blob: ecef2c4f24bfd4be85ece130d1848f145be45b37 [file] [log] [blame]
/*
* Copyright (c) 2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* Copyright (c) 2011 Regents of the University of California
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Lisa Hsu
* Nathan Binkert
* Rick Strong
*/
#ifndef __SYSTEM_HH__
#define __SYSTEM_HH__
#include <string>
#include <utility>
#include <vector>
#include "base/loader/symtab.hh"
#include "base/misc.hh"
#include "base/statistics.hh"
#include "cpu/pc_event.hh"
#include "enums/MemoryMode.hh"
#include "kern/system_events.hh"
#include "mem/mem_object.hh"
#include "mem/port.hh"
#include "mem/port_proxy.hh"
#include "mem/physical.hh"
#include "params/System.hh"
class BaseCPU;
class BaseRemoteGDB;
class GDBListener;
class ObjectFile;
class Platform;
class ThreadContext;
class System : public MemObject
{
private:
/**
* Private class for the system port which is only used as a
* master for debug access and for non-structural entities that do
* not have a port of their own.
*/
class SystemPort : public MasterPort
{
public:
/**
* Create a system port with a name and an owner.
*/
SystemPort(const std::string &_name, MemObject *_owner)
: MasterPort(_name, _owner)
{ }
bool recvTimingResp(PacketPtr pkt)
{ panic("SystemPort does not receive timing!\n"); return false; }
void recvRetry()
{ panic("SystemPort does not expect retry!\n"); }
};
SystemPort _systemPort;
public:
/**
* After all objects have been created and all ports are
* connected, check that the system port is connected.
*/
virtual void init();
/**
* Get a reference to the system port that can be used by
* non-structural simulation objects like processes or threads, or
* external entities like loaders and debuggers, etc, to access
* the memory system.
*
* @return a reference to the system port we own
*/
MasterPort& getSystemPort() { return _systemPort; }
/**
* Additional function to return the Port of a memory object.
*/
BaseMasterPort& getMasterPort(const std::string &if_name,
PortID idx = InvalidPortID);
static const char *MemoryModeStrings[4];
/** @{ */
/**
* Is the system in atomic mode?
*
* There are currently two different atomic memory modes:
* 'atomic', which supports caches; and 'atomic_noncaching', which
* bypasses caches. The latter is used by hardware virtualized
* CPUs. SimObjects are expected to use Port::sendAtomic() and
* Port::recvAtomic() when accessing memory in this mode.
*/
bool isAtomicMode() const {
return memoryMode == Enums::atomic ||
memoryMode == Enums::atomic_noncaching;
}
/**
* Is the system in timing mode?
*
* SimObjects are expected to use Port::sendTiming() and
* Port::recvTiming() when accessing memory in this mode.
*/
bool isTimingMode() const {
return memoryMode == Enums::timing;
}
/**
* Should caches be bypassed?
*
* Some CPUs need to bypass caches to allow direct memory
* accesses, which is required for hardware virtualization.
*/
bool bypassCaches() const {
return memoryMode == Enums::atomic_noncaching;
}
/** @} */
/** @{ */
/**
* Get the memory mode of the system.
*
* \warn This should only be used by the Python world. The C++
* world should use one of the query functions above
* (isAtomicMode(), isTimingMode(), bypassCaches()).
*/
Enums::MemoryMode getMemoryMode() const { return memoryMode; }
/**
* Change the memory mode of the system.
*
* \warn This should only be called by the Python!
*
* @param mode Mode to change to (atomic/timing/...)
*/
void setMemoryMode(Enums::MemoryMode mode);
/** @} */
/**
* Get the cache line size of the system.
*/
unsigned int cacheLineSize() const { return _cacheLineSize; }
#if THE_ISA != NULL_ISA
PCEventQueue pcEventQueue;
#endif
std::vector<ThreadContext *> threadContexts;
int _numContexts;
ThreadContext *getThreadContext(ThreadID tid)
{
return threadContexts[tid];
}
int numContexts()
{
assert(_numContexts == (int)threadContexts.size());
return _numContexts;
}
/** Return number of running (non-halted) thread contexts in
* system. These threads could be Active or Suspended. */
int numRunningContexts();
Addr pagePtr;
uint64_t init_param;
/** Port to physical memory used for writing object files into ram at
* boot.*/
PortProxy physProxy;
/** kernel symbol table */
SymbolTable *kernelSymtab;
/** Object pointer for the kernel code */
ObjectFile *kernel;
/** Begining of kernel code */
Addr kernelStart;
/** End of kernel code */
Addr kernelEnd;
/** Entry point in the kernel to start at */
Addr kernelEntry;
/** Mask that should be anded for binary/symbol loading.
