blob: 4d05a5698d7b3c92a8f94adb834f595b8c42b631 [file] [log] [blame]
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
This file has been modified by Kevin Moore and Dan Nussbaum of the
Scalable Systems Research Group at Sun Microsystems Laboratories
(http://research.sun.com/scalable/) to support the Adaptive
Transactional Memory Test Platform (ATMTP).
Please send email to atmtp-interest@sun.com with feedback, questions, or
to request future announcements about ATMTP.
----------------------------------------------------------------------
File modification date: 2008-02-23
----------------------------------------------------------------------
*/
// Allows use of times() library call, which determines virtual runtime
#include <sys/resource.h>
#include <sys/times.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include <fstream>
#include "base/stl_helpers.hh"
#include "base/str.hh"
#include "mem/protocol/MachineType.hh"
#include "mem/protocol/RubyRequest.hh"
#include "mem/ruby/network/Network.hh"
#include "mem/ruby/profiler/AddressProfiler.hh"
#include "mem/ruby/profiler/Profiler.hh"
#include "mem/ruby/system/Sequencer.hh"
#include "mem/ruby/system/System.hh"
using namespace std;
using m5::stl_helpers::operator<<;
static double process_memory_total();
static double process_memory_resident();
Profiler::Profiler(const Params *p)
: SimObject(p), m_event(this)
{
m_inst_profiler_ptr = NULL;
m_address_profiler_ptr = NULL;
m_real_time_start_time = time(NULL); // Not reset in clearStats()
m_stats_period = 1000000; // Default
m_periodic_output_file_ptr = &cerr;
m_hot_lines = p->hot_lines;
m_all_instructions = p->all_instructions;
m_num_of_sequencers = p->num_of_sequencers;
m_hot_lines = false;
m_all_instructions = false;
m_address_profiler_ptr = new AddressProfiler(m_num_of_sequencers);
m_address_profiler_ptr->setHotLines(m_hot_lines);
m_address_profiler_ptr->setAllInstructions(m_all_instructions);
if (m_all_instructions) {
m_inst_profiler_ptr = new AddressProfiler(m_num_of_sequencers);
m_inst_profiler_ptr->setHotLines(m_hot_lines);
m_inst_profiler_ptr->setAllInstructions(m_all_instructions);
}
p->ruby_system->registerProfiler(this);
}
Profiler::~Profiler()
{
if (m_periodic_output_file_ptr != &cerr) {
delete m_periodic_output_file_ptr;
}
}
void
Profiler::wakeup()
{
// FIXME - avoid the repeated code
vector<int64_t> perProcCycleCount(m_num_of_sequencers);
for (int i = 0; i < m_num_of_sequencers; i++) {
perProcCycleCount[i] =
g_system_ptr->curCycle() - m_cycles_executed_at_start[i] + 1;
// The +1 allows us to avoid division by zero
}
ostream &out = *m_periodic_output_file_ptr;
out << "ruby_cycles: " << g_system_ptr->curCycle()-m_ruby_start << endl
<< "mbytes_resident: " << process_memory_resident() << endl
<< "mbytes_total: " << process_memory_total() << endl;
if (process_memory_total() > 0) {
out << "resident_ratio: "
<< process_memory_resident() / process_memory_total() << endl;
}
out << "miss_latency: " << m_allMissLatencyHistogram << endl;
out << endl;
if (m_all_instructions) {
m_inst_profiler_ptr->printStats(out);
}
//g_system_ptr->getNetwork()->printStats(out);
schedule(m_event, g_system_ptr->clockEdge(Cycles(m_stats_period)));
}
void
Profiler::setPeriodicStatsFile(const string& filename)
{
cout << "Recording periodic statistics to file '" << filename << "' every "
<< m_stats_period << " Ruby cycles" << endl;
