blob: 95398ce5012144613080bcf32fc0c1fb61c1f75f [file] [log] [blame]
/*
* Copyright 2018 Google, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
*/
#include <cmath>
#include <cstring>
#include <sstream>
#include <vector>
#include "base/types.hh"
#include "sim/core.hh"
#include "systemc/core/time.hh"
#include "systemc/ext/core/messages.hh"
#include "systemc/ext/core/sc_main.hh"
#include "systemc/ext/core/sc_time.hh"
#include "systemc/ext/utils/sc_report_handler.hh"
namespace sc_core
{
namespace
{
void
set(::sc_core::sc_time *time, double d, ::sc_core::sc_time_unit tu)
{
if (d != 0)
fixClockFrequency();
double scale = sc_gem5::TimeUnitScale[tu] * SimClock::Float::s;
// Accellera claims there is a linux bug, and that these next two
// lines work around them.
volatile double tmp = d * scale + 0.5;
*time = sc_time::from_value(static_cast<uint64_t>(tmp));
}
double defaultUnit = 1.0e-9;
} // anonymous namespace
sc_time::sc_time() : val(0) {}
sc_time::sc_time(double d, sc_time_unit tu)
{
val = 0;
set(this, d, tu);
}
sc_time::sc_time(const sc_time &t)
{
val = t.val;
}
sc_time::sc_time(double d, const char *unit)
{
sc_time_unit tu;
for (tu = SC_FS; tu <= SC_SEC; tu = (sc_time_unit)(tu + 1)) {
if (strcmp(unit, sc_gem5::TimeUnitNames[tu]) == 0 ||
strcmp(unit, sc_gem5::TimeUnitConstantNames[tu]) == 0) {
break;
}
}
if (tu > SC_SEC) {
SC_REPORT_ERROR(SC_ID_TIME_CONVERSION_FAILED_,"invalid unit given");
val = 0;
return;
}
set(this, d, tu);
}
sc_time::sc_time(double d, bool scale)
{
double scaler = scale ? defaultUnit : SimClock::Float::Hz;
set(this, d * scaler, SC_SEC);
}
sc_time::sc_time(sc_dt::uint64 v, bool scale)
{
double scaler = scale ? defaultUnit : SimClock::Float::Hz;
set(this, static_cast<double>(v) * scaler, SC_SEC);
}
sc_time &
sc_time::operator = (const sc_time &t)
{
val = t.val;
return *this;
}
sc_dt::uint64
sc_time::value() const
{
return val;
}
double
sc_time::to_double() const
{
return static_cast<double>(val);
}
double
sc_time::to_seconds() const
{
return to_double() * SimClock::Float::Hz;
}
const std::string
sc_time::to_string() const
{
std::ostringstream ss;
print(ss);
return ss.str();
}
bool
sc_time::operator == (const sc_time &t) const
{
return val == t.val;
}
bool
sc_time::operator != (const sc_time &t) const
{
return val != t.val;
}
bool
sc_time::operator < (const sc_time &t) const
{
return val < t.val;
}
bool
sc_time::operator <= (const sc_time &t) const
{
return val <= t.val;
}
bool
sc_time::operator > (const sc_time &t) const
{
return val > t.val;
}
bool
sc_time::operator >= (const sc_time &t) const
{
return val >= t.val;
}
sc_time &
sc_time::operator += (const sc_time &t)
{
val += t.val;
return *this;
}
sc_time &
sc_time::operator -= (const sc_time &t)
{
val -= t.val;
return *this;
}
sc_time &
sc_time::operator *= (double d)
{
val = static_cast<int64_t>(static_cast<double>(val) * d + 0.5);
return *this;
}
sc_time &
sc_time::operator /= (double d)
{
val = static_cast<int64_t>(static_cast<double>(val) / d + 0.5);
return *this;
}
void
sc_time::print(std::ostream &os) const
{
os << sc_time_tuple(*this).to_string();
}
sc_time
sc_time::from_value(sc_dt::uint64 u)
{
if (u)
fixClockFrequency();
sc_time t;
t.val = u;
return t;
}
sc_time
sc_time::from_seconds(double d)
{
sc_time t;
set(&t, d, SC_SEC);
return t;
}
sc_time
sc_time::from_string(const char *str)
{
char *end = nullptr;
double d = str ? std::strtod(str, &end) : 0.0;
if (str == end || d < 0.0) {
SC_REPORT_ERROR(SC_ID_TIME_CONVERSION_FAILED_, "invalid value given");
return SC_ZERO_TIME;
}
while (*end && std::isspace(*end))
end++;
return sc_time(d, end);
}
const sc_time
operator + (const sc_time &a, const sc_time &b)
{
return sc_time::from_value(a.value() + b.value());
}
const sc_time
operator - (const sc_time &a, const sc_time &b)
{
return sc_time::from_value(a.value() - b.value());
}
const sc_time
operator * (const sc_time &t, double d)
{
volatile double tmp = static_cast<double>(t.value()) * d + 0.5;
return sc_time::from_value(static_cast<int64_t>(tmp));
}
const sc_time
operator * (double d, const sc_time &t)
{
volatile double tmp = d * static_cast<double>(t.value()) + 0.5;
return sc_time::from_value(static_cast<int64_t>(tmp));
}
const sc_time
operator / (const sc_time &t, double d)
{
volatile double tmp = static_cast<double>(t.value()) / d + 0.5;
return sc_time::from_value(static_cast<int64_t>(tmp));
}
double
operator / (const sc_time &t1, const sc_time &t2)
{
return t1.to_double() / t2.to_double();
}
std::ostream &
operator << (std::ostream &os, const sc_time &t)
{
t.print(os);
return os;
}
const sc_time SC_ZERO_TIME;
void
sc_set_time_resolution(double d, sc_time_unit tu)
{
if (d <= 0.0)
SC_REPORT_ERROR(SC_ID_SET_TIME_RESOLUTION_, "value not positive");
double dummy;
if (modf(log10(d), &dummy) != 0.0) {
SC_REPORT_ERROR(SC_ID_SET_TIME_RESOLUTION_,
"value not a power of ten");
}
if (sc_is_running())
SC_REPORT_ERROR(SC_ID_SET_TIME_RESOLUTION_, "simulation running");
static bool specified = false;
if (specified)
SC_REPORT_ERROR(SC_ID_SET_TIME_RESOLUTION_, "already specified");
// This won't detect the timescale being fixed outside of systemc, but
// it's at least some protection.
