blob: a8a0b1c0b91ae86bf26a64e480c7b0f6392bbaf2 [file] [log] [blame]
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/std_cells/CellMacros.h"
#include <cmath>
#include <vector>
#include "model/std_cells/StdCell.h"
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalLoad.h"
namespace DSENT
{
//-------------------------------------------------------------------------
// NOR2 Macro (TODO: Generalize to N-input macro once leakage calc is done)
//-------------------------------------------------------------------------
void CellMacros::addNor2(StdCell* cell_, const String& name_,
bool sizable_, bool a1_to_zn_path_, bool a2_to_zn_path_,
const String& a1_net_, const String& a2_net_, const String& zn_net_)
{
//Create electrical timing model for the nand
// Construct loads and drivers
cell_->createLoad(name_ + "_CgA1");
cell_->createLoad(name_ + "_CgA2");
cell_->createLoad(name_ + "_CdZN");
cell_->createDriver(name_ + "_RonZN", sizable_);
//Get references to loads and drivers
ElectricalLoad* gate_a1_load = cell_->getLoad(name_ + "_CgA1");
ElectricalLoad* gate_a2_load = cell_->getLoad(name_ + "_CgA2");
ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN");
ElectricalDriver* zn_drive = cell_->getDriver(name_ + "_RonZN");
ElectricalNet* a1_net = cell_->getNet(a1_net_);
ElectricalNet* a2_net = cell_->getNet(a2_net_);
ElectricalNet* zn_net = cell_->getNet(zn_net_);
//Add loads and drivers to the specified nets
a1_net->addDownstreamNode(gate_a1_load);
a2_net->addDownstreamNode(gate_a2_load);
zn_net->addDownstreamNode(drain_load);
if (a1_to_zn_path_) gate_a1_load->addDownstreamNode(zn_drive);
if (a2_to_zn_path_) gate_a2_load->addDownstreamNode(zn_drive);
zn_drive->addDownstreamNode(zn_net);
return;
}
void CellMacros::updateNor2(StdCell* cell_, const String& name_, double normalized_size_)
{
ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() +
" -> Cannot update a macro with a negative normalized size!");
//Grab pointer to tech model
const TechModel* tech = cell_->getTechModel();
// Get technology parameters
double vdd = tech->get("Vdd");
double gate_cap = tech->get("Gate->CapPerWidth");
double drain_cap = tech->get("Drain->CapPerWidth");
double nmos_eff_res = tech->get("Nmos->EffResWidth");
double pmos_eff_res = tech->get("Pmos->EffResWidth");
double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio");
double gate_pitch_contacted = tech->get("Gate->PitchContacted");
double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth");
//Calculate number of folds and gate pitches needed
unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_);
cell_->getGenProperties()->set(name_ + "_GatePitches", 2 * folds);
//Calculate widths, making sure they are above the minimum width
double nmos_width = std::max(calculateNmosWidth(cell_, 1, 2, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
double pmos_width = std::max(calculatePmosWidth(cell_, 1, 2, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
//Calculate leakage power for each given input state
double leakage_power_00 = vdd * folds * 2 * tech->calculateNmosLeakageCurrent(1, nmos_width, 0x0);
double leakage_power_01 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x1);
double leakage_power_10 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x2);
double leakage_power_11 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x3);
cell_->getGenProperties()->set(name_ + "_LeakagePower_00", leakage_power_00);
cell_->getGenProperties()->set(name_ + "_LeakagePower_01", leakage_power_01);
cell_->getGenProperties()->set(name_ + "_LeakagePower_10", leakage_power_10);
cell_->getGenProperties()->set(name_ + "_LeakagePower_11", leakage_power_11);
//Calculate R_on and capacitances
double pmos_stack2_balance = 1.0 + pmos_eff_res_stack_ratio;
double c_g = (nmos_width + pmos_width) * gate_cap * folds;
double c_d = (2 * pmos_width + 2 * nmos_width) * drain_cap * folds;
double r_on = (nmos_eff_res / nmos_width + pmos_stack2_balance * pmos_eff_res / pmos_width) / (folds * 2.0);
// Estimate the wire cap and add them all at the output
double cell_height = cell_->getTotalHeight();
double wire_width = metal1_wire_min_width;
double wire_spacing = gate_pitch_contacted - metal1_wire_min_width;
double wire_length = 2.0 * folds * cell_height;
double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length);