if (m_periodic_output_file_ptr != &cerr) {
delete m_periodic_output_file_ptr;
}
m_periodic_output_file_ptr = new ofstream(filename.c_str());
schedule(m_event, g_system_ptr->clockEdge(Cycles(1)));
}
void
Profiler::setPeriodicStatsInterval(int64_t period)
{
cout << "Recording periodic statistics every " << m_stats_period
<< " Ruby cycles" << endl;
m_stats_period = period;
schedule(m_event, g_system_ptr->clockEdge(Cycles(1)));
}
void
Profiler::print(ostream& out) const
{
out << "[Profiler]";
}
void
Profiler::printRequestProfile(ostream &out) const
{
out << "Request vs. RubySystem State Profile" << endl;
out << "--------------------------------" << endl;
out << endl;
map<string, uint64_t> m_requestProfileMap;
uint64_t m_requests = 0;
for (uint32_t i = 0; i < MachineType_NUM; i++) {
for (map<uint32_t, AbstractController*>::iterator it =
g_abs_controls[i].begin();
it != g_abs_controls[i].end(); ++it) {
AbstractController *ctr = (*it).second;
map<string, uint64_t> mp = ctr->getRequestProfileMap();
for (map<string, uint64_t>::iterator jt = mp.begin();
jt != mp.end(); ++jt) {
map<string, uint64_t>::iterator kt =
m_requestProfileMap.find((*jt).first);
if (kt != m_requestProfileMap.end()) {
(*kt).second += (*jt).second;
} else {
m_requestProfileMap[(*jt).first] = (*jt).second;
}
}
m_requests += ctr->getRequestCount();
}
}
map<string, uint64_t>::const_iterator i = m_requestProfileMap.begin();
map<string, uint64_t>::const_iterator end = m_requestProfileMap.end();
for (; i != end; ++i) {
const string &key = i->first;
uint64_t count = i->second;
double percent = (100.0 * double(count)) / double(m_requests);
vector<string> items;
tokenize(items, key, ':');
vector<string>::iterator j = items.begin();
vector<string>::iterator end = items.end();
for (; j != end; ++i)
out << setw(10) << *j;
out << setw(11) << count;
out << setw(14) << percent << endl;
}
out << endl;
}
void
Profiler::printDelayProfile(ostream &out) const
{
out << "Message Delayed Cycles" << endl;
out << "----------------------" << endl;
uint32_t numVNets = Network::getNumberOfVirtualNetworks();
Histogram delayHistogram;
std::vector<Histogram> delayVCHistogram(numVNets);
for (uint32_t i = 0; i < MachineType_NUM; i++) {
for (map<uint32_t, AbstractController*>::iterator it =
g_abs_controls[i].begin();
it != g_abs_controls[i].end(); ++it) {
AbstractController *ctr = (*it).second;
delayHistogram.add(ctr->getDelayHist());
for (uint32_t i = 0; i < numVNets; i++) {
delayVCHistogram[i].add(ctr->getDelayVCHist(i));
}
}
}
out << "Total_delay_cycles: " << delayHistogram << endl;
for (int i = 0; i < numVNets; i++) {
out << " virtual_network_" << i << "_delay_cycles: "
<< delayVCHistogram[i] << endl;
}
}
void
Profiler::printOutstandingReqProfile(ostream &out) const
{
Histogram sequencerRequests;
for (uint32_t i = 0; i < MachineType_NUM; i++) {
for (map<uint32_t, AbstractController*>::iterator it =
g_abs_controls[i].begin();
it != g_abs_controls[i].end(); ++it) {
AbstractController *ctr = (*it).second;
Sequencer *seq = ctr->getSequencer();
if (seq != NULL) {
sequencerRequests.add(seq->getOutstandReqHist());
}
}
}
out << "sequencer_requests_outstanding: "
<< sequencerRequests << endl;
}
void
Profiler::printStats(ostream& out, bool short_stats)
{
out << endl;
if (short_stats) {
out << "SHORT ";
}
out << "Profiler Stats" << endl;
out << "--------------" << endl;
