blob: b8e8955712bc2352f5a476ca3db45091ef786834 [file] [log] [blame]
/*
* Copyright (c) 2012-2014 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
* Korey Sewell
*/
#ifndef __CPU_O3_LSQ_UNIT_HH__
#define __CPU_O3_LSQ_UNIT_HH__
#include <algorithm>
#include <cstring>
#include <map>
#include <queue>
#include "arch/generic/debugfaults.hh"
#include "arch/isa_traits.hh"
#include "arch/locked_mem.hh"
#include "arch/mmapped_ipr.hh"
#include "config/the_isa.hh"
#include "cpu/inst_seq.hh"
#include "cpu/timebuf.hh"
#include "debug/LSQUnit.hh"
#include "mem/packet.hh"
#include "mem/port.hh"
struct DerivO3CPUParams;
/**
* Class that implements the actual LQ and SQ for each specific
* thread. Both are circular queues; load entries are freed upon
* committing, while store entries are freed once they writeback. The
* LSQUnit tracks if there are memory ordering violations, and also
* detects partial load to store forwarding cases (a store only has
* part of a load's data) that requires the load to wait until the
* store writes back. In the former case it holds onto the instruction
* until the dependence unit looks at it, and in the latter it stalls
* the LSQ until the store writes back. At that point the load is
* replayed.
*/
template <class Impl>
class LSQUnit {
public:
typedef typename Impl::O3CPU O3CPU;
typedef typename Impl::DynInstPtr DynInstPtr;
typedef typename Impl::CPUPol::IEW IEW;
typedef typename Impl::CPUPol::LSQ LSQ;
typedef typename Impl::CPUPol::IssueStruct IssueStruct;
public:
/** Constructs an LSQ unit. init() must be called prior to use. */
LSQUnit();
/** Initializes the LSQ unit with the specified number of entries. */
void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
unsigned id);
/** Returns the name of the LSQ unit. */
std::string name() const;
/** Registers statistics. */
void regStats();
/** Sets the pointer to the dcache port. */
void setDcachePort(MasterPort *dcache_port);
/** Perform sanity checks after a drain. */
void drainSanityCheck() const;
/** Takes over from another CPU's thread. */
void takeOverFrom();
/** Ticks the LSQ unit, which in this case only resets the number of
* used cache ports.
* @todo: Move the number of used ports up to the LSQ level so it can
* be shared by all LSQ units.
*/
void tick() { usedStorePorts = 0; }
/** Inserts an instruction. */
void insert(DynInstPtr &inst);
/** Inserts a load instruction. */
void insertLoad(DynInstPtr &load_inst);
/** Inserts a store instruction. */
void insertStore(DynInstPtr &store_inst);
/** Check for ordering violations in the LSQ. For a store squash if we
* ever find a conflicting load. For a load, only squash if we
* an external snoop invalidate has been seen for that load address
* @param load_idx index to start checking at
* @param inst the instruction to check
*/
Fault checkViolations(int load_idx, DynInstPtr &inst);
/** Check if an incoming invalidate hits in the lsq on a load
* that might have issued out of order wrt another load beacuse
* of the intermediate invalidate.
*/
void checkSnoop(PacketPtr pkt);
/** Executes a load instruction. */
Fault executeLoad(DynInstPtr &inst);
Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
/** Executes a store instruction. */
Fault executeStore(DynInstPtr &inst);
/** Commits the head load. */
void commitLoad();
/** Commits loads older than a specific sequence number. */
void commitLoads(InstSeqNum &youngest_inst);
/** Commits stores older than a specific sequence number. */
void commitStores(InstSeqNum &youngest_inst);
/** Writes back stores. */
void writebackStores();
/** Completes the data access that has been returned from the
* memory system. */
void completeDataAccess(PacketPtr pkt);
/** Clears all the entries in the LQ. */
void clearLQ();
/** Clears all the entries in the SQ. */
void clearSQ();
/** Resizes the LQ to a given size. */
void resizeLQ(unsigned size);
/** Resizes the SQ to a given size. */
void resizeSQ(unsigned size);
/** Squashes all instructions younger than a specific sequence number. */
void squash(const InstSeqNum &squashed_num);
/** Returns if there is a memory ordering violation. Value is reset upon
* call to getMemDepViolator().
