| // Copyright (c) 2006-2007 The Regents of The University of Michigan |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer; |
| // redistributions in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution; |
| // neither the name of the copyright holders nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: Ali Saidi |
| // Gabe Black |
| // Steve Reinhardt |
| |
| //////////////////////////////////////////////////////////////////// |
| // |
| // The actual decoder specification |
| // |
| |
| decode OP default Unknown::unknown() |
| { |
| 0x0: decode OP2 |
| { |
| //Throw an illegal instruction acception |
| 0x0: Trap::illtrap({{fault = new IllegalInstruction;}}); |
| format BranchN |
| { |
| //bpcc |
| 0x1: decode COND2 |
| { |
| //Branch Always |
| 0x8: bpa(19, annul_code={{ |
| SparcISA::PCState pc = PCS; |
| pc.npc(pc.pc() + disp); |
| pc.nnpc(pc.npc() + 4); |
| PCS = pc; |
| }}); |
| //Branch Never |
| 0x0: bpn(19, {{;}}, |
| annul_code={{ |
| SparcISA::PCState pc = PCS; |
| pc.nnpc(pc.npc() + 8); |
| pc.npc(pc.npc() + 4); |
| PCS = pc; |
| }}); |
| default: decode BPCC |
| { |
| 0x0: bpcci(19, test={{passesCondition(Ccr<3:0>, COND2)}}); |
| 0x2: bpccx(19, test={{passesCondition(Ccr<7:4>, COND2)}}); |
| } |
| } |
| //bicc |
| 0x2: decode COND2 |
| { |
| //Branch Always |
| 0x8: ba(22, annul_code={{ |
| SparcISA::PCState pc = PCS; |
| pc.npc(pc.pc() + disp); |
| pc.nnpc(pc.npc() + 4); |
| PCS = pc; |
| }}); |
| //Branch Never |
| 0x0: bn(22, {{;}}, |
| annul_code={{ |
| SparcISA::PCState pc = PCS; |
| pc.nnpc(pc.npc() + 8); |
| pc.npc(pc.npc() + 4); |
| PCS = pc; |
| }}); |
| default: bicc(22, test={{passesCondition(Ccr<3:0>, COND2)}}); |
| } |
| } |
| 0x3: decode RCOND2 |
| { |
| format BranchSplit |
| { |
| 0x1: bpreq(test={{Rs1.sdw == 0}}); |
| 0x2: bprle(test={{Rs1.sdw <= 0}}); |
| 0x3: bprl(test={{Rs1.sdw < 0}}); |
| 0x5: bprne(test={{Rs1.sdw != 0}}); |
| 0x6: bprg(test={{Rs1.sdw > 0}}); |
| 0x7: bprge(test={{Rs1.sdw >= 0}}); |
| } |
| } |
| //SETHI (or NOP if rd == 0 and imm == 0) |
| 0x4: SetHi::sethi({{Rd.udw = imm;}}); |
| //fbpfcc |
| 0x5: decode COND2 { |
| format BranchN { |
| //Branch Always |
| 0x8: fbpa(22, annul_code={{ |
| SparcISA::PCState pc = PCS; |
| pc.npc(pc.pc() + disp); |
| pc.nnpc(pc.npc() + 4); |
| PCS = pc; |
| }}); |
| //Branch Never |
| 0x0: fbpn(22, {{;}}, |
| annul_code={{ |
| SparcISA::PCState pc = PCS; |
| pc.nnpc(pc.npc() + 8); |
| pc.npc(pc.npc() + 4); |
| PCS = pc; |
| }}); |
| default: decode BPCC { |
| 0x0: fbpfcc0(19, test= |
| {{passesFpCondition(Fsr<11:10>, COND2)}}); |
| 0x1: fbpfcc1(19, test= |
| {{passesFpCondition(Fsr<33:32>, COND2)}}); |
| 0x2: fbpfcc2(19, test= |
| {{passesFpCondition(Fsr<35:34>, COND2)}}); |
| 0x3: fbpfcc3(19, test= |
| {{passesFpCondition(Fsr<37:36>, COND2)}}); |
| } |
| } |
| } |
| //fbfcc |
| 0x6: decode COND2 { |
| format BranchN { |
| //Branch Always |
| 0x8: fba(22, annul_code={{ |
| SparcISA::PCState pc = PCS; |
| pc.npc(pc.pc() + disp); |
| pc.nnpc(pc.npc() + 4); |
| PCS = pc; |
| }}); |
| //Branch Never |
| 0x0: fbn(22, {{;}}, |
| annul_code={{ |
| SparcISA::PCState pc = PCS; |
| pc.nnpc(pc.npc() + 8); |
| pc.npc(pc.npc() + 4); |
| PCS = pc; |
| }}); |
| default: fbfcc(22, test= |
| {{passesFpCondition(Fsr<11:10>, COND2)}}); |
| } |
| } |
| } |
| 0x1: BranchN::call(30, {{ |
| SparcISA::PCState pc = PCS; |
| if (Pstate<3:>) |
| R15 = (pc.pc())<31:0>; |
| else |
| R15 = pc.pc(); |
| pc.nnpc(R15 + disp); |
| PCS = pc; |
| }}); |
| 0x2: decode OP3 { |
| format IntOp { |
| 0x00: add({{Rd = Rs1.sdw + Rs2_or_imm13;}}); |
| 0x01: and({{Rd = Rs1.sdw & Rs2_or_imm13;}}); |
| 0x02: or({{Rd = Rs1.sdw | Rs2_or_imm13;}}); |
| 0x03: xor({{Rd = Rs1.sdw ^ Rs2_or_imm13;}}); |
| 0x04: sub({{Rd = Rs1.sdw - Rs2_or_imm13;}}); |
| 0x05: andn({{Rd = Rs1.sdw & ~Rs2_or_imm13;}}); |
| 0x06: orn({{Rd = Rs1.sdw | ~Rs2_or_imm13;}}); |
| 0x07: xnor({{Rd = ~(Rs1.sdw ^ Rs2_or_imm13);}}); |
| 0x08: addc({{Rd = Rs1.sdw + Rs2_or_imm13 + Ccr<0:0>;}}); |
| 0x09: mulx({{Rd = Rs1.sdw * Rs2_or_imm13;}}); |
| 0x0A: umul({{ |
| Rd = Rs1.udw<31:0> * Rs2_or_imm13<31:0>; |
| Y = Rd<63:32>; |
| }}); |
| 0x0B: smul({{ |
| Rd.sdw = sext<32>(Rs1.sdw<31:0>) * sext<32>(Rs2_or_imm13<31:0>); |
| Y = Rd.sdw<63:32>; |
| }}); |
| 0x0C: subc({{Rd.sdw = Rs1.sdw + (~Rs2_or_imm13) + 1 - Ccr<0:0>}}); |
| 0x0D: udivx({{ |
| if(Rs2_or_imm13 == 0) fault = new DivisionByZero; |
| else Rd.udw = Rs1.udw / Rs2_or_imm13; |
| }}); |
| 0x0E: udiv({{ |
| if(Rs2_or_imm13 == 0) fault = new DivisionByZero; |
| else |
| { |
| Rd.udw = ((Y << 32) | Rs1.udw<31:0>) / Rs2_or_imm13; |
| if(Rd.udw >> 32 != 0) |
| Rd.udw = 0xFFFFFFFF; |
| } |
| }}); |
| 0x0F: sdiv({{ |