time_t real_time_current = time(NULL);
double seconds = difftime(real_time_current, m_real_time_start_time);
double minutes = seconds / 60.0;
double hours = minutes / 60.0;
double days = hours / 24.0;
Cycles ruby_cycles = g_system_ptr->curCycle()-m_ruby_start;
if (!short_stats) {
out << "Elapsed_time_in_seconds: " << seconds << endl;
out << "Elapsed_time_in_minutes: " << minutes << endl;
out << "Elapsed_time_in_hours: " << hours << endl;
out << "Elapsed_time_in_days: " << days << endl;
out << endl;
}
// print the virtual runtimes as well
struct tms vtime;
times(&vtime);
seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0;
minutes = seconds / 60.0;
hours = minutes / 60.0;
days = hours / 24.0;
out << "Virtual_time_in_seconds: " << seconds << endl;
out << "Virtual_time_in_minutes: " << minutes << endl;
out << "Virtual_time_in_hours: " << hours << endl;
out << "Virtual_time_in_days: " << days << endl;
out << endl;
out << "Ruby_current_time: " << g_system_ptr->curCycle() << endl;
out << "Ruby_start_time: " << m_ruby_start << endl;
out << "Ruby_cycles: " << ruby_cycles << endl;
out << endl;
if (!short_stats) {
out << "mbytes_resident: " << process_memory_resident() << endl;
out << "mbytes_total: " << process_memory_total() << endl;
if (process_memory_total() > 0) {
out << "resident_ratio: "
<< process_memory_resident()/process_memory_total() << endl;
}
out << endl;
}
vector<int64_t> perProcCycleCount(m_num_of_sequencers);
for (int i = 0; i < m_num_of_sequencers; i++) {
perProcCycleCount[i] =
g_system_ptr->curCycle() - m_cycles_executed_at_start[i] + 1;
// The +1 allows us to avoid division by zero
}
out << "ruby_cycles_executed: " << perProcCycleCount << endl;
out << endl;
if (!short_stats) {
out << "Busy Controller Counts:" << endl;
for (uint32_t i = 0; i < MachineType_NUM; i++) {
uint32_t size = MachineType_base_count((MachineType)i);
for (uint32_t j = 0; j < size; j++) {
MachineID machID;
machID.type = (MachineType)i;
machID.num = j;
AbstractController *ctr =
(*(g_abs_controls[i].find(j))).second;
out << machID << ":" << ctr->getFullyBusyCycles() << " ";
if ((j + 1) % 8 == 0) {
out << endl;
}
}
out << endl;
}
out << endl;
out << "Busy Bank Count:" << m_busyBankCount << endl;
out << endl;
printOutstandingReqProfile(out);
out << endl;
}
if (!short_stats) {
out << "All Non-Zero Cycle Demand Cache Accesses" << endl;
out << "----------------------------------------" << endl;
out << "miss_latency: " << m_allMissLatencyHistogram << endl;
for (int i = 0; i < m_missLatencyHistograms.size(); i++) {
if (m_missLatencyHistograms[i].size() > 0) {
out << "miss_latency_" << RubyRequestType(i) << ": "
<< m_missLatencyHistograms[i] << endl;
}
}
for (int i = 0; i < m_machLatencyHistograms.size(); i++) {
if (m_machLatencyHistograms[i].size() > 0) {
out << "miss_latency_" << GenericMachineType(i) << ": "
<< m_machLatencyHistograms[i] << endl;
}
}
out << "miss_latency_wCC_issue_to_initial_request: "
<< m_wCCIssueToInitialRequestHistogram << endl;
out << "miss_latency_wCC_initial_forward_request: "
<< m_wCCInitialRequestToForwardRequestHistogram << endl;
out << "miss_latency_wCC_forward_to_first_response: "
<< m_wCCForwardRequestToFirstResponseHistogram << endl;
out << "miss_latency_wCC_first_response_to_completion: "
<< m_wCCFirstResponseToCompleteHistogram << endl;
out << "imcomplete_wCC_Times: " << m_wCCIncompleteTimes << endl;