// Construct equivalent load and drive strength
cell_->getLoad(name_ + "_CgA1")->setLoadCap(c_g);
cell_->getLoad(name_ + "_CgA2")->setLoadCap(c_g);
cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap);
cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on);
// Calculate flip energies
double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd;
double a1_flip_energy = 0.5 * c_g * vdd * vdd;
double a2_flip_energy = 0.5 * c_g * vdd * vdd;
cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy);
cell_->getGenProperties()->set(name_ + "_A1_Flip", a1_flip_energy);
cell_->getGenProperties()->set(name_ + "_A2_Flip", a2_flip_energy);
}
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// NAND2 Macro (TODO: Generalize to N-input macro once leakage calc is done)
//-------------------------------------------------------------------------
//Adds a NAND2 to the standard cell, normalized to some size
void CellMacros::addNand2(StdCell* cell_, const String& name_,
bool sizable_, bool a1_to_zn_path_, bool a2_to_zn_path_,
const String& a1_net_, const String& a2_net_, const String& zn_net_)
{
//Create electrical timing model for the nor
// Construct loads and drivers
cell_->createLoad(name_ + "_CgA1");
cell_->createLoad(name_ + "_CgA2");
cell_->createLoad(name_ + "_CdZN");
cell_->createDriver(name_ + "_RonZN", sizable_);
//Get references to loads and drivers
ElectricalLoad* gate_a1_load = cell_->getLoad(name_ + "_CgA1");
ElectricalLoad* gate_a2_load = cell_->getLoad(name_ + "_CgA2");
ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN");
ElectricalDriver* zn_drive = cell_->getDriver(name_ + "_RonZN");
ElectricalNet* a1_net = cell_->getNet(a1_net_);
ElectricalNet* a2_net = cell_->getNet(a2_net_);
ElectricalNet* zn_net = cell_->getNet(zn_net_);
a1_net->addDownstreamNode(gate_a1_load);
a2_net->addDownstreamNode(gate_a2_load);
zn_net->addDownstreamNode(drain_load);
if (a1_to_zn_path_) gate_a1_load->addDownstreamNode(zn_drive);
if (a2_to_zn_path_) gate_a2_load->addDownstreamNode(zn_drive);
zn_drive->addDownstreamNode(zn_net);
return;
}
//Updates a NAND2 to to the standard cell, normalized to some size
void CellMacros::updateNand2(StdCell* cell_, const String& name_, double normalized_size_)
{
ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() +
" -> Cannot update a macro with a negative normalized size!");
//Grab pointer to tech model
const TechModel* tech = cell_->getTechModel();
// Get technology parameters
double vdd = tech->get("Vdd");
double gate_cap = tech->get("Gate->CapPerWidth");
double drain_cap = tech->get("Drain->CapPerWidth");
double nmos_eff_res = tech->get("Nmos->EffResWidth");
double pmos_eff_res = tech->get("Pmos->EffResWidth");
double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio");
double gate_pitch_contacted = tech->get("Gate->PitchContacted");
double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth");
//Calculate number of folds needed
unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_);
cell_->getGenProperties()->set(name_ + "_GatePitches", 2 * folds);
//Calculate widths, making sure they are above the minimum width
double nmos_width = std::max(calculateNmosWidth(cell_, 2, 1, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
double pmos_width = std::max(calculatePmosWidth(cell_, 2, 1, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
// Leakage power calculation
double leakage_power_00 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x0);
double leakage_power_01 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x1);
double leakage_power_10 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x2);
double leakage_power_11 = vdd * folds * 2 * tech->calculatePmosLeakageCurrent(1, pmos_width, ~0x3);
cell_->getGenProperties()->set(name_ + "_LeakagePower_00", leakage_power_00);
cell_->getGenProperties()->set(name_ + "_LeakagePower_01", leakage_power_01);
cell_->getGenProperties()->set(name_ + "_LeakagePower_10", leakage_power_10);
cell_->getGenProperties()->set(name_ + "_LeakagePower_11", leakage_power_11);
// Get input parameters
double nmos_stack2_balance = 1.0 + nmos_eff_res_stack_ratio;
//Calculate caps
double c_g = (nmos_width + pmos_width) * gate_cap * folds;
double c_d = (2 * pmos_width + 2 * nmos_width) * drain_cap * folds;
double r_on = (nmos_stack2_balance * nmos_eff_res / nmos_width + pmos_eff_res / pmos_width) / (folds * 2.0);