| if(Rs2_or_imm13.sdw == 0) |
| fault = new DivisionByZero; |
| else |
| { |
| Rd.udw = ((int64_t)((Y << 32) | Rs1.sdw<31:0>)) / Rs2_or_imm13.sdw; |
| if((int64_t)Rd.udw >= std::numeric_limits<int32_t>::max()) |
| Rd.udw = 0x7FFFFFFF; |
| else if((int64_t)Rd.udw <= std::numeric_limits<int32_t>::min()) |
| Rd.udw = ULL(0xFFFFFFFF80000000); |
| } |
| }}); |
| } |
| format IntOpCc { |
| 0x10: addcc({{ |
| int64_t res, op1 = Rs1, op2 = Rs2_or_imm13; |
| Rd = res = op1 + op2; |
| }}); |
| 0x11: IntOpCcRes::andcc({{Rd = Rs1 & Rs2_or_imm13;}}); |
| 0x12: IntOpCcRes::orcc({{Rd = Rs1 | Rs2_or_imm13;}}); |
| 0x13: IntOpCcRes::xorcc({{Rd = Rs1 ^ Rs2_or_imm13;}}); |
| 0x14: subcc({{ |
| int64_t res, op1 = Rs1, op2 = Rs2_or_imm13; |
| Rd = res = op1 - op2; |
| }}, sub=True); |
| 0x15: IntOpCcRes::andncc({{Rd = Rs1 & ~Rs2_or_imm13;}}); |
| 0x16: IntOpCcRes::orncc({{Rd = Rs1 | ~Rs2_or_imm13;}}); |
| 0x17: IntOpCcRes::xnorcc({{Rd = ~(Rs1 ^ Rs2_or_imm13);}}); |
| 0x18: addccc({{ |
| int64_t res, op1 = Rs1, op2 = Rs2_or_imm13; |
| Rd = res = op1 + op2 + Ccr<0:>; |
| }}); |
| 0x1A: IntOpCcRes::umulcc({{ |
| uint64_t resTemp; |
| Rd = resTemp = Rs1.udw<31:0> * Rs2_or_imm13.udw<31:0>; |
| Y = resTemp<63:32>;}}); |
| 0x1B: IntOpCcRes::smulcc({{ |
| int64_t resTemp; |
| Rd = resTemp = sext<32>(Rs1.sdw<31:0>) * sext<32>(Rs2_or_imm13<31:0>); |
| Y = resTemp<63:32>;}}); |
| 0x1C: subccc({{ |
| int64_t res, op1 = Rs1, op2 = Rs2_or_imm13; |
| Rd = res = op1 - op2 - Ccr<0:>; |
| }}, sub=True); |
| 0x1D: IntOpCcRes::udivxcc({{ |
| if(Rs2_or_imm13.udw == 0) fault = new DivisionByZero; |
| else Rd = Rs1.udw / Rs2_or_imm13.udw;}}); |
| 0x1E: IntOpCcRes::udivcc({{ |
| uint64_t resTemp; |
| uint32_t val2 = Rs2_or_imm13.udw; |
| int32_t overflow = 0; |
| if(val2 == 0) fault = new DivisionByZero; |
| else |
| { |
| resTemp = (uint64_t)((Y << 32) | Rs1.udw<31:0>) / val2; |
| overflow = (resTemp<63:32> != 0); |
| if(overflow) Rd = resTemp = 0xFFFFFFFF; |
| else Rd = resTemp; |
| } |
| }}, iv={{overflow}}); |
| 0x1F: IntOpCcRes::sdivcc({{ |
| int64_t val2 = Rs2_or_imm13.sdw<31:0>; |
| bool overflow = false, underflow = false; |
| if(val2 == 0) fault = new DivisionByZero; |
| else |
| { |
| Rd = (int64_t)((Y << 32) | Rs1.sdw<31:0>) / val2; |
| overflow = ((int64_t)Rd >= std::numeric_limits<int32_t>::max()); |
| underflow = ((int64_t)Rd <= std::numeric_limits<int32_t>::min()); |
| if(overflow) Rd = 0x7FFFFFFF; |
| else if(underflow) Rd = ULL(0xFFFFFFFF80000000); |
| } |
| }}, iv={{overflow || underflow}}); |
| 0x20: taddcc({{ |
| int64_t res, op1 = Rs1, op2 = Rs2_or_imm13; |
| Rd = res = Rs1 + op2; |
| }}, iv={{ |
| (op1 & mask(2)) || (op2 & mask(2)) || |
| findOverflow(32, res, op1, op2) |
| }}); |
| 0x21: tsubcc({{ |
| int64_t res, op1 = Rs1, op2 = Rs2_or_imm13; |
| Rd = res = Rs1 - op2; |
| }}, iv={{ |
| (op1 & mask(2)) || (op2 & mask(2)) || |
| findOverflow(32, res, op1, ~op2) |
| }}, sub=True); |
| 0x22: taddcctv({{ |
| int64_t res, op1 = Rs1, op2 = Rs2_or_imm13; |
| Rd = res = op1 + op2; |
| bool overflow = (op1 & mask(2)) || (op2 & mask(2)) || |
| findOverflow(32, res, op1, op2); |
| if(overflow) fault = new TagOverflow; |
| }}, iv={{overflow}}); |
| 0x23: tsubcctv({{ |
| int64_t res, op1 = Rs1, op2 = Rs2_or_imm13; |
| Rd = res = op1 - op2; |
| bool overflow = (op1 & mask(2)) || (op2 & mask(2)) || |
| findOverflow(32, res, op1, ~op2); |
| if(overflow) fault = new TagOverflow; |
| }}, iv={{overflow}}, sub=True); |
| 0x24: mulscc({{ |
| int32_t savedLSB = Rs1<0:>; |
| |
| //Step 1 |
| int64_t multiplicand = Rs2_or_imm13; |
| //Step 2 |
| int32_t partialP = Rs1<31:1> | |
| ((Ccr<3:3> ^ Ccr<1:1>) << 31); |
| //Step 3 |
| int32_t added = Y<0:> ? multiplicand : 0; |
| int64_t res, op1 = partialP, op2 = added; |
| Rd = res = partialP + added; |
| //Steps 4 & 5 |
| Y = Y<31:1> | (savedLSB << 31); |
| }}); |
| } |
| format IntOp |
| { |
| 0x25: decode X { |
| 0x0: sll({{Rd = Rs1 << (I ? SHCNT32 : Rs2<4:0>);}}); |
| 0x1: sllx({{Rd = Rs1 << (I ? SHCNT64 : Rs2<5:0>);}}); |
| } |
| 0x26: decode X { |
| 0x0: srl({{Rd = Rs1.uw >> (I ? SHCNT32 : Rs2<4:0>);}}); |
| 0x1: srlx({{Rd = Rs1.udw >> (I ? SHCNT64 : Rs2<5:0>);}}); |
| } |
| 0x27: decode X { |
| 0x0: sra({{Rd = Rs1.sw >> (I ? SHCNT32 : Rs2<4:0>);}}); |
| 0x1: srax({{Rd = Rs1.sdw >> (I ? SHCNT64 : Rs2<5:0>);}}); |
| } |
| 0x28: decode RS1 { |
| 0x00: NoPriv::rdy({{Rd = Y<31:0>;}}); |
| //1 should cause an illegal instruction exception |
| 0x02: NoPriv::rdccr({{Rd = Ccr;}}); |
| 0x03: NoPriv::rdasi({{Rd = Asi;}}); |
| 0x04: Priv::rdtick({{Rd = Tick;}}, {{Tick<63:>}}); |
| 0x05: NoPriv::rdpc({{ |
| SparcISA::PCState pc = PCS; |
| if(Pstate<3:>) |
| Rd = (pc.pc())<31:0>; |
