blob: bbfac8ff779e515df7a6289c523a928663ecbc0c [file] [log] [blame]
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cassert>
#include "base/cprintf.hh"
#include "base/misc.hh"
#include "base/stl_helpers.hh"
#include "debug/RubyQueue.hh"
#include "mem/ruby/buffers/MessageBuffer.hh"
#include "mem/ruby/system/System.hh"
using namespace std;
using m5::stl_helpers::operator<<;
MessageBuffer::MessageBuffer(const string &name)
: m_time_last_time_size_checked(0), m_time_last_time_enqueue(0),
m_time_last_time_pop(0), m_last_arrival_time(0)
{
m_msg_counter = 0;
m_consumer = NULL;
m_sender = NULL;
m_receiver = NULL;
m_ordering_set = false;
m_strict_fifo = true;
m_size = 0;
m_max_size = -1;
m_randomization = true;
m_size_last_time_size_checked = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
m_not_avail_count = 0;
m_priority_rank = 0;
m_name = name;
m_stall_msg_map.clear();
m_input_link_id = 0;
m_vnet_id = 0;
}
int
MessageBuffer::getSize()
{
if (m_time_last_time_size_checked == m_receiver->curCycle()) {
return m_size_last_time_size_checked;
} else {
m_time_last_time_size_checked = m_receiver->curCycle();
m_size_last_time_size_checked = m_size;
return m_size;
}
}
bool
MessageBuffer::areNSlotsAvailable(int n)
{
// fast path when message buffers have infinite size
if (m_max_size == -1) {
return true;
}
// determine my correct size for the current cycle
// pop operations shouldn't effect the network's visible size
// until next cycle, but enqueue operations effect the visible
// size immediately
int current_size = max(m_size_at_cycle_start, m_size);
if (m_time_last_time_pop < m_receiver->curCycle()) {
// no pops this cycle - m_size is correct
current_size = m_size;
} else {
if (m_time_last_time_enqueue < m_receiver->curCycle()) {
// no enqueues this cycle - m_size_at_cycle_start is correct
current_size = m_size_at_cycle_start;
} else {
// both pops and enqueues occured this cycle - add new
// enqueued msgs to m_size_at_cycle_start
current_size = m_size_at_cycle_start+m_msgs_this_cycle;
}
}
// now compare the new size with our max size
if (current_size + n <= m_max_size) {
return true;
} else {
DPRINTF(RubyQueue, "n: %d, current_size: %d, m_size: %d, "
"m_max_size: %d\n",
n, current_size, m_size, m_max_size);
m_not_avail_count++;
return false;
}
}
const MsgPtr
MessageBuffer::getMsgPtrCopy() const
{
assert(isReady());
return m_prio_heap.front().m_msgptr->clone();
}
const Message*
MessageBuffer::peekAtHeadOfQueue() const
{
DPRINTF(RubyQueue, "Peeking at head of queue.\n");
assert(isReady());
const Message* msg_ptr = m_prio_heap.front().m_msgptr.get();
assert(msg_ptr);
DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr));
return msg_ptr;
}
// FIXME - move me somewhere else
Cycles
random_time()
{
Cycles time(1);
time += Cycles(random() & 0x3); // [0...3]
if ((random() & 0x7) == 0) { // 1 in 8 chance
time += Cycles(100 + (random() % 0xf)); // 100 + [1...15]
}
return time;
}
void
MessageBuffer::enqueue(MsgPtr message, Cycles delta)
{
m_msg_counter++;
m_size++;
// record current time incase we have a pop that also adjusts my size
if (m_time_last_time_enqueue < m_sender->curCycle()) {
m_msgs_this_cycle = 0; // first msg this cycle
m_time_last_time_enqueue = m_sender->curCycle();
}
m_msgs_this_cycle++;
if (!m_ordering_set) {
panic("Ordering property of %s has not been set", m_name);
}
// Calculate the arrival time of the message, that is, the first
// cycle the message can be dequeued.