*/
bool violation() { return memDepViolator; }
/** Returns the memory ordering violator. */
DynInstPtr getMemDepViolator();
/** Returns the number of free LQ entries. */
unsigned numFreeLoadEntries();
/** Returns the number of free SQ entries. */
unsigned numFreeStoreEntries();
/** Returns the number of loads in the LQ. */
int numLoads() { return loads; }
/** Returns the number of stores in the SQ. */
int numStores() { return stores; }
/** Returns if either the LQ or SQ is full. */
bool isFull() { return lqFull() || sqFull(); }
/** Returns if both the LQ and SQ are empty. */
bool isEmpty() const { return lqEmpty() && sqEmpty(); }
/** Returns if the LQ is full. */
bool lqFull() { return loads >= (LQEntries - 1); }
/** Returns if the SQ is full. */
bool sqFull() { return stores >= (SQEntries - 1); }
/** Returns if the LQ is empty. */
bool lqEmpty() const { return loads == 0; }
/** Returns if the SQ is empty. */
bool sqEmpty() const { return stores == 0; }
/** Returns the number of instructions in the LSQ. */
unsigned getCount() { return loads + stores; }
/** Returns if there are any stores to writeback. */
bool hasStoresToWB() { return storesToWB; }
/** Returns the number of stores to writeback. */
int numStoresToWB() { return storesToWB; }
/** Returns if the LSQ unit will writeback on this cycle. */
bool willWB() { return storeQueue[storeWBIdx].canWB &&
!storeQueue[storeWBIdx].completed &&
!isStoreBlocked; }
/** Handles doing the retry. */
void recvRetry();
private:
/** Reset the LSQ state */
void resetState();
/** Writes back the instruction, sending it to IEW. */
void writeback(DynInstPtr &inst, PacketPtr pkt);
/** Writes back a store that couldn't be completed the previous cycle. */
void writebackPendingStore();
/** Handles completing the send of a store to memory. */
void storePostSend(PacketPtr pkt);
/** Completes the store at the specified index. */
void completeStore(int store_idx);
/** Attempts to send a store to the cache. */
bool sendStore(PacketPtr data_pkt);
/** Increments the given store index (circular queue). */
inline void incrStIdx(int &store_idx) const;
/** Decrements the given store index (circular queue). */
inline void decrStIdx(int &store_idx) const;
/** Increments the given load index (circular queue). */
inline void incrLdIdx(int &load_idx) const;
/** Decrements the given load index (circular queue). */
inline void decrLdIdx(int &load_idx) const;
public:
/** Debugging function to dump instructions in the LSQ. */
void dumpInsts() const;
private:
/** Pointer to the CPU. */
O3CPU *cpu;
/** Pointer to the IEW stage. */
IEW *iewStage;
/** Pointer to the LSQ. */
LSQ *lsq;
/** Pointer to the dcache port. Used only for sending. */
MasterPort *dcachePort;
/** Derived class to hold any sender state the LSQ needs. */
class LSQSenderState : public Packet::SenderState
{
public:
/** Default constructor. */
LSQSenderState()
: mainPkt(NULL), pendingPacket(NULL), idx(0), outstanding(1),
isLoad(false), noWB(false), isSplit(false),
pktToSend(false), cacheBlocked(false)
{ }
/** Instruction who initiated the access to memory. */
DynInstPtr inst;
/** The main packet from a split load, used during writeback. */
PacketPtr mainPkt;
/** A second packet from a split store that needs sending. */
PacketPtr pendingPacket;
/** The LQ/SQ index of the instruction. */
uint8_t idx;
/** Number of outstanding packets to complete. */
uint8_t outstanding;
/** Whether or not it is a load. */
bool isLoad;
/** Whether or not the instruction will need to writeback. */
bool noWB;
/** Whether or not this access is split in two. */
bool isSplit;
/** Whether or not there is a packet that needs sending. */
bool pktToSend;
/** Whether or not the second packet of this split load was blocked */
bool cacheBlocked;
/** Completes a packet and returns whether the access is finished. */
inline bool complete() { return --outstanding == 0; }
};
/** Writeback event, specifically for when stores forward data to loads. */
class WritebackEvent : public Event {
public:
/** Constructs a writeback event. */
WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
/** Processes the writeback event. */
void process();
/** Returns the description of this event. */