| else |
| Rd = pc.pc(); |
| }}); |
| 0x06: NoPriv::rdfprs({{ |
| //Wait for all fpops to finish. |
| Rd = Fprs; |
| }}); |
| //7-14 should cause an illegal instruction exception |
| 0x0F: decode I { |
| 0x0: Nop::stbar({{/*stuff*/}}, IsWriteBarrier, MemWriteOp); |
| 0x1: Nop::membar({{/*stuff*/}}, IsMemBarrier, MemReadOp); |
| } |
| 0x10: Priv::rdpcr({{Rd = Pcr;}}); |
| 0x11: Priv::rdpic({{Rd = Pic;}}, {{Pcr<0:>}}); |
| //0x12 should cause an illegal instruction exception |
| 0x13: NoPriv::rdgsr({{ |
| fault = checkFpEnableFault(xc); |
| if (fault) |
| return fault; |
| Rd = Gsr; |
| }}); |
| //0x14-0x15 should cause an illegal instruction exception |
| 0x16: Priv::rdsoftint({{Rd = Softint;}}); |
| 0x17: Priv::rdtick_cmpr({{Rd = TickCmpr;}}); |
| 0x18: Priv::rdstick({{Rd = Stick}}, {{Stick<63:>}}); |
| 0x19: Priv::rdstick_cmpr({{Rd = StickCmpr;}}); |
| 0x1A: Priv::rdstrand_sts_reg({{ |
| if(Pstate<2:> && !Hpstate<2:>) |
| Rd = StrandStsReg<0:>; |
| else |
| Rd = StrandStsReg; |
| }}); |
| //0x1A is supposed to be reserved, but it reads the strand |
| //status register. |
| //0x1B-0x1F should cause an illegal instruction exception |
| } |
| 0x29: decode RS1 { |
| 0x00: HPriv::rdhprhpstate({{Rd = Hpstate;}}); |
| 0x01: HPriv::rdhprhtstate({{Rd = Htstate;}}, checkTl=true); |
| //0x02 should cause an illegal instruction exception |
| 0x03: HPriv::rdhprhintp({{Rd = Hintp;}}); |
| //0x04 should cause an illegal instruction exception |
| 0x05: HPriv::rdhprhtba({{Rd = Htba;}}); |
| 0x06: HPriv::rdhprhver({{Rd = Hver;}}); |
| //0x07-0x1E should cause an illegal instruction exception |
| 0x1F: HPriv::rdhprhstick_cmpr({{Rd = HstickCmpr;}}); |
| } |
| 0x2A: decode RS1 { |
| 0x00: Priv::rdprtpc({{Rd = Tpc;}}, checkTl=true); |
| 0x01: Priv::rdprtnpc({{Rd = Tnpc;}}, checkTl=true); |
| 0x02: Priv::rdprtstate({{Rd = Tstate;}}, checkTl=true); |
| 0x03: Priv::rdprtt({{Rd = Tt;}}, checkTl=true); |
| 0x04: Priv::rdprtick({{Rd = Tick;}}); |
| 0x05: Priv::rdprtba({{Rd = Tba;}}); |
| 0x06: Priv::rdprpstate({{Rd = Pstate;}}); |
| 0x07: Priv::rdprtl({{Rd = Tl;}}); |
| 0x08: Priv::rdprpil({{Rd = Pil;}}); |
| 0x09: Priv::rdprcwp({{Rd = Cwp;}}); |
| 0x0A: Priv::rdprcansave({{Rd = Cansave;}}); |
| 0x0B: Priv::rdprcanrestore({{Rd = Canrestore;}}); |
| 0x0C: Priv::rdprcleanwin({{Rd = Cleanwin;}}); |
| 0x0D: Priv::rdprotherwin({{Rd = Otherwin;}}); |
| 0x0E: Priv::rdprwstate({{Rd = Wstate;}}); |
| //0x0F should cause an illegal instruction exception |
| 0x10: Priv::rdprgl({{Rd = Gl;}}); |
| //0x11-0x1F should cause an illegal instruction exception |
| } |
| 0x2B: BasicOperate::flushw({{ |
| if(NWindows - 2 - Cansave != 0) |
| { |
| if(Otherwin) |
| fault = new SpillNOther(4*Wstate<5:3>); |
| else |
| fault = new SpillNNormal(4*Wstate<2:0>); |
| } |
| }}); |
| 0x2C: decode MOVCC3 |
| { |
| 0x0: decode CC |
| { |
| 0x0: movccfcc0({{ |
| if(passesCondition(Fsr<11:10>, COND4)) |
| Rd = Rs2_or_imm11; |
| else |
| Rd = Rd; |
| }}); |
| 0x1: movccfcc1({{ |
| if(passesCondition(Fsr<33:32>, COND4)) |
| Rd = Rs2_or_imm11; |
| else |
| Rd = Rd; |
| }}); |
| 0x2: movccfcc2({{ |
| if(passesCondition(Fsr<35:34>, COND4)) |
| Rd = Rs2_or_imm11; |
| else |
| Rd = Rd; |
| }}); |
| 0x3: movccfcc3({{ |
| if(passesCondition(Fsr<37:36>, COND4)) |
| Rd = Rs2_or_imm11; |
| else |
| Rd = Rd; |
| }}); |
| } |
| 0x1: decode CC |
| { |
| 0x0: movcci({{ |
| if(passesCondition(Ccr<3:0>, COND4)) |
| Rd = Rs2_or_imm11; |
| else |
| Rd = Rd; |
| }}); |
| 0x2: movccx({{ |
| if(passesCondition(Ccr<7:4>, COND4)) |
| Rd = Rs2_or_imm11; |
| else |
| Rd = Rd; |
| }}); |
| } |
| } |
| 0x2D: sdivx({{ |
| if(Rs2_or_imm13.sdw == 0) fault = new DivisionByZero; |
| else Rd.sdw = Rs1.sdw / Rs2_or_imm13.sdw; |
| }}); |
| 0x2E: Trap::popc({{fault = new IllegalInstruction;}}); |
| 0x2F: decode RCOND3 |
| { |
| 0x1: movreq({{Rd = (Rs1.sdw == 0) ? Rs2_or_imm10 : Rd;}}); |
| 0x2: movrle({{Rd = (Rs1.sdw <= 0) ? Rs2_or_imm10 : Rd;}}); |
| 0x3: movrl({{Rd = (Rs1.sdw < 0) ? Rs2_or_imm10 : Rd;}}); |
| 0x5: movrne({{Rd = (Rs1.sdw != 0) ? Rs2_or_imm10 : Rd;}}); |
| 0x6: movrg({{Rd = (Rs1.sdw > 0) ? Rs2_or_imm10 : Rd;}}); |
| 0x7: movrge({{Rd = (Rs1.sdw >= 0) ? Rs2_or_imm10 : Rd;}}); |
| } |
| 0x30: decode RD { |
| 0x00: NoPriv::wry({{Y = (Rs1 ^ Rs2_or_imm13)<31:0>;}}); |
| //0x01 should cause an illegal instruction exception |
| 0x02: NoPriv::wrccr({{Ccr = Rs1 ^ Rs2_or_imm13;}}); |
| 0x03: NoPriv::wrasi({{Asi = Rs1 ^ Rs2_or_imm13;}}); |
| //0x04-0x05 should cause an illegal instruction exception |
| 0x06: NoPriv::wrfprs({{Fprs = Rs1 ^ Rs2_or_imm13;}}); |
| //0x07-0x0E should cause an illegal instruction exception |
| 0x0F: Trap::softreset({{fault = new SoftwareInitiatedReset;}}); |
