blob: 346f88246c0bef8bbec93bee495a44dd3f0a45a9 [file] [log] [blame]
/*
* Copyright (c) 2015 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Erik Hallnor
* Steve Reinhardt
* Andreas Hansson
*/
#include "cpu/testers/memtest/memtest.hh"
#include "base/random.hh"
#include "base/statistics.hh"
#include "base/trace.hh"
#include "debug/MemTest.hh"
#include "mem/mem_object.hh"
#include "sim/sim_exit.hh"
#include "sim/stats.hh"
#include "sim/system.hh"
using namespace std;
unsigned int TESTER_ALLOCATOR = 0;
bool
MemTest::CpuPort::recvTimingResp(PacketPtr pkt)
{
memtest.completeRequest(pkt);
return true;
}
void
MemTest::CpuPort::recvReqRetry()
{
memtest.recvRetry();
}
bool
MemTest::sendPkt(PacketPtr pkt) {
if (atomic) {
port.sendAtomic(pkt);
completeRequest(pkt);
} else {
if (!port.sendTimingReq(pkt)) {
retryPkt = pkt;
return false;
}
}
return true;
}
MemTest::MemTest(const Params *p)
: MemObject(p),
tickEvent([this]{ tick(); }, name()),
noRequestEvent([this]{ noRequest(); }, name()),
noResponseEvent([this]{ noResponse(); }, name()),
port("port", *this),
retryPkt(nullptr),
size(p->size),
interval(p->interval),
percentReads(p->percent_reads),
percentFunctional(p->percent_functional),
percentUncacheable(p->percent_uncacheable),
masterId(p->system->getMasterId(this)),
blockSize(p->system->cacheLineSize()),
blockAddrMask(blockSize - 1),
progressInterval(p->progress_interval),
progressCheck(p->progress_check),
nextProgressMessage(p->progress_interval),
maxLoads(p->max_loads),
atomic(p->system->isAtomicMode()),
suppressFuncWarnings(p->suppress_func_warnings)
{
id = TESTER_ALLOCATOR++;
fatal_if(id >= blockSize, "Too many testers, only %d allowed\n",
blockSize - 1);
baseAddr1 = 0x100000;
baseAddr2 = 0x400000;
uncacheAddr = 0x800000;
// set up counters
numReads = 0;
numWrites = 0;
// kick things into action
schedule(tickEvent, curTick());
schedule(noRequestEvent, clockEdge(progressCheck));
schedule(noResponseEvent, clockEdge(progressCheck));
}
Port &
MemTest::getPort(const std::string &if_name, PortID idx)
{
if (if_name == "port")
return port;
else
return MemObject::getPort(if_name, idx);
}
void
MemTest::completeRequest(PacketPtr pkt, bool functional)
{
const RequestPtr &req = pkt->req;
assert(req->getSize() == 1);
// this address is no longer outstanding
auto remove_addr = outstandingAddrs.find(req->getPaddr());
assert(remove_addr != outstandingAddrs.end());
outstandingAddrs.erase(remove_addr);
DPRINTF(MemTest, "Completing %s at address %x (blk %x) %s\n",
pkt->isWrite() ? "write" : "read",
req->getPaddr(), blockAlign(req->getPaddr()),
pkt->isError() ? "error" : "success");
const uint8_t *pkt_data = pkt->getConstPtr<uint8_t>();
if (pkt->isError()) {
if (!functional || !suppressFuncWarnings) {
warn("%s access failed at %#x\n",
pkt->isWrite() ? "Write" : "Read", req->getPaddr());
}
} else {
if (pkt->isRead()) {
uint8_t ref_data = referenceData[req->getPaddr()];
if (pkt_data[0] != ref_data) {
panic("%s: read of %x (blk %x) @ cycle %d "
"returns %x, expected %x\n", name(),
req->getPaddr(), blockAlign(req->getPaddr()), curTick(),
pkt_data[0], ref_data);
}
numReads++;
numReadsStat++;
if (numReads == (uint64_t)nextProgressMessage) {
ccprintf(cerr, "%s: completed %d read, %d write accesses @%d\n",
name(), numReads, numWrites, curTick());
nextProgressMessage += progressInterval;
}
if (maxLoads != 0 && numReads >= maxLoads)
exitSimLoop("maximum number of loads reached");
} else {
assert(pkt->isWrite());
// update the reference data
