blob: 6f25323712b1eeb4610d4806ff5d73340dba6ce6 [file] [log] [blame]
/*
* Copyright (c) 2012-2013 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Erik Hallnor
*/
/**
* @file
* Definition of BaseCache functions.
*/
#include "mem/cache/base.hh"
#include "debug/Cache.hh"
#include "debug/Drain.hh"
#include "mem/cache/cache.hh"
#include "mem/cache/mshr.hh"
#include "mem/cache/tags/fa_lru.hh"
#include "mem/cache/tags/lru.hh"
#include "mem/cache/tags/random_repl.hh"
#include "sim/full_system.hh"
using namespace std;
BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
BaseCache *_cache,
const std::string &_label)
: QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label),
blocked(false), mustSendRetry(false),
sendRetryEvent([this]{ processSendRetry(); }, _name)
{
}
BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
: MemObject(p),
cpuSidePort(nullptr), memSidePort(nullptr),
mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
blkSize(blk_size),
lookupLatency(p->tag_latency),
dataLatency(p->data_latency),
forwardLatency(p->tag_latency),
fillLatency(p->data_latency),
responseLatency(p->response_latency),
numTarget(p->tgts_per_mshr),
forwardSnoops(true),
isReadOnly(p->is_read_only),
blocked(0),
order(0),
noTargetMSHR(nullptr),
missCount(p->max_miss_count),
addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
system(p->system)
{
// the MSHR queue has no reserve entries as we check the MSHR
// queue on every single allocation, whereas the write queue has
// as many reserve entries as we have MSHRs, since every MSHR may
// eventually require a writeback, and we do not check the write
// buffer before committing to an MSHR
// forward snoops is overridden in init() once we can query
// whether the connected master is actually snooping or not
}
void
BaseCache::CacheSlavePort::setBlocked()
{
assert(!blocked);
DPRINTF(CachePort, "Port is blocking new requests\n");
blocked = true;
// if we already scheduled a retry in this cycle, but it has not yet
// happened, cancel it
if (sendRetryEvent.scheduled()) {
owner.deschedule(sendRetryEvent);
DPRINTF(CachePort, "Port descheduled retry\n");
mustSendRetry = true;
}
}
void
BaseCache::CacheSlavePort::clearBlocked()
{
assert(blocked);
DPRINTF(CachePort, "Port is accepting new requests\n");
blocked = false;
if (mustSendRetry) {
// @TODO: need to find a better time (next cycle?)
owner.schedule(sendRetryEvent, curTick() + 1);
}
}
void
BaseCache::CacheSlavePort::processSendRetry()
{
DPRINTF(CachePort, "Port is sending retry\n");
// reset the flag and call retry
mustSendRetry = false;
sendRetryReq();
}
void
BaseCache::init()
{
if (!cpuSidePort->isConnected() || !memSidePort->isConnected())
fatal("Cache ports on %s are not connected\n", name());
cpuSidePort->sendRangeChange();
forwardSnoops = cpuSidePort->isSnooping();
}
BaseMasterPort &
BaseCache::getMasterPort(const std::string &if_name, PortID idx)
{
if (if_name == "mem_side") {
return *memSidePort;
} else {
return MemObject::getMasterPort(if_name, idx);
}
}
BaseSlavePort &
BaseCache::getSlavePort(const std::string &if_name, PortID idx)
{
if (if_name == "cpu_side") {
return *cpuSidePort;
} else {
return MemObject::getSlavePort(if_name, idx);
}
}
bool
BaseCache::inRange(Addr addr) const
{
for (const auto& r : addrRanges) {
if (r.contains(addr)) {
return true;
}
}
return false;
}
void
BaseCache::regStats()
{
MemObject::regStats();
using namespace Stats;
// Hit statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
hits[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_hits")
.desc("number of " + cstr + " hits")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
hits[access_idx].subname(i, system->getMasterName(i));
}
}
// These macros make it easier to sum the right subset of commands and
// to change the subset of commands that are considered "demand" vs
// "non-demand"
#define SUM_DEMAND(s) \
(s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
// should writebacks be included here? prior code was inconsistent...