if (clockFrequencyFixed()) {
SC_REPORT_ERROR(SC_ID_SET_TIME_RESOLUTION_,
"sc_time object(s) constructed");
}
double seconds = d * sc_gem5::TimeUnitScale[tu];
if (seconds < sc_gem5::TimeUnitScale[SC_FS])
SC_REPORT_ERROR(SC_ID_SET_TIME_RESOLUTION_, "value smaller than 1 fs");
if (seconds > defaultUnit) {
SC_REPORT_WARNING(SC_ID_DEFAULT_TIME_UNIT_CHANGED_, "");
defaultUnit = seconds;
}
// Get rid of fractional parts of d.
while (d < 1.0 && tu > SC_FS) {
d *= 1000;
tu = (sc_time_unit)(tu - 1);
}
Tick ticks_per_second =
sc_gem5::TimeUnitFrequency[tu] / static_cast<Tick>(d);
setClockFrequency(ticks_per_second);
specified = true;
}
sc_time
sc_get_time_resolution()
{
return sc_time::from_value(1);
}
const sc_time &
sc_max_time()
{
static const sc_time MaxScTime = sc_time::from_value(MaxTick);
return MaxScTime;
}
void
sc_set_default_time_unit(double d, sc_time_unit tu)
{
if (d < 0.0)
SC_REPORT_ERROR(SC_ID_SET_DEFAULT_TIME_UNIT_, "value not positive");
double dummy;
if (modf(log10(d), &dummy) != 0.0) {
SC_REPORT_ERROR(SC_ID_SET_DEFAULT_TIME_UNIT_,
"value not a power of ten");
}
if (sc_is_running())
SC_REPORT_ERROR(SC_ID_SET_DEFAULT_TIME_UNIT_, "simulation running");
static bool specified = false;
if (specified) {
SC_REPORT_ERROR(SC_ID_SET_DEFAULT_TIME_UNIT_, "already specified");
}
// This won't detect the timescale being fixed outside of systemc, but
// it's at least some protection.
if (clockFrequencyFixed()) {
SC_REPORT_ERROR(SC_ID_SET_DEFAULT_TIME_UNIT_,
"sc_time object(s) constructed");
}
// Normalize d to seconds.
defaultUnit = d * sc_gem5::TimeUnitScale[tu];
specified = true;
double resolution = SimClock::Float::Hz;
if (resolution == 0.0)
resolution = sc_gem5::TimeUnitScale[SC_PS];
if (defaultUnit < resolution) {
SC_REPORT_ERROR(SC_ID_SET_DEFAULT_TIME_UNIT_,
"value smaller than time resolution");
}
}
sc_time
sc_get_default_time_unit()
{
return sc_time(defaultUnit, SC_SEC);
}
sc_time_tuple::sc_time_tuple(const sc_time &t) :
_value(), _unit(SC_SEC), _set(true)
{
if (!t.value())
return;
Tick frequency = SimClock::Frequency;
// Shrink the frequency by scaling down the time period, ie converting
// it from cycles per second to cycles per millisecond, etc.
while (_unit > 1 && (frequency % 1000 == 0)) {
_unit = (sc_time_unit)((int)_unit - 1);
frequency /= 1000;
}
// Convert the frequency into a period.
Tick period;
if (frequency > 1) {
_unit = (sc_time_unit)((int)_unit - 1);
period = 1000 / frequency;
} else {
period = frequency;
}
// Scale our integer value by the period.
_value = t.value() * period;
// Shrink the scaled time value by increasing the size of the units
// it's measured by, avoiding fractional parts.
while (_unit < SC_SEC && (_value % 1000) == 0) {
_unit = (sc_time_unit)((int)_unit + 1);
_value /= 1000;
}
}
bool
sc_time_tuple::has_value() const
{
return _set;
}
sc_dt::uint64 sc_time_tuple::value() const { return _value; }
const char *
sc_time_tuple::unit_symbol() const
{
return sc_gem5::TimeUnitNames[_unit];
}
double sc_time_tuple::to_double() const { return static_cast<double>(_value); }
std::string
sc_time_tuple::to_string() const
{
std::ostringstream ss;
ss << _value << ' ' << unit_symbol();
return ss.str();
}
} // namespace sc_core