* This allows one two different OS requirements for the same ISA to be
* handled. Some OSes are compiled for a virtual address and need to be
* loaded into physical memory that starts at address 0, while other
* bare metal tools generate images that start at address 0.
*/
Addr loadAddrMask;
/** Offset that should be used for binary/symbol loading.
* This further allows more flexibily than the loadAddrMask allows alone in
* loading kernels and similar. The loadAddrOffset is applied after the
* loadAddrMask.
*/
Addr loadAddrOffset;
protected:
uint64_t nextPID;
public:
uint64_t allocatePID()
{
return nextPID++;
}
/** Get a pointer to access the physical memory of the system */
PhysicalMemory& getPhysMem() { return physmem; }
/** Amount of physical memory that is still free */
Addr freeMemSize() const;
/** Amount of physical memory that exists */
Addr memSize() const;
/**
* Check if a physical address is within a range of a memory that
* is part of the global address map.
*
* @param addr A physical address
* @return Whether the address corresponds to a memory
*/
bool isMemAddr(Addr addr) const;
protected:
PhysicalMemory physmem;
Enums::MemoryMode memoryMode;
const unsigned int _cacheLineSize;
uint64_t workItemsBegin;
uint64_t workItemsEnd;
uint32_t numWorkIds;
std::vector<bool> activeCpus;
/** This array is a per-sytem list of all devices capable of issuing a
* memory system request and an associated string for each master id.
* It's used to uniquely id any master in the system by name for things
* like cache statistics.
*/
std::vector<std::string> masterIds;
public:
/** Request an id used to create a request object in the system. All objects
* that intend to issues requests into the memory system must request an id
* in the init() phase of startup. All master ids must be fixed by the
* regStats() phase that immediately preceeds it. This allows objects in the
* memory system to understand how many masters may exist and
* appropriately name the bins of their per-master stats before the stats
* are finalized
*/
MasterID getMasterId(std::string req_name);
/** Get the name of an object for a given request id.
*/
std::string getMasterName(MasterID master_id);
/** Get the number of masters registered in the system */
MasterID maxMasters()
{
return masterIds.size();
}
virtual void regStats();
/**
* Called by pseudo_inst to track the number of work items started by this
* system.
*/
uint64_t
incWorkItemsBegin()
{
return ++workItemsBegin;
}
/**
* Called by pseudo_inst to track the number of work items completed by
* this system.
*/
uint64_t
incWorkItemsEnd()
{
return ++workItemsEnd;
}
/**
* Called by pseudo_inst to mark the cpus actively executing work items.
* Returns the total number of cpus that have executed work item begin or
* ends.
*/
int
markWorkItem(int index)
{
int count = 0;
assert(index < activeCpus.size());
activeCpus[index] = true;
for (std::vector<bool>::iterator i = activeCpus.begin();
i < activeCpus.end(); i++) {
if (*i) count++;
}
return count;
}
inline void workItemBegin(uint32_t tid, uint32_t workid)
{
std::pair<uint32_t,uint32_t> p(tid, workid);
lastWorkItemStarted[p] = curTick();
}
void workItemEnd(uint32_t tid, uint32_t workid);
/**
* Fix up an address used to match PCs for hooking simulator
* events on to target function executions. See comment in
* system.cc for details.
*/
virtual Addr fixFuncEventAddr(Addr addr)
{
panic("Base fixFuncEventAddr not implemented.\n");
}
/** @{ */
/**
* Add a function-based event to the given function, to be looked
* up in the specified symbol table.
*
* The ...OrPanic flavor of the method causes the simulator to
* panic if the symbol can't be found.
*
* @param symtab Symbol table to use for look up.
* @param lbl Function to hook the event to.
* @param desc Description to be passed to the event.