assert(delta > 0);
Tick current_time = m_sender->clockEdge();
Tick arrival_time = 0;
if (!RubySystem::getRandomization() || (m_randomization == false)) {
// No randomization
arrival_time = current_time + delta * m_sender->clockPeriod();
} else {
// Randomization - ignore delta
if (m_strict_fifo) {
if (m_last_arrival_time < current_time) {
m_last_arrival_time = current_time;
}
arrival_time = m_last_arrival_time +
random_time() * m_sender->clockPeriod();
} else {
arrival_time = current_time +
random_time() * m_sender->clockPeriod();
}
}
// Check the arrival time
assert(arrival_time > current_time);
if (m_strict_fifo) {
if (arrival_time < m_last_arrival_time) {
panic("FIFO ordering violated: %s name: %s current time: %d "
"delta: %d arrival_time: %d last arrival_time: %d\n",
*this, m_name, current_time,
delta * m_sender->clockPeriod(),
arrival_time, m_last_arrival_time);
}
}
// If running a cache trace, don't worry about the last arrival checks
if (!g_system_ptr->m_warmup_enabled) {
m_last_arrival_time = arrival_time;
}
// compute the delay cycles and set enqueue time
Message* msg_ptr = message.get();
assert(msg_ptr != NULL);
assert(m_sender->clockEdge() >= msg_ptr->getLastEnqueueTime() &&
"ensure we aren't dequeued early");
msg_ptr->setDelayedTicks(m_sender->clockEdge() -
msg_ptr->getLastEnqueueTime() +
msg_ptr->getDelayedTicks());
msg_ptr->setLastEnqueueTime(arrival_time);
// Insert the message into the priority heap
MessageBufferNode thisNode(arrival_time, m_msg_counter, message);
m_prio_heap.push_back(thisNode);
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
DPRINTF(RubyQueue, "Enqueue arrival_time: %lld, Message: %s\n",
arrival_time, *(message.get()));
// Schedule the wakeup
if (m_consumer != NULL) {
m_consumer->scheduleEventAbsolute(arrival_time);
m_consumer->storeEventInfo(m_vnet_id);
} else {
panic("No consumer: %s name: %s\n", *this, m_name);
}
}
Cycles
MessageBuffer::dequeue_getDelayCycles(MsgPtr& message)
{
dequeue(message);
return setAndReturnDelayCycles(message);
}
void
MessageBuffer::dequeue(MsgPtr& message)
{
DPRINTF(RubyQueue, "Dequeueing\n");
message = m_prio_heap.front().m_msgptr;
pop();
DPRINTF(RubyQueue, "Enqueue message is %s\n", (*(message.get())));
}
Cycles
MessageBuffer::dequeue_getDelayCycles()
{
// get MsgPtr of the message about to be dequeued
MsgPtr message = m_prio_heap.front().m_msgptr;
// get the delay cycles
Cycles delayCycles = setAndReturnDelayCycles(message);
dequeue();
return delayCycles;
}
void
MessageBuffer::pop()
{
DPRINTF(RubyQueue, "Popping\n");
assert(isReady());
pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
m_prio_heap.pop_back();
// record previous size and time so the current buffer size isn't
// adjusted until next cycle
if (m_time_last_time_pop < m_receiver->curCycle()) {
m_size_at_cycle_start = m_size;
m_time_last_time_pop = m_receiver->curCycle();
}
m_size--;
}
void
MessageBuffer::clear()
{
m_prio_heap.clear();
m_msg_counter = 0;
m_size = 0;
m_time_last_time_enqueue = Cycles(0);
m_time_last_time_pop = Cycles(0);
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
}
void
MessageBuffer::recycle()
{
DPRINTF(RubyQueue, "Recycling.\n");
assert(isReady());
MessageBufferNode node = m_prio_heap.front();
pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
node.m_time = m_receiver->clockEdge(m_recycle_latency);
m_prio_heap.back() = node;
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
m_consumer->
scheduleEventAbsolute(m_receiver->clockEdge(m_recycle_latency));
}
void
MessageBuffer::reanalyzeMessages(const Address& addr)
{
DPRINTF(RubyQueue, "ReanalyzeMessages\n");
assert(m_stall_msg_map.count(addr) > 0);
Tick nextTick = m_receiver->clockEdge(Cycles(1));
//
// Put all stalled messages associated with this address back on the
// prio heap
//
while(!m_stall_msg_map[addr].empty()) {