| 0x10: Priv::wrpcr({{Pcr = Rs1 ^ Rs2_or_imm13;}}); |
| 0x11: Priv::wrpic({{Pic = Rs1 ^ Rs2_or_imm13;}}, {{Pcr<0:>}}); |
| //0x12 should cause an illegal instruction exception |
| 0x13: NoPriv::wrgsr({{ |
| if(Fprs<2:> == 0 || Pstate<4:> == 0) |
| return new FpDisabled; |
| Gsr = Rs1 ^ Rs2_or_imm13; |
| }}); |
| 0x14: Priv::wrsoftint_set({{SoftintSet = Rs1 ^ Rs2_or_imm13;}}); |
| 0x15: Priv::wrsoftint_clr({{SoftintClr = Rs1 ^ Rs2_or_imm13;}}); |
| 0x16: Priv::wrsoftint({{Softint = Rs1 ^ Rs2_or_imm13;}}); |
| 0x17: Priv::wrtick_cmpr({{TickCmpr = Rs1 ^ Rs2_or_imm13;}}); |
| 0x18: NoPriv::wrstick({{ |
| if(!Hpstate<2:>) |
| return new IllegalInstruction; |
| Stick = Rs1 ^ Rs2_or_imm13; |
| }}); |
| 0x19: Priv::wrstick_cmpr({{StickCmpr = Rs1 ^ Rs2_or_imm13;}}); |
| 0x1A: Priv::wrstrand_sts_reg({{ |
| StrandStsReg = Rs1 ^ Rs2_or_imm13; |
| }}); |
| //0x1A is supposed to be reserved, but it writes the strand |
| //status register. |
| //0x1B-0x1F should cause an illegal instruction exception |
| } |
| 0x31: decode FCN { |
| 0x0: Priv::saved({{ |
| assert(Cansave < NWindows - 2); |
| assert(Otherwin || Canrestore); |
| Cansave = Cansave + 1; |
| if(Otherwin == 0) |
| Canrestore = Canrestore - 1; |
| else |
| Otherwin = Otherwin - 1; |
| }}); |
| 0x1: Priv::restored({{ |
| assert(Cansave || Otherwin); |
| assert(Canrestore < NWindows - 2); |
| Canrestore = Canrestore + 1; |
| if(Otherwin == 0) |
| Cansave = Cansave - 1; |
| else |
| Otherwin = Otherwin - 1; |
| |
| if(Cleanwin < NWindows - 1) |
| Cleanwin = Cleanwin + 1; |
| }}); |
| } |
| 0x32: decode RD { |
| 0x00: Priv::wrprtpc( |
| {{Tpc = Rs1 ^ Rs2_or_imm13;}}, checkTl=true); |
| 0x01: Priv::wrprtnpc( |
| {{Tnpc = Rs1 ^ Rs2_or_imm13;}}, checkTl=true); |
| 0x02: Priv::wrprtstate( |
| {{Tstate = Rs1 ^ Rs2_or_imm13;}}, checkTl=true); |
| 0x03: Priv::wrprtt( |
| {{Tt = Rs1 ^ Rs2_or_imm13;}}, checkTl=true); |
| 0x04: HPriv::wrprtick({{Tick = Rs1 ^ Rs2_or_imm13;}}); |
| 0x05: Priv::wrprtba({{Tba = Rs1 ^ Rs2_or_imm13;}}); |
| 0x06: Priv::wrprpstate({{Pstate = Rs1 ^ Rs2_or_imm13;}}); |
| 0x07: Priv::wrprtl({{ |
| if(Pstate<2:> && !Hpstate<2:>) |
| Tl = std::min<uint64_t>(Rs1 ^ Rs2_or_imm13, MaxPTL); |
| else |
| Tl = std::min<uint64_t>(Rs1 ^ Rs2_or_imm13, MaxTL); |
| }}); |
| 0x08: Priv::wrprpil({{Pil = Rs1 ^ Rs2_or_imm13;}}); |
| 0x09: Priv::wrprcwp({{Cwp = Rs1 ^ Rs2_or_imm13;}}); |
| 0x0A: Priv::wrprcansave({{Cansave = Rs1 ^ Rs2_or_imm13;}}); |
| 0x0B: Priv::wrprcanrestore({{Canrestore = Rs1 ^ Rs2_or_imm13;}}); |
| 0x0C: Priv::wrprcleanwin({{Cleanwin = Rs1 ^ Rs2_or_imm13;}}); |
| 0x0D: Priv::wrprotherwin({{Otherwin = Rs1 ^ Rs2_or_imm13;}}); |
| 0x0E: Priv::wrprwstate({{Wstate = Rs1 ^ Rs2_or_imm13;}}); |
| //0x0F should cause an illegal instruction exception |
| 0x10: Priv::wrprgl({{ |
| if(Pstate<2:> && !Hpstate<2:>) |
| Gl = std::min<uint64_t>(Rs1 ^ Rs2_or_imm13, MaxPGL); |
| else |
| Gl = std::min<uint64_t>(Rs1 ^ Rs2_or_imm13, MaxGL); |
| }}); |
| //0x11-0x1F should cause an illegal instruction exception |
| } |
| 0x33: decode RD { |
| 0x00: HPriv::wrhprhpstate({{Hpstate = Rs1 ^ Rs2_or_imm13;}}); |
| 0x01: HPriv::wrhprhtstate( |
| {{Htstate = Rs1 ^ Rs2_or_imm13;}}, checkTl=true); |
| //0x02 should cause an illegal instruction exception |
| 0x03: HPriv::wrhprhintp({{Hintp = Rs1 ^ Rs2_or_imm13;}}); |
| //0x04 should cause an illegal instruction exception |
| 0x05: HPriv::wrhprhtba({{Htba = Rs1 ^ Rs2_or_imm13;}}); |
| //0x06-0x01D should cause an illegal instruction exception |
| 0x1F: HPriv::wrhprhstick_cmpr({{HstickCmpr = Rs1 ^ Rs2_or_imm13;}}); |
| } |
| 0x34: decode OPF{ |
| format FpBasic{ |
| 0x01: fmovs({{Frds.uw = Frs2s.uw;}}); |
| 0x02: fmovd({{Frd.udw = Frs2.udw;}}); |
| 0x03: FpUnimpl::fmovq(); |
| 0x05: fnegs({{Frds.uw = Frs2s.uw ^ (1UL << 31);}}); |
| 0x06: fnegd({{Frd.udw = Frs2.udw ^ (1ULL << 63);}}); |
| 0x07: FpUnimpl::fnegq(); |
| 0x09: fabss({{Frds.uw = ((1UL << 31) - 1) & Frs2s.uw;}}); |
| 0x0A: fabsd({{Frd.udw = ((1ULL << 63) - 1) & Frs2.udw;}}); |
| 0x0B: FpUnimpl::fabsq(); |
| 0x29: fsqrts({{Frds.sf = std::sqrt(Frs2s.sf);}}); |
| 0x2A: fsqrtd({{Frd.df = std::sqrt(Frs2.df);}}); |
| 0x2B: FpUnimpl::fsqrtq(); |
| 0x41: fadds({{Frds.sf = Frs1s.sf + Frs2s.sf;}}); |
| 0x42: faddd({{Frd.df = Frs1.df + Frs2.df;}}); |
| 0x43: FpUnimpl::faddq(); |
| 0x45: fsubs({{Frds.sf = Frs1s.sf - Frs2s.sf;}}); |
| 0x46: fsubd({{Frd.df = Frs1.df - Frs2.df; }}); |
| 0x47: FpUnimpl::fsubq(); |
| 0x49: fmuls({{Frds.sf = Frs1s.sf * Frs2s.sf;}}); |
| 0x4A: fmuld({{Frd.df = Frs1.df * Frs2.df;}}); |
| 0x4B: FpUnimpl::fmulq(); |
| 0x4D: fdivs({{Frds.sf = Frs1s.sf / Frs2s.sf;}}); |
| 0x4E: fdivd({{Frd.df = Frs1.df / Frs2.df;}}); |
