blob: ce0a4dbfc1d6436d4566b7a058a6fca934d1a0fe [file] [log] [blame]
/*
* Copyright (c) 2012-2013,2015 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
*/
#ifndef __CPU_SIMPLE_TIMING_HH__
#define __CPU_SIMPLE_TIMING_HH__
#include "cpu/simple/base.hh"
#include "cpu/simple/exec_context.hh"
#include "cpu/translation.hh"
#include "params/TimingSimpleCPU.hh"
class TimingSimpleCPU : public BaseSimpleCPU
{
public:
TimingSimpleCPU(TimingSimpleCPUParams * params);
virtual ~TimingSimpleCPU();
void init() override;
private:
/*
* If an access needs to be broken into fragments, currently at most two,
* the the following two classes are used as the sender state of the
* packets so the CPU can keep track of everything. In the main packet
* sender state, there's an array with a spot for each fragment. If a
* fragment has already been accepted by the CPU, aka isn't waiting for
* a retry, it's pointer is NULL. After each fragment has successfully
* been processed, the "outstanding" counter is decremented. Once the
* count is zero, the entire larger access is complete.
*/
class SplitMainSenderState : public Packet::SenderState
{
public:
int outstanding;
PacketPtr fragments[2];
int
getPendingFragment()
{
if (fragments[0]) {
return 0;
} else if (fragments[1]) {
return 1;
} else {
return -1;
}
}
};
class SplitFragmentSenderState : public Packet::SenderState
{
public:
SplitFragmentSenderState(PacketPtr _bigPkt, int _index) :
bigPkt(_bigPkt), index(_index)
{}
PacketPtr bigPkt;
int index;
void
clearFromParent()
{
SplitMainSenderState * main_send_state =
dynamic_cast<SplitMainSenderState *>(bigPkt->senderState);
main_send_state->fragments[index] = NULL;
}
};
class FetchTranslation : public BaseTLB::Translation
{
protected:
TimingSimpleCPU *cpu;
public:
FetchTranslation(TimingSimpleCPU *_cpu)
: cpu(_cpu)
{}
void
markDelayed()
{
assert(cpu->_status == BaseSimpleCPU::Running);
cpu->_status = ITBWaitResponse;
}
void
finish(const Fault &fault, const RequestPtr &req, ThreadContext *tc,
BaseTLB::Mode mode)
{
cpu->sendFetch(fault, req, tc);
}
};
FetchTranslation fetchTranslation;
void threadSnoop(PacketPtr pkt, ThreadID sender);
void sendData(const RequestPtr &req,
uint8_t *data, uint64_t *res, bool read);
void sendSplitData(const RequestPtr &req1, const RequestPtr &req2,
const RequestPtr &req,
uint8_t *data, bool read);
void translationFault(const Fault &fault);
PacketPtr buildPacket(const RequestPtr &req, bool read);
void buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
const RequestPtr &req1, const RequestPtr &req2,
const RequestPtr &req,
uint8_t *data, bool read);
bool handleReadPacket(PacketPtr pkt);
// This function always implicitly uses dcache_pkt.
bool handleWritePacket();
/**
* A TimingCPUPort overrides the default behaviour of the
* recvTiming and recvRetry and implements events for the
* scheduling of handling of incoming packets in the following
* cycle.