* @param args Arguments to be forwarded to the event constructor.
*/
template <class T, typename... Args>
T *addFuncEvent(const SymbolTable *symtab, const char *lbl,
const std::string &desc, Args... args)
{
Addr addr M5_VAR_USED = 0; // initialize only to avoid compiler warning
#if THE_ISA != NULL_ISA
if (symtab->findAddress(lbl, addr)) {
T *ev = new T(&pcEventQueue, desc, fixFuncEventAddr(addr),
std::forward<Args>(args)...);
return ev;
}
#endif
return NULL;
}
template <class T>
T *addFuncEvent(const SymbolTable *symtab, const char *lbl)
{
return addFuncEvent<T>(symtab, lbl, lbl);
}
template <class T, typename... Args>
T *addFuncEventOrPanic(const SymbolTable *symtab, const char *lbl,
Args... args)
{
T *e(addFuncEvent<T>(symtab, lbl, std::forward<Args>(args)...));
if (!e)
panic("Failed to find symbol '%s'", lbl);
return e;
}
/** @} */
/** @{ */
/**
* Add a function-based event to a kernel symbol.
*
* These functions work like their addFuncEvent() and
* addFuncEventOrPanic() counterparts. The only difference is that
* they automatically use the kernel symbol table. All arguments
* are forwarded to the underlying method.
*
* @see addFuncEvent()
* @see addFuncEventOrPanic()
*
* @param lbl Function to hook the event to.
* @param args Arguments to be passed to addFuncEvent
*/
template <class T, typename... Args>
T *addKernelFuncEvent(const char *lbl, Args... args)
{
return addFuncEvent<T>(kernelSymtab, lbl,
std::forward<Args>(args)...);
}
template <class T, typename... Args>
T *addKernelFuncEventOrPanic(const char *lbl, Args... args)
{
T *e(addFuncEvent<T>(kernelSymtab, lbl,
std::forward<Args>(args)...));
if (!e)
panic("Failed to find kernel symbol '%s'", lbl);
return e;
}
/** @} */
public:
std::vector<BaseRemoteGDB *> remoteGDB;
std::vector<GDBListener *> gdbListen;
bool breakpoint();
public:
typedef SystemParams Params;
protected:
Params *_params;
public:
System(Params *p);
~System();
void initState();
const Params *params() const { return (const Params *)_params; }
public:
/**
* Returns the addess the kernel starts at.
* @return address the kernel starts at
*/
Addr getKernelStart() const { return kernelStart; }
/**
* Returns the addess the kernel ends at.
* @return address the kernel ends at
*/
Addr getKernelEnd() const { return kernelEnd; }
/**
* Returns the addess the entry point to the kernel code.
* @return entry point of the kernel code
*/
Addr getKernelEntry() const { return kernelEntry; }
/// Allocate npages contiguous unused physical pages
/// @return Starting address of first page
Addr allocPhysPages(int npages);
int registerThreadContext(ThreadContext *tc, int assigned=-1);
void replaceThreadContext(ThreadContext *tc, int context_id);
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
unsigned int drain(DrainManager *dm);
void drainResume();
public:
Counter totalNumInsts;
EventQueue instEventQueue;
std::map<std::pair<uint32_t,uint32_t>, Tick> lastWorkItemStarted;
std::map<uint32_t, Stats::Histogram*> workItemStats;
////////////////////////////////////////////
//
// STATIC GLOBAL SYSTEM LIST
//
////////////////////////////////////////////
static std::vector<System *> systemList;
static int numSystemsRunning;
static void printSystems();
// For futex system call
std::map<uint64_t, std::list<ThreadContext *> * > futexMap;
protected:
/**
* If needed, serialize additional symbol table entries for a
* specific subclass of this sytem. Currently this is used by
* Alpha and MIPS.
*
* @param os stream to serialize to
*/
virtual void serializeSymtab(std::ostream &os) {}
/**
* If needed, unserialize additional symbol table entries for a
* specific subclass of this system.
*
* @param cp checkpoint to unserialize from
* @param section relevant section in the checkpoint
*/
virtual void unserializeSymtab(Checkpoint *cp,
const std::string &section) {}
};
void printSystems();
#endif // __SYSTEM_HH__