| 0x4F: FpUnimpl::fdivq(); |
| 0x69: fsmuld({{Frd.df = Frs1s.sf * Frs2s.sf;}}); |
| 0x6E: FpUnimpl::fdmulq(); |
| 0x81: fstox({{Frd.sdw = static_cast<int64_t>(Frs2s.sf);}}); |
| 0x82: fdtox({{Frd.sdw = static_cast<int64_t>(Frs2.df);}}); |
| 0x83: FpUnimpl::fqtox(); |
| 0x84: fxtos({{Frds.sf = static_cast<float>(Frs2.sdw);}}); |
| 0x88: fxtod({{Frd.df = static_cast<double>(Frs2.sdw);}}); |
| 0x8C: FpUnimpl::fxtoq(); |
| 0xC4: fitos({{Frds.sf = static_cast<float>(Frs2s.sw);}}); |
| 0xC6: fdtos({{Frds.sf = Frs2.df;}}); |
| 0xC7: FpUnimpl::fqtos(); |
| 0xC8: fitod({{Frd.df = static_cast<double>(Frs2s.sw);}}); |
| 0xC9: fstod({{Frd.df = Frs2s.sf;}}); |
| 0xCB: FpUnimpl::fqtod(); |
| 0xCC: FpUnimpl::fitoq(); |
| 0xCD: FpUnimpl::fstoq(); |
| 0xCE: FpUnimpl::fdtoq(); |
| 0xD1: fstoi({{ |
| Frds.sw = static_cast<int32_t>(Frs2s.sf); |
| float t = Frds.sw; |
| if (t != Frs2s.sf) |
| Fsr = insertBits(Fsr, 4,0, 0x01); |
| }}); |
| 0xD2: fdtoi({{ |
| Frds.sw = static_cast<int32_t>(Frs2.df); |
| double t = Frds.sw; |
| if (t != Frs2.df) |
| Fsr = insertBits(Fsr, 4,0, 0x01); |
| }}); |
| 0xD3: FpUnimpl::fqtoi(); |
| default: FailUnimpl::fpop1(); |
| } |
| } |
| 0x35: decode OPF{ |
| format FpBasic{ |
| 0x01: fmovs_fcc0({{ |
| if(passesFpCondition(Fsr<11:10>, COND4)) |
| Frds = Frs2s; |
| else |
| Frds = Frds; |
| }}); |
| 0x02: fmovd_fcc0({{ |
| if(passesFpCondition(Fsr<11:10>, COND4)) |
| Frd = Frs2; |
| else |
| Frd = Frd; |
| }}); |
| 0x03: FpUnimpl::fmovq_fcc0(); |
| 0x25: fmovrsz({{ |
| if(Rs1 == 0) |
| Frds = Frs2s; |
| else |
| Frds = Frds; |
| }}); |
| 0x26: fmovrdz({{ |
| if(Rs1 == 0) |
| Frd = Frs2; |
| else |
| Frd = Frd; |
| }}); |
| 0x27: FpUnimpl::fmovrqz(); |
| 0x41: fmovs_fcc1({{ |
| if(passesFpCondition(Fsr<33:32>, COND4)) |
| Frds = Frs2s; |
| else |
| Frds = Frds; |
| }}); |
| 0x42: fmovd_fcc1({{ |
| if(passesFpCondition(Fsr<33:32>, COND4)) |
| Frd = Frs2; |
| else |
| Frd = Frd; |
| }}); |
| 0x43: FpUnimpl::fmovq_fcc1(); |
| 0x45: fmovrslez({{ |
| if(Rs1 <= 0) |
| Frds = Frs2s; |
| else |
| Frds = Frds; |
| }}); |
| 0x46: fmovrdlez({{ |
| if(Rs1 <= 0) |
| Frd = Frs2; |
| else |
| Frd = Frd; |
| }}); |
| 0x47: FpUnimpl::fmovrqlez(); |
| 0x51: fcmps({{ |
| uint8_t fcc; |
| if(isnan(Frs1s) || isnan(Frs2s)) |
| fcc = 3; |
| else if(Frs1s < Frs2s) |
| fcc = 1; |
| else if(Frs1s > Frs2s) |
| fcc = 2; |
| else |
| fcc = 0; |
| uint8_t firstbit = 10; |
| if(FCMPCC) |
| firstbit = FCMPCC * 2 + 30; |
| Fsr = insertBits(Fsr, firstbit +1, firstbit, fcc); |
| }}); |
| 0x52: fcmpd({{ |
| uint8_t fcc; |
| if(isnan(Frs1) || isnan(Frs2)) |
| fcc = 3; |
| else if(Frs1 < Frs2) |
| fcc = 1; |
| else if(Frs1 > Frs2) |
| fcc = 2; |
| else |
| fcc = 0; |
| uint8_t firstbit = 10; |
| if(FCMPCC) |
| firstbit = FCMPCC * 2 + 30; |
| Fsr = insertBits(Fsr, firstbit +1, firstbit, fcc); |
| }}); |
| 0x53: FpUnimpl::fcmpq(); |
| 0x55: fcmpes({{ |
| uint8_t fcc = 0; |
| if(isnan(Frs1s) || isnan(Frs2s)) |
| fault = new FpExceptionIEEE754; |
| if(Frs1s < Frs2s) |
| fcc = 1; |
| else if(Frs1s > Frs2s) |
| fcc = 2; |
| uint8_t firstbit = 10; |
| if(FCMPCC) |
| firstbit = FCMPCC * 2 + 30; |
| Fsr = insertBits(Fsr, firstbit +1, firstbit, fcc); |
| }}); |
| 0x56: fcmped({{ |
| uint8_t fcc = 0; |
| if(isnan(Frs1) || isnan(Frs2)) |
| fault = new FpExceptionIEEE754; |
| if(Frs1 < Frs2) |
| fcc = 1; |
| else if(Frs1 > Frs2) |
| fcc = 2; |
| uint8_t firstbit = 10; |
| if(FCMPCC) |
| firstbit = FCMPCC * 2 + 30; |
| Fsr = insertBits(Fsr, firstbit +1, firstbit, fcc); |
| }}); |
| 0x57: FpUnimpl::fcmpeq(); |
| 0x65: fmovrslz({{ |
| if(Rs1 < 0) |
| Frds = Frs2s; |
| else |
| Frds = Frds; |
| }}); |
| 0x66: fmovrdlz({{ |
| if(Rs1 < 0) |
| Frd = Frs2; |
| else |
| Frd = Frd; |
| }}); |
| 0x67: FpUnimpl::fmovrqlz(); |
| 0x81: fmovs_fcc2({{ |
| if(passesFpCondition(Fsr<35:34>, COND4)) |
| Frds = Frs2s; |
| else |
| Frds = Frds; |
| }}); |
| 0x82: fmovd_fcc2({{ |
| if(passesFpCondition(Fsr<35:34>, COND4)) |
| Frd = Frs2; |
| else |
| Frd = Frd; |
| }}); |
| 0x83: FpUnimpl::fmovq_fcc2(); |
| 0xA5: fmovrsnz({{ |
| if(Rs1 != 0) |
| Frds = Frs2s; |
| else |
| Frds = Frds; |
| }}); |
| 0xA6: fmovrdnz({{ |
| if(Rs1 != 0) |
| Frd = Frs2; |
| else |
| Frd = Frd; |
| }}); |
| 0xA7: FpUnimpl::fmovrqnz(); |
| 0xC1: fmovs_fcc3({{ |
| if(passesFpCondition(Fsr<37:36>, COND4)) |
| Frds = Frs2s; |
| else |
| Frds = Frds; |
| }}); |
| 0xC2: fmovd_fcc3({{ |
| if(passesFpCondition(Fsr<37:36>, COND4)) |
| Frd = Frs2; |
| else |
| Frd = Frd; |
| }}); |
| 0xC3: FpUnimpl::fmovq_fcc3(); |
| 0xC5: fmovrsgz({{ |
| if(Rs1 > 0) |
| Frds = Frs2s; |
| else |
| Frds = Frds; |
| }}); |
| 0xC6: fmovrdgz({{ |
| if(Rs1 > 0) |
| Frd = Frs2; |
