blob: 7d53e9c18d9d916cc488a023ec03e60481484ff3 [file] [log] [blame]
/*
tests/test_stl.cpp -- STL type casters
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
#include <pybind11/stl.h>
// Test with `std::variant` in C++17 mode, or with `boost::variant` in C++11/14
#if PYBIND11_HAS_VARIANT
using std::variant;
#elif defined(PYBIND11_TEST_BOOST) && (!defined(_MSC_VER) || _MSC_VER >= 1910)
# include <boost/variant.hpp>
# define PYBIND11_HAS_VARIANT 1
using boost::variant;
namespace pybind11 { namespace detail {
template <typename... Ts>
struct type_caster<boost::variant<Ts...>> : variant_caster<boost::variant<Ts...>> {};
template <>
struct visit_helper<boost::variant> {
template <typename... Args>
static auto call(Args &&...args) -> decltype(boost::apply_visitor(args...)) {
return boost::apply_visitor(args...);
}
};
}} // namespace pybind11::detail
#endif
/// Issue #528: templated constructor
struct TplCtorClass {
template <typename T> TplCtorClass(const T &) { }
bool operator==(const TplCtorClass &) const { return true; }
};
namespace std {
template <>
struct hash<TplCtorClass> { size_t operator()(const TplCtorClass &) const { return 0; } };
}
TEST_SUBMODULE(stl, m) {
// test_vector
m.def("cast_vector", []() { return std::vector<int>{1}; });
m.def("load_vector", [](const std::vector<int> &v) { return v.at(0) == 1 && v.at(1) == 2; });
// `std::vector<bool>` is special because it returns proxy objects instead of references
m.def("cast_bool_vector", []() { return std::vector<bool>{true, false}; });
m.def("load_bool_vector", [](const std::vector<bool> &v) {
return v.at(0) == true && v.at(1) == false;
});
// Unnumbered regression (caused by #936): pointers to stl containers aren't castable
static std::vector<RValueCaster> lvv{2};
m.def("cast_ptr_vector", []() { return &lvv; });
// test_array
m.def("cast_array", []() { return std::array<int, 2> {{1 , 2}}; });
m.def("load_array", [](const std::array<int, 2> &a) { return a[0] == 1 && a[1] == 2; });
// test_valarray
m.def("cast_valarray", []() { return std::valarray<int>{1, 4, 9}; });
m.def("load_valarray", [](const std::valarray<int>& v) {
return v.size() == 3 && v[0] == 1 && v[1] == 4 && v[2] == 9;
});
// test_map
m.def("cast_map", []() { return std::map<std::string, std::string>{{"key", "value"}}; });
m.def("load_map", [](const std::map<std::string, std::string> &map) {
return map.at("key") == "value" && map.at("key2") == "value2";
});
// test_set
m.def("cast_set", []() { return std::set<std::string>{"key1", "key2"}; });
m.def("load_set", [](const std::set<std::string> &set) {
return set.count("key1") && set.count("key2") && set.count("key3");
});
// test_recursive_casting
m.def("cast_rv_vector", []() { return std::vector<RValueCaster>{2}; });
m.def("cast_rv_array", []() { return std::array<RValueCaster, 3>(); });
// NB: map and set keys are `const`, so while we technically do move them (as `const Type &&`),
// casters don't typically do anything with that, which means they fall to the `const Type &`
// caster.
m.def("cast_rv_map", []() { return std::unordered_map<std::string, RValueCaster>{{"a", RValueCaster{}}}; });
m.def("cast_rv_nested", []() {
std::vector<std::array<std::list<std::unordered_map<std::string, RValueCaster>>, 2>> v;
v.emplace_back(); // add an array
v.back()[0].emplace_back(); // add a map to the array
v.back()[0].back().emplace("b", RValueCaster{});
v.back()[0].back().emplace("c", RValueCaster{});
v.back()[1].emplace_back(); // add a map to the array
v.back()[1].back().emplace("a", RValueCaster{});
return v;
});
static std::array<RValueCaster, 2> lva;
static std::unordered_map<std::string, RValueCaster> lvm{{"a", RValueCaster{}}, {"b", RValueCaster{}}};
static std::unordered_map<std::string, std::vector<std::list<std::array<RValueCaster, 2>>>> lvn;
lvn["a"].emplace_back(); // add a list
lvn["a"].back().emplace_back(); // add an array
lvn["a"].emplace_back(); // another list
lvn["a"].back().emplace_back(); // add an array
lvn["b"].emplace_back(); // add a list
lvn["b"].back().emplace_back(); // add an array
lvn["b"].back().emplace_back(); // add another array
m.def("cast_lv_vector", []() -> const decltype(lvv) & { return lvv; });
m.def("cast_lv_array", []() -> const decltype(lva) & { return lva; });
m.def("cast_lv_map", []() -> const decltype(lvm) & { return lvm; });