#define SUM_NON_DEMAND(s) \
(s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq])
demandHits
.name(name() + ".demand_hits")
.desc("number of demand (read+write) hits")
.flags(total | nozero | nonan)
;
demandHits = SUM_DEMAND(hits);
for (int i = 0; i < system->maxMasters(); i++) {
demandHits.subname(i, system->getMasterName(i));
}
overallHits
.name(name() + ".overall_hits")
.desc("number of overall hits")
.flags(total | nozero | nonan)
;
overallHits = demandHits + SUM_NON_DEMAND(hits);
for (int i = 0; i < system->maxMasters(); i++) {
overallHits.subname(i, system->getMasterName(i));
}
// Miss statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
misses[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_misses")
.desc("number of " + cstr + " misses")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
misses[access_idx].subname(i, system->getMasterName(i));
}
}
demandMisses
.name(name() + ".demand_misses")
.desc("number of demand (read+write) misses")
.flags(total | nozero | nonan)
;
demandMisses = SUM_DEMAND(misses);
for (int i = 0; i < system->maxMasters(); i++) {
demandMisses.subname(i, system->getMasterName(i));
}
overallMisses
.name(name() + ".overall_misses")
.desc("number of overall misses")
.flags(total | nozero | nonan)
;
overallMisses = demandMisses + SUM_NON_DEMAND(misses);
for (int i = 0; i < system->maxMasters(); i++) {
overallMisses.subname(i, system->getMasterName(i));
}
// Miss latency statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
missLatency[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_miss_latency")
.desc("number of " + cstr + " miss cycles")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
missLatency[access_idx].subname(i, system->getMasterName(i));
}
}
demandMissLatency
.name(name() + ".demand_miss_latency")
.desc("number of demand (read+write) miss cycles")
.flags(total | nozero | nonan)
;
demandMissLatency = SUM_DEMAND(missLatency);
for (int i = 0; i < system->maxMasters(); i++) {
demandMissLatency.subname(i, system->getMasterName(i));
}
overallMissLatency
.name(name() + ".overall_miss_latency")
.desc("number of overall miss cycles")
.flags(total | nozero | nonan)
;
overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
for (int i = 0; i < system->maxMasters(); i++) {
overallMissLatency.subname(i, system->getMasterName(i));
}
// access formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
accesses[access_idx]
.name(name() + "." + cstr + "_accesses")
.desc("number of " + cstr + " accesses(hits+misses)")
.flags(total | nozero | nonan)
;
accesses[access_idx] = hits[access_idx] + misses[access_idx];
for (int i = 0; i < system->maxMasters(); i++) {
accesses[access_idx].subname(i, system->getMasterName(i));
}
}
demandAccesses
.name(name() + ".demand_accesses")
.desc("number of demand (read+write) accesses")
.flags(total | nozero | nonan)
;
demandAccesses = demandHits + demandMisses;
for (int i = 0; i < system->maxMasters(); i++) {
demandAccesses.subname(i, system->getMasterName(i));
}
overallAccesses
.name(name() + ".overall_accesses")
.desc("number of overall (read+write) accesses")
.flags(total | nozero | nonan)
;
overallAccesses = overallHits + overallMisses;
for (int i = 0; i < system->maxMasters(); i++) {
overallAccesses.subname(i, system->getMasterName(i));
}
// miss rate formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
missRate[access_idx]
.name(name() + "." + cstr + "_miss_rate")
.desc("miss rate for " + cstr + " accesses")
.flags(total | nozero | nonan)
;
missRate[access_idx] = misses[access_idx] / accesses[access_idx];
for (int i = 0; i < system->maxMasters(); i++) {
missRate[access_idx].subname(i, system->getMasterName(i));
}
}
demandMissRate
.name(name() + ".demand_miss_rate")
.desc("miss rate for demand accesses")
.flags(total | nozero | nonan)
;
demandMissRate = demandMisses / demandAccesses;
for (int i = 0; i < system->maxMasters(); i++) {
demandMissRate.subname(i, system->getMasterName(i));
}
overallMissRate
.name(name() + ".overall_miss_rate")
.desc("miss rate for overall accesses")
.flags(total | nozero | nonan)
;
overallMissRate = overallMisses / overallAccesses;
for (int i = 0; i < system->maxMasters(); i++) {
overallMissRate.subname(i, system->getMasterName(i));
}
// miss latency formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
avgMissLatency[access_idx]
.name(name() + "." + cstr + "_avg_miss_latency")
.desc("average " + cstr + " miss latency")
.flags(total | nozero | nonan)
;
avgMissLatency[access_idx] =
missLatency[access_idx] / misses[access_idx];
for (int i = 0; i < system->maxMasters(); i++) {
avgMissLatency[access_idx].subname(i, system->getMasterName(i));
}
}
demandAvgMissLatency
.name(name() + ".demand_avg_miss_latency")