| else |
| Frd = Frd; |
| }}); |
| 0xC7: FpUnimpl::fmovrqgz(); |
| 0xE5: fmovrsgez({{ |
| if(Rs1 >= 0) |
| Frds = Frs2s; |
| else |
| Frds = Frds; |
| }}); |
| 0xE6: fmovrdgez({{ |
| if(Rs1 >= 0) |
| Frd = Frs2; |
| else |
| Frd = Frd; |
| }}); |
| 0xE7: FpUnimpl::fmovrqgez(); |
| 0x101: fmovs_icc({{ |
| if(passesCondition(Ccr<3:0>, COND4)) |
| Frds = Frs2s; |
| else |
| Frds = Frds; |
| }}); |
| 0x102: fmovd_icc({{ |
| if(passesCondition(Ccr<3:0>, COND4)) |
| Frd = Frs2; |
| else |
| Frd = Frd; |
| }}); |
| 0x103: FpUnimpl::fmovq_icc(); |
| 0x181: fmovs_xcc({{ |
| if(passesCondition(Ccr<7:4>, COND4)) |
| Frds = Frs2s; |
| else |
| Frds = Frds; |
| }}); |
| 0x182: fmovd_xcc({{ |
| if(passesCondition(Ccr<7:4>, COND4)) |
| Frd = Frs2; |
| else |
| Frd = Frd; |
| }}); |
| 0x183: FpUnimpl::fmovq_xcc(); |
| default: FailUnimpl::fpop2(); |
| } |
| } |
| //This used to be just impdep1, but now it's a whole bunch |
| //of instructions |
| 0x36: decode OPF{ |
| 0x00: FailUnimpl::edge8(); |
| 0x01: FailUnimpl::edge8n(); |
| 0x02: FailUnimpl::edge8l(); |
| 0x03: FailUnimpl::edge8ln(); |
| 0x04: FailUnimpl::edge16(); |
| 0x05: FailUnimpl::edge16n(); |
| 0x06: FailUnimpl::edge16l(); |
| 0x07: FailUnimpl::edge16ln(); |
| 0x08: FailUnimpl::edge32(); |
| 0x09: FailUnimpl::edge32n(); |
| 0x0A: FailUnimpl::edge32l(); |
| 0x0B: FailUnimpl::edge32ln(); |
| 0x10: FailUnimpl::array8(); |
| 0x12: FailUnimpl::array16(); |
| 0x14: FailUnimpl::array32(); |
| 0x18: BasicOperate::alignaddr({{ |
| uint64_t sum = Rs1 + Rs2; |
| Rd = sum & ~7; |
| Gsr = (Gsr & ~7) | (sum & 7); |
| }}); |
| 0x19: FailUnimpl::bmask(); |
| 0x1A: BasicOperate::alignaddresslittle({{ |
| uint64_t sum = Rs1 + Rs2; |
| Rd = sum & ~7; |
| Gsr = (Gsr & ~7) | ((~sum + 1) & 7); |
| }}); |
| 0x20: FailUnimpl::fcmple16(); |
| 0x22: FailUnimpl::fcmpne16(); |
| 0x24: FailUnimpl::fcmple32(); |
| 0x26: FailUnimpl::fcmpne32(); |
| 0x28: FailUnimpl::fcmpgt16(); |
| 0x2A: FailUnimpl::fcmpeq16(); |
| 0x2C: FailUnimpl::fcmpgt32(); |
| 0x2E: FailUnimpl::fcmpeq32(); |
| 0x31: FailUnimpl::fmul8x16(); |
| 0x33: FailUnimpl::fmul8x16au(); |
| 0x35: FailUnimpl::fmul8x16al(); |
| 0x36: FailUnimpl::fmul8sux16(); |
| 0x37: FailUnimpl::fmul8ulx16(); |
| 0x38: FailUnimpl::fmuld8sux16(); |
| 0x39: FailUnimpl::fmuld8ulx16(); |
| 0x3A: Trap::fpack32({{fault = new IllegalInstruction;}}); |
| 0x3B: Trap::fpack16({{fault = new IllegalInstruction;}}); |
| 0x3D: Trap::fpackfix({{fault = new IllegalInstruction;}}); |
| 0x3E: Trap::pdist({{fault = new IllegalInstruction;}}); |
| 0x48: BasicOperate::faligndata({{ |
| uint64_t msbX = Frs1.udw; |
| uint64_t lsbX = Frs2.udw; |
| //Some special cases need to be split out, first |
| //because they're the most likely to be used, and |
| //second because otherwise, we end up shifting by |
| //greater than the width of the type being shifted, |
| //namely 64, which produces undefined results according |
| //to the C standard. |
| switch(Gsr<2:0>) |
| { |
| case 0: |
| Frd.udw = msbX; |
| break; |
| case 8: |
| Frd.udw = lsbX; |
| break; |
| default: |
| uint64_t msbShift = Gsr<2:0> * 8; |
| uint64_t lsbShift = (8 - Gsr<2:0>) * 8; |
| uint64_t msbMask = ((uint64_t)(-1)) >> msbShift; |
| uint64_t lsbMask = ((uint64_t)(-1)) << lsbShift; |
| Frd.udw = ((msbX & msbMask) << msbShift) | |
| ((lsbX & lsbMask) >> lsbShift); |
| } |
| }}); |
| 0x4B: Trap::fpmerge({{fault = new IllegalInstruction;}}); |
| 0x4C: FailUnimpl::bshuffle(); |
| 0x4D: FailUnimpl::fexpand(); |
| 0x50: FailUnimpl::fpadd16(); |
| 0x51: FailUnimpl::fpadd16s(); |
| 0x52: FailUnimpl::fpadd32(); |
| 0x53: FailUnimpl::fpadd32s(); |
| 0x54: FailUnimpl::fpsub16(); |
| 0x55: FailUnimpl::fpsub16s(); |
| 0x56: FailUnimpl::fpsub32(); |
| 0x57: FailUnimpl::fpsub32s(); |
| 0x60: FpBasic::fzero({{Frd.df = 0;}}); |
| 0x61: FpBasic::fzeros({{Frds.sf = 0;}}); |
| 0x62: FailUnimpl::fnor(); |
| 0x63: FailUnimpl::fnors(); |
| 0x64: FailUnimpl::fandnot2(); |
| 0x65: FailUnimpl::fandnot2s(); |
| 0x66: FpBasic::fnot2({{ |
| Frd.df = (double)(~((uint64_t)Frs2.df)); |
| }}); |
| 0x67: FpBasic::fnot2s({{ |
| Frds.sf = (float)(~((uint32_t)Frs2s.sf)); |
| }}); |
| 0x68: FailUnimpl::fandnot1(); |
| 0x69: FailUnimpl::fandnot1s(); |
| 0x6A: FpBasic::fnot1({{ |
| Frd.df = (double)(~((uint64_t)Frs1.df)); |
| }}); |
| 0x6B: FpBasic::fnot1s({{ |
| Frds.sf = (float)(~((uint32_t)Frs1s.sf)); |
| }}); |
| 0x6C: FailUnimpl::fxor(); |
| 0x6D: FailUnimpl::fxors(); |
| 0x6E: FailUnimpl::fnand(); |
| 0x6F: FailUnimpl::fnands(); |
| 0x70: FailUnimpl::fand(); |
| 0x71: FailUnimpl::fands(); |
| 0x72: FailUnimpl::fxnor(); |
| 0x73: FailUnimpl::fxnors(); |
| 0x74: FpBasic::fsrc1({{Frd.udw = Frs1.udw;}}); |