m.def("cast_lv_nested", []() -> const decltype(lvn) & { return lvn; });
// #853:
m.def("cast_unique_ptr_vector", []() {
std::vector<std::unique_ptr<UserType>> v;
v.emplace_back(new UserType{7});
v.emplace_back(new UserType{42});
return v;
});
// test_move_out_container
struct MoveOutContainer {
struct Value { int value; };
std::list<Value> move_list() const { return {{0}, {1}, {2}}; }
};
py::class_<MoveOutContainer::Value>(m, "MoveOutContainerValue")
.def_readonly("value", &MoveOutContainer::Value::value);
py::class_<MoveOutContainer>(m, "MoveOutContainer")
.def(py::init<>())
.def_property_readonly("move_list", &MoveOutContainer::move_list);
// Class that can be move- and copy-constructed, but not assigned
struct NoAssign {
int value;
explicit NoAssign(int value = 0) : value(value) { }
NoAssign(const NoAssign &) = default;
NoAssign(NoAssign &&) = default;
NoAssign &operator=(const NoAssign &) = delete;
NoAssign &operator=(NoAssign &&) = delete;
};
py::class_<NoAssign>(m, "NoAssign", "Class with no C++ assignment operators")
.def(py::init<>())
.def(py::init<int>());
#ifdef PYBIND11_HAS_OPTIONAL
// test_optional
m.attr("has_optional") = true;
using opt_int = std::optional<int>;
using opt_no_assign = std::optional<NoAssign>;
m.def("double_or_zero", [](const opt_int& x) -> int {
return x.value_or(0) * 2;
});
m.def("half_or_none", [](int x) -> opt_int {
return x ? opt_int(x / 2) : opt_int();
});
m.def("test_nullopt", [](opt_int x) {
return x.value_or(42);
}, py::arg_v("x", std::nullopt, "None"));
m.def("test_no_assign", [](const opt_no_assign &x) {
return x ? x->value : 42;
}, py::arg_v("x", std::nullopt, "None"));
m.def("nodefer_none_optional", [](std::optional<int>) { return true; });
m.def("nodefer_none_optional", [](py::none) { return false; });
#endif
#ifdef PYBIND11_HAS_EXP_OPTIONAL
// test_exp_optional
m.attr("has_exp_optional") = true;
using exp_opt_int = std::experimental::optional<int>;
using exp_opt_no_assign = std::experimental::optional<NoAssign>;
m.def("double_or_zero_exp", [](const exp_opt_int& x) -> int {
return x.value_or(0) * 2;
});
m.def("half_or_none_exp", [](int x) -> exp_opt_int {
return x ? exp_opt_int(x / 2) : exp_opt_int();
});
m.def("test_nullopt_exp", [](exp_opt_int x) {
return x.value_or(42);
}, py::arg_v("x", std::experimental::nullopt, "None"));
m.def("test_no_assign_exp", [](const exp_opt_no_assign &x) {
return x ? x->value : 42;
}, py::arg_v("x", std::experimental::nullopt, "None"));
#endif
#ifdef PYBIND11_HAS_VARIANT
static_assert(std::is_same<py::detail::variant_caster_visitor::result_type, py::handle>::value,
"visitor::result_type is required by boost::variant in C++11 mode");
struct visitor {
using result_type = const char *;
result_type operator()(int) { return "int"; }
result_type operator()(std::string) { return "std::string"; }
result_type operator()(double) { return "double"; }
result_type operator()(std::nullptr_t) { return "std::nullptr_t"; }
};
// test_variant
m.def("load_variant", [](variant<int, std::string, double, std::nullptr_t> v) {
return py::detail::visit_helper<variant>::call(visitor(), v);
});
m.def("load_variant_2pass", [](variant<double, int> v) {
return py::detail::visit_helper<variant>::call(visitor(), v);
});
m.def("cast_variant", []() {
using V = variant<int, std::string>;
return py::make_tuple(V(5), V("Hello"));
});
#endif
// #528: templated constructor
// (no python tests: the test here is that this compiles)
m.def("tpl_ctor_vector", [](std::vector<TplCtorClass> &) {});
m.def("tpl_ctor_map", [](std::unordered_map<TplCtorClass, TplCtorClass> &) {});
m.def("tpl_ctor_set", [](std::unordered_set<TplCtorClass> &) {});
#if defined(PYBIND11_HAS_OPTIONAL)
m.def("tpl_constr_optional", [](std::optional<TplCtorClass> &) {});
#elif defined(PYBIND11_HAS_EXP_OPTIONAL)
m.def("tpl_constr_optional", [](std::experimental::optional<TplCtorClass> &) {});
#endif
// test_vec_of_reference_wrapper
// #171: Can't return STL structures containing reference wrapper
m.def("return_vec_of_reference_wrapper", [](std::reference_wrapper<UserType> p4) {
static UserType p1{1}, p2{2}, p3{3};
return std::vector<std::reference_wrapper<UserType>> {
std::ref(p1), std::ref(p2), std::ref(p3), p4
};
});
// test_stl_pass_by_pointer
m.def("stl_pass_by_pointer", [](std::vector<int>* v) { return *v; }, "v"_a=nullptr);
}