const char *description() const;
private:
/** Instruction whose results are being written back. */
DynInstPtr inst;
/** The packet that would have been sent to memory. */
PacketPtr pkt;
/** The pointer to the LSQ unit that issued the store. */
LSQUnit<Impl> *lsqPtr;
};
public:
struct SQEntry {
/** Constructs an empty store queue entry. */
SQEntry()
: inst(NULL), req(NULL), size(0),
canWB(0), committed(0), completed(0)
{
std::memset(data, 0, sizeof(data));
}
~SQEntry()
{
inst = NULL;
}
/** Constructs a store queue entry for a given instruction. */
SQEntry(DynInstPtr &_inst)
: inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0),
isSplit(0), canWB(0), committed(0), completed(0), isAllZeros(0)
{
std::memset(data, 0, sizeof(data));
}
/** The store data. */
char data[16];
/** The store instruction. */
DynInstPtr inst;
/** The request for the store. */
RequestPtr req;
/** The split requests for the store. */
RequestPtr sreqLow;
RequestPtr sreqHigh;
/** The size of the store. */
uint8_t size;
/** Whether or not the store is split into two requests. */
bool isSplit;
/** Whether or not the store can writeback. */
bool canWB;
/** Whether or not the store is committed. */
bool committed;
/** Whether or not the store is completed. */
bool completed;
/** Does this request write all zeros and thus doesn't
* have any data attached to it. Used for cache block zero
* style instructs (ARM DC ZVA; ALPHA WH64)
*/
bool isAllZeros;
};
private:
/** The LSQUnit thread id. */
ThreadID lsqID;
/** The store queue. */
std::vector<SQEntry> storeQueue;
/** The load queue. */
std::vector<DynInstPtr> loadQueue;
/** The number of LQ entries, plus a sentinel entry (circular queue).
* @todo: Consider having var that records the true number of LQ entries.
*/
unsigned LQEntries;
/** The number of SQ entries, plus a sentinel entry (circular queue).
* @todo: Consider having var that records the true number of SQ entries.
*/
unsigned SQEntries;
/** The number of places to shift addresses in the LSQ before checking
* for dependency violations
*/
unsigned depCheckShift;
/** Should loads be checked for dependency issues */
bool checkLoads;
/** The number of load instructions in the LQ. */
int loads;
/** The number of store instructions in the SQ. */
int stores;
/** The number of store instructions in the SQ waiting to writeback. */
int storesToWB;
/** The index of the head instruction in the LQ. */
int loadHead;
/** The index of the tail instruction in the LQ. */
int loadTail;
/** The index of the head instruction in the SQ. */
int storeHead;
/** The index of the first instruction that may be ready to be
* written back, and has not yet been written back.
*/
int storeWBIdx;
/** The index of the tail instruction in the SQ. */
int storeTail;
/// @todo Consider moving to a more advanced model with write vs read ports
/** The number of cache ports available each cycle (stores only). */
int cacheStorePorts;
/** The number of used cache ports in this cycle by stores. */
int usedStorePorts;
//list<InstSeqNum> mshrSeqNums;
/** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */
Addr cacheBlockMask;
/** Wire to read information from the issue stage time queue. */
typename TimeBuffer<IssueStruct>::wire fromIssue;
/** Whether or not the LSQ is stalled. */
bool stalled;
/** The store that causes the stall due to partial store to load
* forwarding.
*/
InstSeqNum stallingStoreIsn;
/** The index of the above store. */
int stallingLoadIdx;
/** The packet that needs to be retried. */
PacketPtr retryPkt;
/** Whehter or not a store is blocked due to the memory system. */
bool isStoreBlocked;
/** Whether or not a store is in flight. */
bool storeInFlight;
/** The oldest load that caused a memory ordering violation. */
DynInstPtr memDepViolator;
/** Whether or not there is a packet that couldn't be sent because of
* a lack of cache ports. */
bool hasPendingPkt;
/** The packet that is pending free cache ports. */
PacketPtr pendingPkt;
/** Flag for memory model. */
bool needsTSO;
// Will also need how many read/write ports the Dcache has. Or keep track
// of that in stage that is one level up, and only call executeLoad/Store
// the appropriate number of times.