| 0x75: FpBasic::fsrc1s({{Frds.uw = Frs1s.uw;}}); |
| 0x76: FailUnimpl::fornot2(); |
| 0x77: FailUnimpl::fornot2s(); |
| 0x78: FpBasic::fsrc2({{Frd.udw = Frs2.udw;}}); |
| 0x79: FpBasic::fsrc2s({{Frds.uw = Frs2s.uw;}}); |
| 0x7A: FailUnimpl::fornot1(); |
| 0x7B: FailUnimpl::fornot1s(); |
| 0x7C: FailUnimpl::for(); |
| 0x7D: FailUnimpl::fors(); |
| 0x7E: FpBasic::fone({{Frd.udw = std::numeric_limits<uint64_t>::max();}}); |
| 0x7F: FpBasic::fones({{Frds.uw = std::numeric_limits<uint32_t>::max();}}); |
| 0x80: Trap::shutdown({{fault = new IllegalInstruction;}}); |
| 0x81: FailUnimpl::siam(); |
| } |
| // M5 special opcodes use the reserved IMPDEP2A opcode space |
| 0x37: decode M5FUNC { |
| #if FULL_SYSTEM |
| format BasicOperate { |
| // we have 7 bits of space here to play with... |
| 0x21: m5exit({{PseudoInst::m5exit(xc->tcBase(), O0); |
| }}, No_OpClass, IsNonSpeculative); |
| 0x50: m5readfile({{ |
| O0 = PseudoInst::readfile(xc->tcBase(), O0, O1, O2); |
| }}, IsNonSpeculative); |
| 0x51: m5break({{PseudoInst::debugbreak(xc->tcBase()); |
| }}, IsNonSpeculative); |
| 0x54: m5panic({{ |
| SparcISA::PCState pc = PCS; |
| panic("M5 panic instruction called at pc=%#x.", pc.pc()); |
| }}, No_OpClass, IsNonSpeculative); |
| } |
| #endif |
| default: Trap::impdep2({{fault = new IllegalInstruction;}}); |
| } |
| 0x38: Branch::jmpl({{ |
| Addr target = Rs1 + Rs2_or_imm13; |
| if(target & 0x3) |
| fault = new MemAddressNotAligned; |
| else |
| { |
| SparcISA::PCState pc = PCS; |
| if (Pstate<3:>) |
| Rd = (pc.pc())<31:0>; |
| else |
| Rd = pc.pc(); |
| pc.nnpc(target); |
| PCS = pc; |
| } |
| }}); |
| 0x39: Branch::return({{ |
| Addr target = Rs1 + Rs2_or_imm13; |
| if(fault == NoFault) |
| { |
| //Check for fills which are higher priority than alignment |
| //faults. |
| if(Canrestore == 0) |
| { |
| if(Otherwin) |
| fault = new FillNOther(4*Wstate<5:3>); |
| else |
| fault = new FillNNormal(4*Wstate<2:0>); |
| } |
| //Check for alignment faults |
| else if(target & 0x3) |
| fault = new MemAddressNotAligned; |
| else |
| { |
| SparcISA::PCState pc = PCS; |
| pc.nnpc(target); |
| PCS = pc; |
| Cwp = (Cwp - 1 + NWindows) % NWindows; |
| Cansave = Cansave + 1; |
| Canrestore = Canrestore - 1; |
| } |
| } |
| }}); |
| 0x3A: decode CC |
| { |
| 0x0: Trap::tcci({{ |
| if(passesCondition(Ccr<3:0>, COND2)) |
| { |
| int lTrapNum = I ? (Rs1 + SW_TRAP) : (Rs1 + Rs2); |
| DPRINTF(Sparc, "The trap number is %d\n", lTrapNum); |
| fault = new TrapInstruction(lTrapNum); |
| } |
| }}, IsSerializeAfter, IsNonSpeculative, IsSyscall); |
| 0x2: Trap::tccx({{ |
| if(passesCondition(Ccr<7:4>, COND2)) |
| { |
| int lTrapNum = I ? (Rs1 + SW_TRAP) : (Rs1 + Rs2); |
| DPRINTF(Sparc, "The trap number is %d\n", lTrapNum); |
| fault = new TrapInstruction(lTrapNum); |
| } |
| }}, IsSerializeAfter, IsNonSpeculative, IsSyscall); |
| } |
| 0x3B: Nop::flush({{/*Instruction memory flush*/}}, IsWriteBarrier, |
| MemWriteOp); |
| 0x3C: save({{ |
| if(Cansave == 0) |
| { |
| if(Otherwin) |
| fault = new SpillNOther(4*Wstate<5:3>); |
| else |
| fault = new SpillNNormal(4*Wstate<2:0>); |
| } |
| else if(Cleanwin - Canrestore == 0) |
| { |
| fault = new CleanWindow; |
| } |
| else |
| { |
| Cwp = (Cwp + 1) % NWindows; |
| Rd_next = Rs1 + Rs2_or_imm13; |
| Cansave = Cansave - 1; |
| Canrestore = Canrestore + 1; |
| } |
| }}); |
| 0x3D: restore({{ |
| if(Canrestore == 0) |
| { |
| if(Otherwin) |
| fault = new FillNOther(4*Wstate<5:3>); |
| else |
| fault = new FillNNormal(4*Wstate<2:0>); |
| } |
| else |
| { |
| Cwp = (Cwp - 1 + NWindows) % NWindows; |
| Rd_prev = Rs1 + Rs2_or_imm13; |
| Cansave = Cansave + 1; |
| Canrestore = Canrestore - 1; |
| } |
| }}); |
| 0x3E: decode FCN { |
| 0x0: Priv::done({{ |
| Cwp = Tstate<4:0>; |
| Pstate = Tstate<20:8>; |
| Asi = Tstate<31:24>; |
| Ccr = Tstate<39:32>; |
| Gl = Tstate<42:40>; |
| Hpstate = Htstate; |
| SparcISA::PCState pc = PCS; |
| pc.npc(Tnpc); |
| pc.nnpc(Tnpc + 4); |
| PCS = pc; |
| Tl = Tl - 1; |
| }}, checkTl=true); |
| 0x1: Priv::retry({{ |
| Cwp = Tstate<4:0>; |
| Pstate = Tstate<20:8>; |
| Asi = Tstate<31:24>; |
| Ccr = Tstate<39:32>; |
| Gl = Tstate<42:40>; |
| Hpstate = Htstate; |
| SparcISA::PCState pc = PCS; |
| pc.npc(Tpc); |
| pc.nnpc(Tnpc); |
| PCS = pc; |
| Tl = Tl - 1; |
| }}, checkTl=true); |
| } |
| } |
| } |
| 0x3: decode OP3 { |
| format Load { |
| 0x00: lduw({{Rd = Mem.uw;}}); |
| 0x01: ldub({{Rd = Mem.ub;}}); |
| 0x02: lduh({{Rd = Mem.uhw;}}); |
| 0x03: ldtw({{ |
| RdLow = (Mem.tuw).a; |
| RdHigh = (Mem.tuw).b; |
| }}); |
| } |
| format Store { |
| 0x04: stw({{Mem.uw = Rd.sw;}}); |
| 0x05: stb({{Mem.ub = Rd.sb;}}); |
| 0x06: sth({{Mem.uhw = Rd.shw;}}); |