out << "miss_latency_dir_issue_to_initial_request: "
<< m_dirIssueToInitialRequestHistogram << endl;
out << "miss_latency_dir_initial_forward_request: "
<< m_dirInitialRequestToForwardRequestHistogram << endl;
out << "miss_latency_dir_forward_to_first_response: "
<< m_dirForwardRequestToFirstResponseHistogram << endl;
out << "miss_latency_dir_first_response_to_completion: "
<< m_dirFirstResponseToCompleteHistogram << endl;
out << "imcomplete_dir_Times: " << m_dirIncompleteTimes << endl;
for (int i = 0; i < m_missMachLatencyHistograms.size(); i++) {
for (int j = 0; j < m_missMachLatencyHistograms[i].size(); j++) {
if (m_missMachLatencyHistograms[i][j].size() > 0) {
out << "miss_latency_" << RubyRequestType(i)
<< "_" << GenericMachineType(j) << ": "
<< m_missMachLatencyHistograms[i][j] << endl;
}
}
}
out << endl;
out << "All Non-Zero Cycle SW Prefetch Requests" << endl;
out << "------------------------------------" << endl;
out << "prefetch_latency: " << m_allSWPrefetchLatencyHistogram << endl;
for (int i = 0; i < m_SWPrefetchLatencyHistograms.size(); i++) {
if (m_SWPrefetchLatencyHistograms[i].size() > 0) {
out << "prefetch_latency_" << RubyRequestType(i) << ": "
<< m_SWPrefetchLatencyHistograms[i] << endl;
}
}
for (int i = 0; i < m_SWPrefetchMachLatencyHistograms.size(); i++) {
if (m_SWPrefetchMachLatencyHistograms[i].size() > 0) {
out << "prefetch_latency_" << GenericMachineType(i) << ": "
<< m_SWPrefetchMachLatencyHistograms[i] << endl;
}
}
out << "prefetch_latency_L2Miss:"
<< m_SWPrefetchL2MissLatencyHistogram << endl;
if (m_all_sharing_histogram.size() > 0) {
out << "all_sharing: " << m_all_sharing_histogram << endl;
out << "read_sharing: " << m_read_sharing_histogram << endl;
out << "write_sharing: " << m_write_sharing_histogram << endl;
out << "all_sharing_percent: ";
m_all_sharing_histogram.printPercent(out);
out << endl;
out << "read_sharing_percent: ";
m_read_sharing_histogram.printPercent(out);
out << endl;
out << "write_sharing_percent: ";
m_write_sharing_histogram.printPercent(out);
out << endl;
int64 total_miss = m_cache_to_cache + m_memory_to_cache;
out << "all_misses: " << total_miss << endl;
out << "cache_to_cache_misses: " << m_cache_to_cache << endl;
out << "memory_to_cache_misses: " << m_memory_to_cache << endl;
out << "cache_to_cache_percent: "
<< 100.0 * (double(m_cache_to_cache) / double(total_miss))
<< endl;
out << "memory_to_cache_percent: "
<< 100.0 * (double(m_memory_to_cache) / double(total_miss))
<< endl;
out << endl;
}
printRequestProfile(out);
out << "filter_action: " << m_filter_action_histogram << endl;
if (!m_all_instructions) {
m_address_profiler_ptr->printStats(out);
}
if (m_all_instructions) {
m_inst_profiler_ptr->printStats(out);
}
out << endl;
printDelayProfile(out);
printResourceUsage(out);
}
}
void
Profiler::printResourceUsage(ostream& out) const
{
out << endl;
out << "Resource Usage" << endl;
out << "--------------" << endl;
int64_t pagesize = getpagesize(); // page size in bytes
out << "page_size: " << pagesize << endl;
rusage usage;
getrusage (RUSAGE_SELF, &usage);
out << "user_time: " << usage.ru_utime.tv_sec << endl;
out << "system_time: " << usage.ru_stime.tv_sec << endl;
out << "page_reclaims: " << usage.ru_minflt << endl;
out << "page_faults: " << usage.ru_majflt << endl;
out << "swaps: " << usage.ru_nswap << endl;
out << "block_inputs: " << usage.ru_inblock << endl;