.desc("average overall miss latency")
.flags(total | nozero | nonan)
;
demandAvgMissLatency = demandMissLatency / demandMisses;
for (int i = 0; i < system->maxMasters(); i++) {
demandAvgMissLatency.subname(i, system->getMasterName(i));
}
overallAvgMissLatency
.name(name() + ".overall_avg_miss_latency")
.desc("average overall miss latency")
.flags(total | nozero | nonan)
;
overallAvgMissLatency = overallMissLatency / overallMisses;
for (int i = 0; i < system->maxMasters(); i++) {
overallAvgMissLatency.subname(i, system->getMasterName(i));
}
blocked_cycles.init(NUM_BLOCKED_CAUSES);
blocked_cycles
.name(name() + ".blocked_cycles")
.desc("number of cycles access was blocked")
.subname(Blocked_NoMSHRs, "no_mshrs")
.subname(Blocked_NoTargets, "no_targets")
;
blocked_causes.init(NUM_BLOCKED_CAUSES);
blocked_causes
.name(name() + ".blocked")
.desc("number of cycles access was blocked")
.subname(Blocked_NoMSHRs, "no_mshrs")
.subname(Blocked_NoTargets, "no_targets")
;
avg_blocked
.name(name() + ".avg_blocked_cycles")
.desc("average number of cycles each access was blocked")
.subname(Blocked_NoMSHRs, "no_mshrs")
.subname(Blocked_NoTargets, "no_targets")
;
avg_blocked = blocked_cycles / blocked_causes;
unusedPrefetches
.name(name() + ".unused_prefetches")
.desc("number of HardPF blocks evicted w/o reference")
.flags(nozero)
;
writebacks
.init(system->maxMasters())
.name(name() + ".writebacks")
.desc("number of writebacks")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
writebacks.subname(i, system->getMasterName(i));
}
// MSHR statistics
// MSHR hit statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_hits[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_mshr_hits")
.desc("number of " + cstr + " MSHR hits")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
mshr_hits[access_idx].subname(i, system->getMasterName(i));
}
}
demandMshrHits
.name(name() + ".demand_mshr_hits")
.desc("number of demand (read+write) MSHR hits")
.flags(total | nozero | nonan)
;
demandMshrHits = SUM_DEMAND(mshr_hits);
for (int i = 0; i < system->maxMasters(); i++) {
demandMshrHits.subname(i, system->getMasterName(i));
}
overallMshrHits
.name(name() + ".overall_mshr_hits")
.desc("number of overall MSHR hits")
.flags(total | nozero | nonan)
;
overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
for (int i = 0; i < system->maxMasters(); i++) {
overallMshrHits.subname(i, system->getMasterName(i));
}
// MSHR miss statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_misses[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_mshr_misses")
.desc("number of " + cstr + " MSHR misses")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
mshr_misses[access_idx].subname(i, system->getMasterName(i));
}
}
demandMshrMisses
.name(name() + ".demand_mshr_misses")
.desc("number of demand (read+write) MSHR misses")
.flags(total | nozero | nonan)
;
demandMshrMisses = SUM_DEMAND(mshr_misses);
for (int i = 0; i < system->maxMasters(); i++) {
demandMshrMisses.subname(i, system->getMasterName(i));
}
overallMshrMisses
.name(name() + ".overall_mshr_misses")
.desc("number of overall MSHR misses")
.flags(total | nozero | nonan)
;
overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
for (int i = 0; i < system->maxMasters(); i++) {
overallMshrMisses.subname(i, system->getMasterName(i));
}
// MSHR miss latency statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_miss_latency[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_mshr_miss_latency")
.desc("number of " + cstr + " MSHR miss cycles")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
}
}
demandMshrMissLatency
.name(name() + ".demand_mshr_miss_latency")
.desc("number of demand (read+write) MSHR miss cycles")
.flags(total | nozero | nonan)
;
demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
for (int i = 0; i < system->maxMasters(); i++) {
demandMshrMissLatency.subname(i, system->getMasterName(i));
}
overallMshrMissLatency
.name(name() + ".overall_mshr_miss_latency")
.desc("number of overall MSHR miss cycles")
.flags(total | nozero | nonan)
;
overallMshrMissLatency =
demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
for (int i = 0; i < system->maxMasters(); i++) {
overallMshrMissLatency.subname(i, system->getMasterName(i));
}
// MSHR uncacheable statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_uncacheable[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_mshr_uncacheable")
.desc("number of " + cstr + " MSHR uncacheable")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
}
}
overallMshrUncacheable
.name(name() + ".overall_mshr_uncacheable_misses")
.desc("number of overall MSHR uncacheable misses")
.flags(total | nozero | nonan)
;
