++i)
getEventResult("MulticastFlit" + (String) i)->addSubResult(laser->getEventResult("Laser" + (String) i), "Laser", 1.0);
}
return;
}
void SWMRLink::buildModulator()
{
// Get parameters
double data_rate = getParameter("DataRate");
const String& optimize_loss = getParameter("OptimizeLoss");
unsigned int number_wavelengths = getParameter("NumberWavelengths");
unsigned int number_readers = getParameter("NumberReaders");
unsigned int number_max_readers = std::min(number_readers, getParameter("MaxReaders").toUInt());
unsigned int number_min_readers = std::min(number_max_readers, getParameter("MinReaders").toUInt());
// Create modulator
RingModulator* modulator = new RingModulator("Modulator", getTechModel());
modulator->setParameter("DataRate", data_rate);
modulator->setParameter("InStart", 0);
modulator->setParameter("InEnd", number_wavelengths-1);
modulator->setParameter("ModStart", 0);
modulator->setParameter("ModEnd", number_wavelengths-1);
modulator->setParameter("OptimizeLoss", optimize_loss);
modulator->construct();
addSubInstances(modulator, 1.0);
getAreaResult("Photonic")->addSubResult(modulator->getAreaResult("Photonic"), "Modulator", 1.0);
addElectricalSubResults(modulator, 1.0);
// Connect electrical port
portConnect(modulator, "In", "In");
// Connect modulator input, output port
opticalPortConnect(modulator, "In", "LaserToMod");
opticalPortConnect(modulator, "Out", "WaveguideSegment[0]");
// Add modulator energy event for all broadcast events
getEventResult("BroadcastFlit")->addSubResult(modulator->getEventResult("Modulate"), "Modulator", 1.0);
for (unsigned int i = number_min_readers; i <= number_max_readers; ++i)
getEventResult("MulticastFlit" + (String) i)->addSubResult(modulator->getEventResult("Modulate"), "Modulator", 1.0);
return;
}
void SWMRLink::buildDetectors()
{
// Get parameters
double data_rate = getParameter("DataRate");
unsigned int number_wavelengths = getParameter("NumberWavelengths");
unsigned int number_readers = getParameter("NumberReaders");
unsigned int number_max_readers = std::min(number_readers, getParameter("MaxReaders").toUInt());
unsigned int number_min_readers = std::min(number_max_readers, getParameter("MinReaders").toUInt());
// Create a SWMR Configuration
for (unsigned int i = 0; i < number_readers; ++i)
{
String n = (String) i;
// Create resonant ring detector
RingDetector* detector = new RingDetector("Detector_" + n, getTechModel());
detector->setParameter("DataRate", data_rate);
detector->setParameter("InStart", 0);
detector->setParameter("InEnd", number_wavelengths-1);
detector->setParameter("DetStart", 0);
detector->setParameter("DetEnd", number_wavelengths-1);
detector->setParameter("DropAll", "FALSE");
detector->setParameter("Topology", RingDetector::INTEGRATINGSENSEAMP);
detector->construct();
addSubInstances(detector, 1.0);
getAreaResult("Photonic")->addSubResult(detector->getAreaResult("Photonic"), "Detector_" + n, 1.0);
addElectricalSubResults(detector, 1.0);
// connect to electrical port
portConnect(detector, "Out", "Out" + (String) i);
// connect optical input, output port
opticalPortConnect(detector, "In", "WaveguideSegment[" + (String) i + "]");
opticalPortConnect(detector, "Out", "WaveguideSegment[" + (String) (i + 1) + "]");
}
// Add an average receiver energy for all multicast events (and broadcast)
Result* broadcast_event = getEventResult("BroadcastFlit");
for (unsigned int i = 0; i < number_readers; ++i)
{
const String detector_name = "Detector_" + (String) i;
broadcast_event->addSubResult(getSubInstance(detector_name)->getEventResult("Receive"), detector_name, 1.0);
}
for (unsigned int i = number_min_readers; i <= number_max_readers; ++i)
{
Result* multicast_event = getEventResult("MulticastFlit" + (String) i);
for (unsigned int j = 0; j < number_readers; ++j)
{
const String detector_name = "Detector_" + (String) j;
multicast_event->addSubResult(getSubInstance(detector_name)->getEventResult("Receive"), detector_name, (double) i / number_readers);
}
}
return;
}
} // namespace DSENT