out << "block_outputs: " << usage.ru_oublock << endl;
}
void
Profiler::clearStats()
{
m_ruby_start = g_system_ptr->curCycle();
m_real_time_start_time = time(NULL);
m_cycles_executed_at_start.resize(m_num_of_sequencers);
for (int i = 0; i < m_num_of_sequencers; i++) {
if (g_system_ptr == NULL) {
m_cycles_executed_at_start[i] = 0;
} else {
m_cycles_executed_at_start[i] = g_system_ptr->curCycle();
}
}
m_busyBankCount = 0;
m_missLatencyHistograms.resize(RubyRequestType_NUM);
for (int i = 0; i < m_missLatencyHistograms.size(); i++) {
m_missLatencyHistograms[i].clear(200);
}
m_machLatencyHistograms.resize(GenericMachineType_NUM+1);
for (int i = 0; i < m_machLatencyHistograms.size(); i++) {
m_machLatencyHistograms[i].clear(200);
}
m_missMachLatencyHistograms.resize(RubyRequestType_NUM);
for (int i = 0; i < m_missLatencyHistograms.size(); i++) {
m_missMachLatencyHistograms[i].resize(GenericMachineType_NUM+1);
for (int j = 0; j < m_missMachLatencyHistograms[i].size(); j++) {
m_missMachLatencyHistograms[i][j].clear(200);
}
}
m_allMissLatencyHistogram.clear(200);
m_wCCIssueToInitialRequestHistogram.clear(200);
m_wCCInitialRequestToForwardRequestHistogram.clear(200);
m_wCCForwardRequestToFirstResponseHistogram.clear(200);
m_wCCFirstResponseToCompleteHistogram.clear(200);
m_wCCIncompleteTimes = 0;
m_dirIssueToInitialRequestHistogram.clear(200);
m_dirInitialRequestToForwardRequestHistogram.clear(200);
m_dirForwardRequestToFirstResponseHistogram.clear(200);
m_dirFirstResponseToCompleteHistogram.clear(200);
m_dirIncompleteTimes = 0;
m_SWPrefetchLatencyHistograms.resize(RubyRequestType_NUM);
for (int i = 0; i < m_SWPrefetchLatencyHistograms.size(); i++) {
m_SWPrefetchLatencyHistograms[i].clear(200);
}
m_SWPrefetchMachLatencyHistograms.resize(GenericMachineType_NUM+1);
for (int i = 0; i < m_SWPrefetchMachLatencyHistograms.size(); i++) {
m_SWPrefetchMachLatencyHistograms[i].clear(200);
}
m_allSWPrefetchLatencyHistogram.clear(200);
m_read_sharing_histogram.clear();
m_write_sharing_histogram.clear();
m_all_sharing_histogram.clear();
m_cache_to_cache = 0;
m_memory_to_cache = 0;
// update the start time
m_ruby_start = g_system_ptr->curCycle();
}
void
Profiler::addAddressTraceSample(const RubyRequest& msg, NodeID id)
{
if (msg.getType() != RubyRequestType_IFETCH) {
// Note: The following line should be commented out if you
// want to use the special profiling that is part of the GS320
// protocol
// NOTE: Unless PROFILE_HOT_LINES is enabled, nothing will be
// profiled by the AddressProfiler
m_address_profiler_ptr->
addTraceSample(msg.getLineAddress(), msg.getProgramCounter(),
msg.getType(), msg.getAccessMode(), id, false);
}
}
void
Profiler::profileSharing(const Address& addr, AccessType type,
NodeID requestor, const Set& sharers,
const Set& owner)
{
Set set_contacted(owner);
if (type == AccessType_Write) {
set_contacted.addSet(sharers);
}
set_contacted.remove(requestor);
int number_contacted = set_contacted.count();
if (type == AccessType_Write) {
m_write_sharing_histogram.add(number_contacted);
} else {
m_read_sharing_histogram.add(number_contacted);
}
m_all_sharing_histogram.add(number_contacted);
if (number_contacted == 0) {
m_memory_to_cache++;
} else {
m_cache_to_cache++;
}
}
void
Profiler::profilePFWait(Cycles waitTime)
{
m_prefetchWaitHistogram.add(waitTime);
}
void
Profiler::bankBusy()
{
m_busyBankCount++;
}
// non-zero cycle demand request