overallMshrUncacheable =
SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
for (int i = 0; i < system->maxMasters(); i++) {
overallMshrUncacheable.subname(i, system->getMasterName(i));
}
// MSHR miss latency statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_uncacheable_lat[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_mshr_uncacheable_latency")
.desc("number of " + cstr + " MSHR uncacheable cycles")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
mshr_uncacheable_lat[access_idx].subname(
i, system->getMasterName(i));
}
}
overallMshrUncacheableLatency
.name(name() + ".overall_mshr_uncacheable_latency")
.desc("number of overall MSHR uncacheable cycles")
.flags(total | nozero | nonan)
;
overallMshrUncacheableLatency =
SUM_DEMAND(mshr_uncacheable_lat) +
SUM_NON_DEMAND(mshr_uncacheable_lat);
for (int i = 0; i < system->maxMasters(); i++) {
overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
}
#if 0
// MSHR access formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshrAccesses[access_idx]
.name(name() + "." + cstr + "_mshr_accesses")
.desc("number of " + cstr + " mshr accesses(hits+misses)")
.flags(total | nozero | nonan)
;
mshrAccesses[access_idx] =
mshr_hits[access_idx] + mshr_misses[access_idx]
+ mshr_uncacheable[access_idx];
}
demandMshrAccesses
.name(name() + ".demand_mshr_accesses")
.desc("number of demand (read+write) mshr accesses")
.flags(total | nozero | nonan)
;
demandMshrAccesses = demandMshrHits + demandMshrMisses;
overallMshrAccesses
.name(name() + ".overall_mshr_accesses")
.desc("number of overall (read+write) mshr accesses")
.flags(total | nozero | nonan)
;
overallMshrAccesses = overallMshrHits + overallMshrMisses
+ overallMshrUncacheable;
#endif
// MSHR miss rate formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshrMissRate[access_idx]
.name(name() + "." + cstr + "_mshr_miss_rate")
.desc("mshr miss rate for " + cstr + " accesses")
.flags(total | nozero | nonan)
;
mshrMissRate[access_idx] =
mshr_misses[access_idx] / accesses[access_idx];
for (int i = 0; i < system->maxMasters(); i++) {
mshrMissRate[access_idx].subname(i, system->getMasterName(i));
}
}
demandMshrMissRate
.name(name() + ".demand_mshr_miss_rate")
.desc("mshr miss rate for demand accesses")
.flags(total | nozero | nonan)
;
demandMshrMissRate = demandMshrMisses / demandAccesses;
for (int i = 0; i < system->maxMasters(); i++) {
demandMshrMissRate.subname(i, system->getMasterName(i));
}
overallMshrMissRate
.name(name() + ".overall_mshr_miss_rate")
.desc("mshr miss rate for overall accesses")
.flags(total | nozero | nonan)
;
overallMshrMissRate = overallMshrMisses / overallAccesses;
for (int i = 0; i < system->maxMasters(); i++) {
overallMshrMissRate.subname(i, system->getMasterName(i));
}
// mshrMiss latency formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
avgMshrMissLatency[access_idx]
.name(name() + "." + cstr + "_avg_mshr_miss_latency")
.desc("average " + cstr + " mshr miss latency")
.flags(total | nozero | nonan)
;
avgMshrMissLatency[access_idx] =
mshr_miss_latency[access_idx] / mshr_misses[access_idx];
for (int i = 0; i < system->maxMasters(); i++) {
avgMshrMissLatency[access_idx].subname(
i, system->getMasterName(i));
}
}
demandAvgMshrMissLatency
.name(name() + ".demand_avg_mshr_miss_latency")
.desc("average overall mshr miss latency")
.flags(total | nozero | nonan)
;
demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
for (int i = 0; i < system->maxMasters(); i++) {
demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
}
overallAvgMshrMissLatency
.name(name() + ".overall_avg_mshr_miss_latency")
.desc("average overall mshr miss latency")
.flags(total | nozero | nonan)
;
overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
for (int i = 0; i < system->maxMasters(); i++) {
overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
}
// mshrUncacheable latency formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
avgMshrUncacheableLatency[access_idx]
.name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
.desc("average " + cstr + " mshr uncacheable latency")
.flags(total | nozero | nonan)
;
avgMshrUncacheableLatency[access_idx] =
mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
for (int i = 0; i < system->maxMasters(); i++) {
avgMshrUncacheableLatency[access_idx].subname(
i, system->getMasterName(i));
}
}
overallAvgMshrUncacheableLatency
.name(name() + ".overall_avg_mshr_uncacheable_latency")
.desc("average overall mshr uncacheable latency")
.flags(total | nozero | nonan)
;
overallAvgMshrUncacheableLatency =
overallMshrUncacheableLatency / overallMshrUncacheable;
for (int i = 0; i < system->maxMasters(); i++) {
overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
}
}