*/
class TimingCPUPort : public MasterPort
{
public:
TimingCPUPort(const std::string& _name, TimingSimpleCPU* _cpu)
: MasterPort(_name, _cpu), cpu(_cpu),
retryRespEvent([this]{ sendRetryResp(); }, name())
{ }
protected:
TimingSimpleCPU* cpu;
struct TickEvent : public Event
{
PacketPtr pkt;
TimingSimpleCPU *cpu;
TickEvent(TimingSimpleCPU *_cpu) : pkt(NULL), cpu(_cpu) {}
const char *description() const { return "Timing CPU tick"; }
void schedule(PacketPtr _pkt, Tick t);
};
EventFunctionWrapper retryRespEvent;
};
class IcachePort : public TimingCPUPort
{
public:
IcachePort(TimingSimpleCPU *_cpu)
: TimingCPUPort(_cpu->name() + ".icache_port", _cpu),
tickEvent(_cpu)
{ }
protected:
virtual bool recvTimingResp(PacketPtr pkt);
virtual void recvReqRetry();
struct ITickEvent : public TickEvent
{
ITickEvent(TimingSimpleCPU *_cpu)
: TickEvent(_cpu) {}
void process();
const char *description() const { return "Timing CPU icache tick"; }
};
ITickEvent tickEvent;
};
class DcachePort : public TimingCPUPort
{
public:
DcachePort(TimingSimpleCPU *_cpu)
: TimingCPUPort(_cpu->name() + ".dcache_port", _cpu),
tickEvent(_cpu)
{
cacheBlockMask = ~(cpu->cacheLineSize() - 1);
}
Addr cacheBlockMask;
protected:
/** Snoop a coherence request, we need to check if this causes
* a wakeup event on a cpu that is monitoring an address
*/
virtual void recvTimingSnoopReq(PacketPtr pkt);
virtual void recvFunctionalSnoop(PacketPtr pkt);
virtual bool recvTimingResp(PacketPtr pkt);
virtual void recvReqRetry();
virtual bool isSnooping() const {
return true;
}
struct DTickEvent : public TickEvent
{
DTickEvent(TimingSimpleCPU *_cpu)
: TickEvent(_cpu) {}
void process();
const char *description() const { return "Timing CPU dcache tick"; }
};
DTickEvent tickEvent;
};
void updateCycleCounts();
IcachePort icachePort;
DcachePort dcachePort;
PacketPtr ifetch_pkt;
PacketPtr dcache_pkt;
Cycles previousCycle;
protected:
/** Return a reference to the data port. */
MasterPort &getDataPort() override { return dcachePort; }
/** Return a reference to the instruction port. */
MasterPort &getInstPort() override { return icachePort; }
public:
DrainState drain() override;
void drainResume() override;
void switchOut() override;
void takeOverFrom(BaseCPU *oldCPU) override;
void verifyMemoryMode() const override;
void activateContext(ThreadID thread_num) override;
void suspendContext(ThreadID thread_num) override;
Fault initiateMemRead(Addr addr, unsigned size,
Request::Flags flags) override;
Fault writeMem(uint8_t *data, unsigned size,
Addr addr, Request::Flags flags, uint64_t *res) override;
Fault initiateMemAMO(Addr addr, unsigned size, Request::Flags flags,
AtomicOpFunctor *amo_op) override;
void fetch();
void sendFetch(const Fault &fault,
const RequestPtr &req, ThreadContext *tc);
void completeIfetch(PacketPtr );
void completeDataAccess(PacketPtr pkt);
void advanceInst(const Fault &fault);
/** This function is used by the page table walker to determine if it could
* translate the a pending request or if the underlying request has been
* squashed. This always returns false for the simple timing CPU as it never
* executes any instructions speculatively.
* @ return Is the current instruction squashed?
*/
bool isSquashed() const { return false; }
/**
* Print state of address in memory system via PrintReq (for
* debugging).
*/
void printAddr(Addr a);
/**
* Finish a DTB translation.
* @param state The DTB translation state.
*/
void finishTranslation(WholeTranslationState *state);
private:
EventFunctionWrapper fetchEvent;
struct IprEvent : Event {
Packet *pkt;
TimingSimpleCPU *cpu;
IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t);
virtual void process();
virtual const char *description() const;
};
/**
* Check if a system is in a drained state.
*
* We need to drain if:
* <ul>
* <li>We are in the middle of a microcode sequence as some CPUs
* (e.g., HW accelerated CPUs) can't be started in the middle
* of a gem5 microcode sequence.
*
* <li>Stay at PC is true.
*
* <li>A fetch event is scheduled. Normally this would never be the
* case with microPC() == 0, but right after a context is
* activated it can happen.
* </ul>
*/
bool isDrained() {
SimpleExecContext& t_info = *threadInfo[curThread];
SimpleThread* thread = t_info.thread;
return thread->microPC() == 0 && !t_info.stayAtPC &&
!fetchEvent.scheduled();
}
/**
* Try to complete a drain request.
*
* @returns true if the CPU is drained, false otherwise.
*/
bool tryCompleteDrain();
};
#endif // __CPU_SIMPLE_TIMING_HH__