void
Profiler::missLatency(Cycles cycles,
RubyRequestType type,
const GenericMachineType respondingMach)
{
m_allMissLatencyHistogram.add(cycles);
m_missLatencyHistograms[type].add(cycles);
m_machLatencyHistograms[respondingMach].add(cycles);
m_missMachLatencyHistograms[type][respondingMach].add(cycles);
}
void
Profiler::missLatencyWcc(Cycles issuedTime,
Cycles initialRequestTime,
Cycles forwardRequestTime,
Cycles firstResponseTime,
Cycles completionTime)
{
if ((issuedTime <= initialRequestTime) &&
(initialRequestTime <= forwardRequestTime) &&
(forwardRequestTime <= firstResponseTime) &&
(firstResponseTime <= completionTime)) {
m_wCCIssueToInitialRequestHistogram.add(initialRequestTime - issuedTime);
m_wCCInitialRequestToForwardRequestHistogram.add(forwardRequestTime -
initialRequestTime);
m_wCCForwardRequestToFirstResponseHistogram.add(firstResponseTime -
forwardRequestTime);
m_wCCFirstResponseToCompleteHistogram.add(completionTime -
firstResponseTime);
} else {
m_wCCIncompleteTimes++;
}
}
void
Profiler::missLatencyDir(Cycles issuedTime,
Cycles initialRequestTime,
Cycles forwardRequestTime,
Cycles firstResponseTime,
Cycles completionTime)
{
if ((issuedTime <= initialRequestTime) &&
(initialRequestTime <= forwardRequestTime) &&
(forwardRequestTime <= firstResponseTime) &&
(firstResponseTime <= completionTime)) {
m_dirIssueToInitialRequestHistogram.add(initialRequestTime - issuedTime);
m_dirInitialRequestToForwardRequestHistogram.add(forwardRequestTime -
initialRequestTime);
m_dirForwardRequestToFirstResponseHistogram.add(firstResponseTime -
forwardRequestTime);
m_dirFirstResponseToCompleteHistogram.add(completionTime -
firstResponseTime);
} else {
m_dirIncompleteTimes++;
}
}
// non-zero cycle prefetch request
void
Profiler::swPrefetchLatency(Cycles cycles, RubyRequestType type,
const GenericMachineType respondingMach)
{
m_allSWPrefetchLatencyHistogram.add(cycles);
m_SWPrefetchLatencyHistograms[type].add(cycles);
m_SWPrefetchMachLatencyHistograms[respondingMach].add(cycles);
if (respondingMach == GenericMachineType_Directory ||
respondingMach == GenericMachineType_NUM) {
m_SWPrefetchL2MissLatencyHistogram.add(cycles);
}
}
// Helper function
static double
process_memory_total()
{
// 4kB page size, 1024*1024 bytes per MB,
const double MULTIPLIER = 4096.0 / (1024.0 * 1024.0);
ifstream proc_file;
proc_file.open("/proc/self/statm");
int total_size_in_pages = 0;
int res_size_in_pages = 0;
proc_file >> total_size_in_pages;
proc_file >> res_size_in_pages;
return double(total_size_in_pages) * MULTIPLIER; // size in megabytes
}
static double
process_memory_resident()
{
// 4kB page size, 1024*1024 bytes per MB,
const double MULTIPLIER = 4096.0 / (1024.0 * 1024.0);
ifstream proc_file;
proc_file.open("/proc/self/statm");
int total_size_in_pages = 0;
int res_size_in_pages = 0;
proc_file >> total_size_in_pages;
proc_file >> res_size_in_pages;
return double(res_size_in_pages) * MULTIPLIER; // size in megabytes
}
void
Profiler::rubyWatch(int id)
{
uint64 tr = 0;
Address watch_address = Address(tr);
DPRINTFN("%7s %3s RUBY WATCH %d\n", g_system_ptr->curCycle(), id,
watch_address);
// don't care about success or failure
m_watch_address_set.insert(watch_address);
}
bool
Profiler::watchAddress(Address addr)
{
return m_watch_address_set.count(addr) > 0;
}
Profiler *
RubyProfilerParams::create()
{
return new Profiler(this);
}