/** Total number of loads forwaded from LSQ stores. */
Stats::Scalar lsqForwLoads;
/** Total number of loads ignored due to invalid addresses. */
Stats::Scalar invAddrLoads;
/** Total number of squashed loads. */
Stats::Scalar lsqSquashedLoads;
/** Total number of responses from the memory system that are
* ignored due to the instruction already being squashed. */
Stats::Scalar lsqIgnoredResponses;
/** Tota number of memory ordering violations. */
Stats::Scalar lsqMemOrderViolation;
/** Total number of squashed stores. */
Stats::Scalar lsqSquashedStores;
/** Total number of software prefetches ignored due to invalid addresses. */
Stats::Scalar invAddrSwpfs;
/** Ready loads blocked due to partial store-forwarding. */
Stats::Scalar lsqBlockedLoads;
/** Number of loads that were rescheduled. */
Stats::Scalar lsqRescheduledLoads;
/** Number of times the LSQ is blocked due to the cache. */
Stats::Scalar lsqCacheBlocked;
public:
/** Executes the load at the given index. */
Fault read(Request *req, Request *sreqLow, Request *sreqHigh,
int load_idx);
/** Executes the store at the given index. */
Fault write(Request *req, Request *sreqLow, Request *sreqHigh,
uint8_t *data, int store_idx);
/** Returns the index of the head load instruction. */
int getLoadHead() { return loadHead; }
/** Returns the sequence number of the head load instruction. */
InstSeqNum getLoadHeadSeqNum()
{
if (loadQueue[loadHead]) {
return loadQueue[loadHead]->seqNum;
} else {
return 0;
}
}
/** Returns the index of the head store instruction. */
int getStoreHead() { return storeHead; }
/** Returns the sequence number of the head store instruction. */
InstSeqNum getStoreHeadSeqNum()
{
if (storeQueue[storeHead].inst) {
return storeQueue[storeHead].inst->seqNum;
} else {
return 0;
}
}
/** Returns whether or not the LSQ unit is stalled. */
bool isStalled() { return stalled; }
};
template <class Impl>
Fault
LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh,
int load_idx)
{
DynInstPtr load_inst = loadQueue[load_idx];
assert(load_inst);
assert(!load_inst->isExecuted());
// Make sure this isn't a strictly ordered load
// A bit of a hackish way to get strictly ordered accesses to work
// only if they're at the head of the LSQ and are ready to commit
// (at the head of the ROB too).
if (req->isStrictlyOrdered() &&
(load_idx != loadHead || !load_inst->isAtCommit())) {
iewStage->rescheduleMemInst(load_inst);
++lsqRescheduledLoads;
DPRINTF(LSQUnit, "Strictly ordered load [sn:%lli] PC %s\n",
load_inst->seqNum, load_inst->pcState());
// Must delete request now that it wasn't handed off to
// memory. This is quite ugly. @todo: Figure out the proper
// place to really handle request deletes.
delete req;
if (TheISA::HasUnalignedMemAcc && sreqLow) {
delete sreqLow;
delete sreqHigh;
}
return std::make_shared<GenericISA::M5PanicFault>(
"Strictly ordered load [sn:%llx] PC %s\n",
load_inst->seqNum, load_inst->pcState());
}
// Check the SQ for any previous stores that might lead to forwarding
int store_idx = load_inst->sqIdx;
int store_size = 0;
DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
"storeHead: %i addr: %#x%s\n",
load_idx, store_idx, storeHead, req->getPaddr(),
sreqLow ? " split" : "");
if (req->isLLSC()) {
assert(!sreqLow);
// Disable recording the result temporarily. Writing to misc
// regs normally updates the result, but this is not the
// desired behavior when handling store conditionals.