m_msg_counter++;
MessageBufferNode msgNode(nextTick, m_msg_counter,
m_stall_msg_map[addr].front());
m_prio_heap.push_back(msgNode);
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
m_consumer->scheduleEventAbsolute(nextTick);
m_stall_msg_map[addr].pop_front();
}
m_stall_msg_map.erase(addr);
}
void
MessageBuffer::reanalyzeAllMessages()
{
DPRINTF(RubyQueue, "ReanalyzeAllMessages %s\n");
Tick nextTick = m_receiver->clockEdge(Cycles(1));
//
// Put all stalled messages associated with this address back on the
// prio heap
//
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end();
++map_iter) {
while(!(map_iter->second).empty()) {
m_msg_counter++;
MessageBufferNode msgNode(nextTick, m_msg_counter,
(map_iter->second).front());
m_prio_heap.push_back(msgNode);
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
m_consumer->scheduleEventAbsolute(nextTick);
(map_iter->second).pop_front();
}
}
m_stall_msg_map.clear();
}
void
MessageBuffer::stallMessage(const Address& addr)
{
DPRINTF(RubyQueue, "Stalling due to %s\n", addr);
assert(isReady());
assert(addr.getOffset() == 0);
MsgPtr message = m_prio_heap.front().m_msgptr;
pop();
//
// Note: no event is scheduled to analyze the map at a later time.
// Instead the controller is responsible to call reanalyzeMessages when
// these addresses change state.
//
(m_stall_msg_map[addr]).push_back(message);
}
Cycles
MessageBuffer::setAndReturnDelayCycles(MsgPtr msg_ptr)
{
// get the delay cycles of the message at the top of the queue
// this function should only be called on dequeue
// ensure the msg hasn't been enqueued
assert(msg_ptr->getLastEnqueueTime() <= m_receiver->clockEdge());
msg_ptr->setDelayedTicks(m_receiver->clockEdge() -
msg_ptr->getLastEnqueueTime() +
msg_ptr->getDelayedTicks());
return m_receiver->ticksToCycles(msg_ptr->getDelayedTicks());
}
void
MessageBuffer::print(ostream& out) const
{
ccprintf(out, "[MessageBuffer: ");
if (m_consumer != NULL) {
ccprintf(out, " consumer-yes ");
}
vector<MessageBufferNode> copy(m_prio_heap);
sort_heap(copy.begin(), copy.end(), greater<MessageBufferNode>());
ccprintf(out, "%s] %s", copy, m_name);
}
void
MessageBuffer::printStats(ostream& out)
{
out << "MessageBuffer: " << m_name << " stats - msgs:" << m_msg_counter
<< " full:" << m_not_avail_count << endl;
}
bool
MessageBuffer::isReady() const
{
return ((m_prio_heap.size() > 0) &&
(m_prio_heap.front().m_time <= m_receiver->clockEdge()));
}
bool
MessageBuffer::functionalRead(Packet *pkt)
{
// Check the priority heap and read any messages that may
// correspond to the address in the packet.
for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
Message *msg = m_prio_heap[i].m_msgptr.get();
if (msg->functionalRead(pkt)) return true;
}
// Read the messages in the stall queue that correspond
// to the address in the packet.
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end();
++map_iter) {
for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
it != (map_iter->second).end(); ++it) {
Message *msg = (*it).get();
if (msg->functionalRead(pkt)) return true;
}
}
return false;
}
uint32_t
MessageBuffer::functionalWrite(Packet *pkt)
{
uint32_t num_functional_writes = 0;
// Check the priority heap and write any messages that may
// correspond to the address in the packet.
for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
Message *msg = m_prio_heap[i].m_msgptr.get();
if (msg->functionalWrite(pkt)) {
num_functional_writes++;
}
}
// Check the stall queue and write any messages that may
// correspond to the address in the packet.
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end();
++map_iter) {
for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
it != (map_iter->second).end(); ++it) {
Message *msg = (*it).get();
if (msg->functionalWrite(pkt)) {
num_functional_writes++;
}
}
}
return num_functional_writes;
}