// Estimate the wire cap and add them all at the output
double cell_height = cell_->getTotalHeight();
double wire_width = metal1_wire_min_width;
double wire_spacing = gate_pitch_contacted - metal1_wire_min_width;
double wire_length = 2.0 * folds * cell_height;
double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length);
// Construct equivalent load and drive strength
cell_->getLoad(name_ + "_CgA1")->setLoadCap(c_g);
cell_->getLoad(name_ + "_CgA2")->setLoadCap(c_g);
cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap);
cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on);
// Calculate flip energies
double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd;
double a1_flip_energy = 0.5 * c_g * vdd * vdd;
double a2_flip_energy = 0.5 * c_g * vdd * vdd;
cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy);
cell_->getGenProperties()->set(name_ + "_A1_Flip", a1_flip_energy);
cell_->getGenProperties()->set(name_ + "_A2_Flip", a2_flip_energy);
}
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// INV Macro
//-------------------------------------------------------------------------
//Adds an inverter to the model, normalized to some size
void CellMacros::addInverter(StdCell* cell_, const String& name_,
bool sizable_, bool a_to_zn_path_,
const String& a_net_, const String& zn_net_)
{
//Create electrical timing model for the inverter
// Construct loads and drivers
cell_->createLoad(name_ + "_CgA");
cell_->createLoad(name_ + "_CdZN");
cell_->createDriver(name_ + "_RonZN", sizable_);
//Get references to loads and drivers
ElectricalLoad* gate_load = cell_->getLoad(name_ + "_CgA");
ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN");
ElectricalDriver* out_drive = cell_->getDriver(name_ + "_RonZN");
ElectricalNet* a_net = cell_->getNet(a_net_);
ElectricalNet* zn_net = cell_->getNet(zn_net_);
// Setup connectivity of loads and drivers
a_net->addDownstreamNode(gate_load);
if (a_to_zn_path_) gate_load->addDownstreamNode(out_drive);
zn_net->addDownstreamNode(drain_load);
out_drive->addDownstreamNode(zn_net);
return;
}
//Updates the numbers of an inverter for some normalized size
void CellMacros::updateInverter(StdCell* cell_, const String& name_, double normalized_size_)
{
ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() +
" -> Cannot update a macro with a negative normalized size!");
//Grab pointer to tech model
const TechModel* tech = cell_->getTechModel();
//Get values from technology library
double vdd = tech->get("Vdd");
double gate_cap = tech->get("Gate->CapPerWidth");
double drain_cap = tech->get("Drain->CapPerWidth");
double nmos_eff_res = tech->get("Nmos->EffResWidth");
double pmos_eff_res = tech->get("Pmos->EffResWidth");
double gate_pitch_contacted = tech->get("Gate->PitchContacted");
double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth");
//Calculate number of folds needed
unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_);
cell_->getGenProperties()->set(name_ + "_GatePitches", folds);
//Calculate widths, making sure they are above the minimum width
double nmos_width = std::max(calculateNmosWidth(cell_, 1, 1, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
double pmos_width = std::max(calculatePmosWidth(cell_, 1, 1, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
//Calculate leakage power for each given input state
double leakage_power_0 = vdd * folds * tech->calculateNmosLeakageCurrent(1, nmos_width, 0x0);
double leakage_power_1 = vdd * folds * tech->calculatePmosLeakageCurrent(1, pmos_width, ~0x1);
cell_->getGenProperties()->set(name_ + "_LeakagePower_0", leakage_power_0);
cell_->getGenProperties()->set(name_ + "_LeakagePower_1", leakage_power_1);
//Calculate caps
double c_g = (nmos_width + pmos_width) * gate_cap * folds;
double c_d = (pmos_width + nmos_width) * drain_cap * folds;
double r_on = (nmos_eff_res / nmos_width + pmos_eff_res / pmos_width) / (folds * 2.0);
// Estimate the wire cap and add them all at the output
double cell_height = cell_->getTotalHeight();
double wire_width = metal1_wire_min_width;
double wire_spacing = gate_pitch_contacted - metal1_wire_min_width;
double wire_length = folds * cell_height;
double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length);
// Construct equivalent load and drive strength
cell_->getLoad(name_ + "_CgA")->setLoadCap(c_g);
cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap);
cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on);
// Calculate flip energy (output flip)
// Calculate flip energies
double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd;
double a_flip_energy = 0.5 * c_g * vdd * vdd;
cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy);
cell_->getGenProperties()->set(name_ + "_A_Flip", a_flip_energy);
return;
}
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// INVZ Macro
//-------------------------------------------------------------------------
//Adds a tristated inverter to the model, normalized to some size
void CellMacros::addTristate(StdCell* cell_, const String& name_,
bool sizable_, bool a_to_zn_path_, bool oe_to_zn_path_, bool oen_to_zn_path_,
const String& a_net_, const String& oe_net_, const String& oen_net_, const String& zn_net_)
{
// Construct loads and drivers
cell_->createLoad(name_ + "_CgA");
cell_->createLoad(name_ + "_CgOE");
cell_->createLoad(name_ + "_CgOEN");
cell_->createLoad(name_ + "_CdZN");
cell_->createDriver(name_ + "_RonZN", sizable_);
// Get references to loads, nets and drivers
ElectricalLoad* gate_a_load = cell_->getLoad(name_ + "_CgA");
ElectricalLoad* gate_oe_load = cell_->getLoad(name_ + "_CgOE");
ElectricalLoad* gate_oen_load = cell_->getLoad(name_ + "_CgOEN");
ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN");
ElectricalDriver* out_drive = cell_->getDriver(name_ + "_RonZN");
ElectricalNet* a_net = cell_->getNet(a_net_);
ElectricalNet* oe_net = cell_->getNet(oe_net_);
ElectricalNet* oen_net = cell_->getNet(oen_net_);
ElectricalNet* zn_net = cell_->getNet(zn_net_);
// Setup connectivity of loads and drivers
a_net->addDownstreamNode(gate_a_load);
oe_net->addDownstreamNode(gate_oe_load);
oen_net->addDownstreamNode(gate_oen_load);
if (a_to_zn_path_) gate_a_load->addDownstreamNode(out_drive);
if (oe_to_zn_path_) gate_oe_load->addDownstreamNode(out_drive);
if (oen_to_zn_path_) gate_oen_load->addDownstreamNode(out_drive);
zn_net->addDownstreamNode(drain_load);
out_drive->addDownstreamNode(zn_net);
return;
}
//Updates the numbers of an inverter for some normalized size
void CellMacros::updateTristate(StdCell* cell_, const String& name_, double normalized_size_)
{
ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() +
" -> Cannot update a macro with a negative normalized size!");
//Grab pointer to tech model
const TechModel* tech = cell_->getTechModel();
//Get values from technology library
double vdd = tech->get("Vdd");
double gate_cap = tech->get("Gate->CapPerWidth");
double drain_cap = tech->get("Drain->CapPerWidth");
double nmos_eff_res = tech->get("Nmos->EffResWidth");
double pmos_eff_res = tech->get("Pmos->EffResWidth");
double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio");
double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio");
double gate_pitch_contacted = tech->get("Gate->PitchContacted");
double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth");
//Calculate number of folds and gate pitches needed
unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_);
cell_->getGenProperties()->set(name_ + "_GatePitches", 2 * folds);
//Calculate widths, making sure they are above the minimum width
double nmos_width = std::max(calculateNmosWidth(cell_, 2, 2, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
double pmos_width = std::max(calculatePmosWidth(cell_, 2, 2, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth"));
//Calculate leakage power for each given input state
//if output_enable = 0, then it is possible that the PMOS may leak (if output = 0),
//or the NMOS will leak (if output = 1)
//OE OEN A _ ZN
double leakage_power_010_0 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x2);
double leakage_power_010_1 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x0);
double leakage_power_011_0 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x3);
double leakage_power_011_1 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x1);
double leakage_power_100_1 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x2);
double leakage_power_101_0 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x1);
cell_->getGenProperties()->set(name_ + "_LeakagePower_010_0", leakage_power_010_0);
cell_->getGenProperties()->set(name_ + "_LeakagePower_010_1", leakage_power_010_1);