load_inst->recordResult(false);
TheISA::handleLockedRead(load_inst.get(), req);
load_inst->recordResult(true);
}
if (req->isMmappedIpr()) {
assert(!load_inst->memData);
load_inst->memData = new uint8_t[64];
ThreadContext *thread = cpu->tcBase(lsqID);
Cycles delay(0);
PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);
data_pkt->dataStatic(load_inst->memData);
if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
delay = TheISA::handleIprRead(thread, data_pkt);
} else {
assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr());
PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq);
PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq);
fst_data_pkt->dataStatic(load_inst->memData);
snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
delay = TheISA::handleIprRead(thread, fst_data_pkt);
Cycles delay2 = TheISA::handleIprRead(thread, snd_data_pkt);
if (delay2 > delay)
delay = delay2;
delete sreqLow;
delete sreqHigh;
delete fst_data_pkt;
delete snd_data_pkt;
}
WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
cpu->schedule(wb, cpu->clockEdge(delay));
return NoFault;
}
while (store_idx != -1) {
// End once we've reached the top of the LSQ
if (store_idx == storeWBIdx) {
break;
}
// Move the index to one younger
if (--store_idx < 0)
store_idx += SQEntries;
assert(storeQueue[store_idx].inst);
store_size = storeQueue[store_idx].size;
if (store_size == 0)
continue;
else if (storeQueue[store_idx].inst->strictlyOrdered())
continue;
assert(storeQueue[store_idx].inst->effAddrValid());
// Check if the store data is within the lower and upper bounds of
// addresses that the request needs.
bool store_has_lower_limit =
req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
bool store_has_upper_limit =
(req->getVaddr() + req->getSize()) <=
(storeQueue[store_idx].inst->effAddr + store_size);
bool lower_load_has_store_part =
req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
store_size);
bool upper_load_has_store_part =
(req->getVaddr() + req->getSize()) >
storeQueue[store_idx].inst->effAddr;
// If the store's data has all of the data needed and the load isn't
// LLSC, we can forward.
if (store_has_lower_limit && store_has_upper_limit && !req->isLLSC()) {
// Get shift amount for offset into the store's data.
int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr;
// Allocate memory if this is the first time a load is issued.
if (!load_inst->memData) {
load_inst->memData = new uint8_t[req->getSize()];
}
if (storeQueue[store_idx].isAllZeros)
memset(load_inst->memData, 0, req->getSize());
else
memcpy(load_inst->memData,
storeQueue[store_idx].data + shift_amt, req->getSize());
DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
"addr %#x\n", store_idx, req->getVaddr());
PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);
data_pkt->dataStatic(load_inst->memData);
WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
// We'll say this has a 1 cycle load-store forwarding latency
// for now.
// @todo: Need to make this a parameter.
cpu->schedule(wb, curTick());
// Don't need to do anything special for split loads.
if (TheISA::HasUnalignedMemAcc && sreqLow) {
delete sreqLow;
delete sreqHigh;
}
++lsqForwLoads;
return NoFault;
} else if (
(!req->isLLSC() &&
((store_has_lower_limit && lower_load_has_store_part) ||
(store_has_upper_limit && upper_load_has_store_part) ||
(lower_load_has_store_part && upper_load_has_store_part))) ||
(req->isLLSC() &&
((store_has_lower_limit || upper_load_has_store_part) &&
(store_has_upper_limit || lower_load_has_store_part)))) {
// This is the partial store-load forwarding case where a store
// has only part of the load's data and the load isn't LLSC or
// the load is LLSC and the store has all or part of the load's
// data
// If it's already been written back, then don't worry about
// stalling on it.
if (storeQueue[store_idx].completed) {
panic("Should not check one of these");
continue;
}
// Must stall load and force it to retry, so long as it's the oldest
// load that needs to do so.
if (!stalled ||
(stalled &&
load_inst->seqNum <
loadQueue[stallingLoadIdx]->seqNum)) {
stalled = true;
stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
stallingLoadIdx = load_idx;
}
// Tell IQ/mem dep unit that this instruction will need to be
// rescheduled eventually
iewStage->rescheduleMemInst(load_inst);
load_inst->clearIssued();
++lsqRescheduledLoads;
// Do not generate a writeback event as this instruction is not
// complete.
DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
"Store idx %i to load addr %#x\n",
store_idx, req->getVaddr());
// Must delete request now that it wasn't handed off to
// memory. This is quite ugly. @todo: Figure out the
// proper place to really handle request deletes.
delete req;
if (TheISA::HasUnalignedMemAcc && sreqLow) {
delete sreqLow;
delete sreqHigh;
}
return NoFault;
}
}
// If there's no forwarding case, then go access memory
DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n",
load_inst->seqNum, load_inst->pcState());
// Allocate memory if this is the first time a load is issued.
if (!load_inst->memData) {
load_inst->memData = new uint8_t[req->getSize()];
}
// if we the cache is not blocked, do cache access
bool completedFirst = false;
PacketPtr data_pkt = Packet::createRead(req);
PacketPtr fst_data_pkt = NULL;
PacketPtr snd_data_pkt = NULL;
data_pkt->dataStatic(load_inst->memData);
LSQSenderState *state = new LSQSenderState;
state->isLoad = true;
state->idx = load_idx;
state->inst = load_inst;
data_pkt->senderState = state;
if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
// Point the first packet at the main data packet.
fst_data_pkt = data_pkt;
} else {
// Create the split packets.
fst_data_pkt = Packet::createRead(sreqLow);
snd_data_pkt = Packet::createRead(sreqHigh);
fst_data_pkt->dataStatic(load_inst->memData);
snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
fst_data_pkt->senderState = state;
snd_data_pkt->senderState = state;
state->isSplit = true;
state->outstanding = 2;
state->mainPkt = data_pkt;
}
// For now, load throughput is constrained by the number of
// load FUs only, and loads do not consume a cache port (only
// stores do).
// @todo We should account for cache port contention
// and arbitrate between loads and stores.
bool successful_load = true;
if (!dcachePort->sendTimingReq(fst_data_pkt)) {
successful_load = false;
} else if (TheISA::HasUnalignedMemAcc && sreqLow) {
completedFirst = true;
// The first packet was sent without problems, so send this one
// too. If there is a problem with this packet then the whole
// load will be squashed, so indicate this to the state object.
// The first packet will return in completeDataAccess and be
// handled there.
// @todo We should also account for cache port contention
// here.
if (!dcachePort->sendTimingReq(snd_data_pkt)) {
// The main packet will be deleted in completeDataAccess.
state->complete();
// Signify to 1st half that the 2nd half was blocked via state
state->cacheBlocked = true;
successful_load = false;
}
}
// If the cache was blocked, or has become blocked due to the access,
// handle it.
if (!successful_load) {
if (!sreqLow) {
// Packet wasn't split, just delete main packet info
delete state;
delete req;
delete data_pkt;
}
if (TheISA::HasUnalignedMemAcc && sreqLow) {
if (!completedFirst) {
// Split packet, but first failed. Delete all state.
delete state;
delete req;
delete data_pkt;
delete fst_data_pkt;
delete snd_data_pkt;
delete sreqLow;
delete sreqHigh;
sreqLow = NULL;
sreqHigh = NULL;
} else {
// Can't delete main packet data or state because first packet
// was sent to the memory system
delete data_pkt;
delete req;
delete sreqHigh;
delete snd_data_pkt;
sreqHigh = NULL;
}
}
++lsqCacheBlocked;
iewStage->blockMemInst(load_inst);
// No fault occurred, even though the interface is blocked.
return NoFault;
}
return NoFault;
}
template <class Impl>
Fault
LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh,
uint8_t *data, int store_idx)
{
assert(storeQueue[store_idx].inst);
DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x"
" | storeHead:%i [sn:%i]\n",
store_idx, req->getPaddr(), storeHead,
storeQueue[store_idx].inst->seqNum);
storeQueue[store_idx].req = req;
storeQueue[store_idx].sreqLow = sreqLow;
storeQueue[store_idx].sreqHigh = sreqHigh;
unsigned size = req->getSize();
storeQueue[store_idx].size = size;
storeQueue[store_idx].isAllZeros = req->getFlags() & Request::CACHE_BLOCK_ZERO;
assert(size <= sizeof(storeQueue[store_idx].data) ||
(req->getFlags() & Request::CACHE_BLOCK_ZERO));
// Split stores can only occur in ISAs with unaligned memory accesses. If
// a store request has been split, sreqLow and sreqHigh will be non-null.
if (TheISA::HasUnalignedMemAcc && sreqLow) {
storeQueue[store_idx].isSplit = true;
}
if (!(req->getFlags() & Request::CACHE_BLOCK_ZERO))
memcpy(storeQueue[store_idx].data, data, size);
// This function only writes the data to the store queue, so no fault
// can happen here.
return NoFault;
}
#endif // __CPU_O3_LSQ_UNIT_HH__