referenceData[req->getPaddr()] = pkt_data[0];
numWrites++;
numWritesStat++;
}
}
// the packet will delete the data
delete pkt;
// finally shift the response timeout forward
reschedule(noResponseEvent, clockEdge(progressCheck), true);
}
void
MemTest::regStats()
{
MemObject::regStats();
using namespace Stats;
numReadsStat
.name(name() + ".num_reads")
.desc("number of read accesses completed")
;
numWritesStat
.name(name() + ".num_writes")
.desc("number of write accesses completed")
;
}
void
MemTest::tick()
{
// we should never tick if we are waiting for a retry
assert(!retryPkt);
// create a new request
unsigned cmd = random_mt.random(0, 100);
uint8_t data = random_mt.random<uint8_t>();
bool uncacheable = random_mt.random(0, 100) < percentUncacheable;
unsigned base = random_mt.random(0, 1);
Request::Flags flags;
Addr paddr;
// generate a unique address
do {
unsigned offset = random_mt.random<unsigned>(0, size - 1);
// use the tester id as offset within the block for false sharing
offset = blockAlign(offset);
offset += id;
if (uncacheable) {
flags.set(Request::UNCACHEABLE);
paddr = uncacheAddr + offset;
} else {
paddr = ((base) ? baseAddr1 : baseAddr2) + offset;
}
} while (outstandingAddrs.find(paddr) != outstandingAddrs.end());
bool do_functional = (random_mt.random(0, 100) < percentFunctional) &&
!uncacheable;
RequestPtr req = std::make_shared<Request>(paddr, 1, flags, masterId);
req->setContext(id);
outstandingAddrs.insert(paddr);
// sanity check
panic_if(outstandingAddrs.size() > 100,
"Tester %s has more than 100 outstanding requests\n", name());
PacketPtr pkt = nullptr;
uint8_t *pkt_data = new uint8_t[1];
if (cmd < percentReads) {
// start by ensuring there is a reference value if we have not
// seen this address before
uint8_t M5_VAR_USED ref_data = 0;
auto ref = referenceData.find(req->getPaddr());
if (ref == referenceData.end()) {
referenceData[req->getPaddr()] = 0;
} else {
ref_data = ref->second;
}
DPRINTF(MemTest,
"Initiating %sread at addr %x (blk %x) expecting %x\n",
do_functional ? "functional " : "", req->getPaddr(),
blockAlign(req->getPaddr()), ref_data);
pkt = new Packet(req, MemCmd::ReadReq);
pkt->dataDynamic(pkt_data);
} else {
DPRINTF(MemTest, "Initiating %swrite at addr %x (blk %x) value %x\n",
do_functional ? "functional " : "", req->getPaddr(),
blockAlign(req->getPaddr()), data);
pkt = new Packet(req, MemCmd::WriteReq);
pkt->dataDynamic(pkt_data);
pkt_data[0] = data;
}
// there is no point in ticking if we are waiting for a retry
bool keep_ticking = true;
if (do_functional) {
pkt->setSuppressFuncError();
port.sendFunctional(pkt);
completeRequest(pkt, true);
} else {
keep_ticking = sendPkt(pkt);
}
if (keep_ticking) {
// schedule the next tick
schedule(tickEvent, clockEdge(interval));
// finally shift the timeout for sending of requests forwards
// as we have successfully sent a packet
reschedule(noRequestEvent, clockEdge(progressCheck), true);
} else {
DPRINTF(MemTest, "Waiting for retry\n");
}
}
void
MemTest::noRequest()
{
panic("%s did not send a request for %d cycles", name(), progressCheck);
}
void
MemTest::noResponse()
{
panic("%s did not see a response for %d cycles", name(), progressCheck);
}
void
MemTest::recvRetry()
{
assert(retryPkt);
if (port.sendTimingReq(retryPkt)) {
DPRINTF(MemTest, "Proceeding after successful retry\n");
retryPkt = nullptr;
// kick things into action again
schedule(tickEvent, clockEdge(interval));
}
}
MemTest *
MemTestParams::create()
{
return new MemTest(this);
}