cell_->getGenProperties()->set(name_ + "_LeakagePower_011_0", leakage_power_011_0);
cell_->getGenProperties()->set(name_ + "_LeakagePower_011_1", leakage_power_011_1);
cell_->getGenProperties()->set(name_ + "_LeakagePower_100_1", leakage_power_100_1);
cell_->getGenProperties()->set(name_ + "_LeakagePower_101_0", leakage_power_101_0);
//Caculate stack balance
double pmos_stack2_balance = 1.0 + pmos_eff_res_stack_ratio;
double nmos_stack2_balance = 1.0 + nmos_eff_res_stack_ratio;
//Calculate caps
double c_g_a = (nmos_width + pmos_width) * gate_cap * folds;
double c_g_oe = nmos_width * gate_cap * folds;
double c_g_oen = pmos_width * gate_cap * folds;
double c_d = (2 * pmos_width + 2 * nmos_width) * drain_cap * folds;
double r_on = (nmos_stack2_balance * nmos_eff_res / nmos_width + pmos_stack2_balance * pmos_eff_res / pmos_width) / (folds * 2.0);
// Estimate the wire cap and add them all at the output
double cell_height = cell_->getTotalHeight();
double wire_width = metal1_wire_min_width;
double wire_spacing = gate_pitch_contacted - metal1_wire_min_width;
double wire_length = 2.0 * folds * cell_height;
double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length);
// Construct equivalent load and drive strength
cell_->getLoad(name_ + "_CgA")->setLoadCap(c_g_a);
cell_->getLoad(name_ + "_CgOE")->setLoadCap(c_g_oe);
cell_->getLoad(name_ + "_CgOEN")->setLoadCap(c_g_oen);
cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap);
cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on);
// Calculate flip energy (output flip)
double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd;
double a_flip_energy = 0.5 * c_g_a * vdd * vdd;
double oe_flip_energy = 0.5 * c_g_oe * vdd * vdd;
double oen_flip_energy = 0.5 * c_g_oen * vdd * vdd;
cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy);
cell_->getGenProperties()->set(name_ + "_A_Flip", a_flip_energy);
cell_->getGenProperties()->set(name_ + "_OE_Flip", oe_flip_energy);
cell_->getGenProperties()->set(name_ + "_OEN_Flip", oen_flip_energy);
return;
}
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Helper Functions
//-------------------------------------------------------------------------
//Returns the width of NMOS transistors, given the NMOS and PMOS stacking
double CellMacros::calculateNmosWidth(const StdCell* cell_, unsigned int max_stacked_nmos_, unsigned int max_stacked_pmos_, unsigned int current_stacked_nmos_)
{
//Grab pointer to tech model
const TechModel* tech = cell_->getTechModel();
double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio");
double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio");
double nmos_stack_balance = 1.0 + nmos_eff_res_stack_ratio * (double) (max_stacked_nmos_ - 1);
double pmos_stack_balance = 1.0 + pmos_eff_res_stack_ratio * (double) (max_stacked_pmos_ - 1);
double current_nmos_stack_balance = 1.0 + nmos_eff_res_stack_ratio * (double) (current_stacked_nmos_ - 1);
double pn_ratio = cell_->getPToNRatio();
double active_height = cell_->getActiveHeight();
//Calculate the width of the current device
double nmos_width = active_height * current_nmos_stack_balance / (nmos_stack_balance + pn_ratio * pmos_stack_balance);
return nmos_width;
}
//Returns the width of PMOS transistors, given the NMOS and PMOS stacking
double CellMacros::calculatePmosWidth(const StdCell* cell_, unsigned int max_stacked_nmos_, unsigned int max_stacked_pmos_, unsigned int current_stacked_pmos_)
{
//Grab pointer to tech model
const TechModel* tech = cell_->getTechModel();
double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio");
double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio");
double nmos_stack_balance = 1.0 + nmos_eff_res_stack_ratio * (double) (max_stacked_nmos_ - 1);
double pmos_stack_balance = 1.0 + pmos_eff_res_stack_ratio * (double) (max_stacked_pmos_ - 1);
double current_pmos_stack_balance = 1.0 + pmos_eff_res_stack_ratio * (double) (current_stacked_pmos_ - 1);
double pn_ratio = cell_->getPToNRatio();
double active_height = cell_->getActiveHeight();
//Calculate the width of the current device
double pmos_width = active_height * current_pmos_stack_balance * pn_ratio / (nmos_stack_balance + pn_ratio * pmos_stack_balance);
return pmos_width;
}
//-------------------------------------------------------------------------
} // namespace DSENT