| 0x07: sttw({{ |
| //This temporary needs to be here so that the parser |
| //will correctly identify this instruction as a store. |
| //It's probably either the parenthesis or referencing |
| //the member variable that throws confuses it. |
| Twin32_t temp; |
| temp.a = RdLow<31:0>; |
| temp.b = RdHigh<31:0>; |
| Mem.tuw = temp; |
| }}); |
| } |
| format Load { |
| 0x08: ldsw({{Rd = (int32_t)Mem.sw;}}); |
| 0x09: ldsb({{Rd = (int8_t)Mem.sb;}}); |
| 0x0A: ldsh({{Rd = (int16_t)Mem.shw;}}); |
| 0x0B: ldx({{Rd = (int64_t)Mem.sdw;}}); |
| } |
| 0x0D: Swap::ldstub({{Mem.ub = 0xFF;}}, |
| {{ |
| uint8_t tmp = mem_data; |
| Rd.ub = tmp; |
| }}, MEM_SWAP); |
| 0x0E: Store::stx({{Mem.udw = Rd}}); |
| 0x0F: Swap::swap({{Mem.uw = Rd.uw}}, |
| {{ |
| uint32_t tmp = mem_data; |
| Rd.uw = tmp; |
| }}, MEM_SWAP); |
| format LoadAlt { |
| 0x10: lduwa({{Rd = Mem.uw;}}); |
| 0x11: lduba({{Rd = Mem.ub;}}); |
| 0x12: lduha({{Rd = Mem.uhw;}}); |
| 0x13: decode EXT_ASI { |
| //ASI_LDTD_AIUP |
| 0x22: TwinLoad::ldtx_aiup( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| //ASI_LDTD_AIUS |
| 0x23: TwinLoad::ldtx_aius( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| //ASI_QUAD_LDD |
| 0x24: TwinLoad::ldtx_quad_ldd( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| //ASI_LDTX_REAL |
| 0x26: TwinLoad::ldtx_real( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| //ASI_LDTX_N |
| 0x27: TwinLoad::ldtx_n( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| //ASI_LDTX_AIUP_L |
| 0x2A: TwinLoad::ldtx_aiup_l( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| //ASI_LDTX_AIUS_L |
| 0x2B: TwinLoad::ldtx_aius_l( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| //ASI_LDTX_L |
| 0x2C: TwinLoad::ldtx_l( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| //ASI_LDTX_REAL_L |
| 0x2E: TwinLoad::ldtx_real_l( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| //ASI_LDTX_N_L |
| 0x2F: TwinLoad::ldtx_n_l( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| //ASI_LDTX_P |
| 0xE2: TwinLoad::ldtx_p( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| //ASI_LDTX_S |
| 0xE3: TwinLoad::ldtx_s( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| //ASI_LDTX_PL |
| 0xEA: TwinLoad::ldtx_pl( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| //ASI_LDTX_SL |
| 0xEB: TwinLoad::ldtx_sl( |
| {{RdLow.udw = (Mem.tudw).a; |
| RdHigh.udw = (Mem.tudw).b;}}); |
| default: ldtwa({{ |
| RdLow = (Mem.tuw).a; |
| RdHigh = (Mem.tuw).b;}}); |
| } |
| } |
| format StoreAlt { |
| 0x14: stwa({{Mem.uw = Rd;}}); |
| 0x15: stba({{Mem.ub = Rd;}}); |
| 0x16: stha({{Mem.uhw = Rd;}}); |
| 0x17: sttwa({{ |
| //This temporary needs to be here so that the parser |
| //will correctly identify this instruction as a store. |
| //It's probably either the parenthesis or referencing |
| //the member variable that throws confuses it. |
| Twin32_t temp; |
| temp.a = RdLow<31:0>; |
| temp.b = RdHigh<31:0>; |
| Mem.tuw = temp; |
| }}); |
| } |
| format LoadAlt { |
| 0x18: ldswa({{Rd = (int32_t)Mem.sw;}}); |
| 0x19: ldsba({{Rd = (int8_t)Mem.sb;}}); |
| 0x1A: ldsha({{Rd = (int16_t)Mem.shw;}}); |
| 0x1B: ldxa({{Rd = (int64_t)Mem.sdw;}}); |
| } |
| 0x1D: SwapAlt::ldstuba({{Mem.ub = 0xFF;}}, |
| {{ |
| uint8_t tmp = mem_data; |
| Rd.ub = tmp; |
| }}, MEM_SWAP); |
| 0x1E: StoreAlt::stxa({{Mem.udw = Rd}}); |
| 0x1F: SwapAlt::swapa({{Mem.uw = Rd.uw}}, |
| {{ |
| uint32_t tmp = mem_data; |
| Rd.uw = tmp; |
| }}, MEM_SWAP); |
| |
| format Trap { |
| 0x20: Load::ldf({{Frds.uw = Mem.uw;}}); |
| 0x21: decode RD { |
| 0x0: Load::ldfsr({{fault = checkFpEnableFault(xc); |
| if (fault) |
| return fault; |
| Fsr = Mem.uw | Fsr<63:32>;}}); |
| 0x1: Load::ldxfsr({{fault = checkFpEnableFault(xc); |
| if (fault) |
| return fault; |
| Fsr = Mem.udw;}}); |
| default: FailUnimpl::ldfsrOther(); |
| } |
| 0x22: ldqf({{fault = new FpDisabled;}}); |
| 0x23: Load::lddf({{Frd.udw = Mem.udw;}}); |
| 0x24: Store::stf({{Mem.uw = Frds.uw;}}); |
| 0x25: decode RD { |
| 0x0: StoreFsr::stfsr({{fault = checkFpEnableFault(xc); |
| if (fault) |
| return fault; |
| Mem.uw = Fsr<31:0>;}}); |
| 0x1: StoreFsr::stxfsr({{fault = checkFpEnableFault(xc); |
| if (fault) |
| return fault; |
| Mem.udw = Fsr;}}); |
| default: FailUnimpl::stfsrOther(); |
| } |
| 0x26: stqf({{fault = new FpDisabled;}}); |
| 0x27: Store::stdf({{Mem.udw = Frd.udw;}}); |
| 0x2D: Nop::prefetch({{ }}); |
| 0x30: LoadAlt::ldfa({{Frds.uw = Mem.uw;}}); |
| 0x32: ldqfa({{fault = new FpDisabled;}}); |
| format LoadAlt { |
| 0x33: decode EXT_ASI { |
| //ASI_NUCLEUS |
| 0x04: FailUnimpl::lddfa_n(); |
| //ASI_NUCLEUS_LITTLE |
| 0x0C: FailUnimpl::lddfa_nl(); |
| //ASI_AS_IF_USER_PRIMARY |
| 0x10: FailUnimpl::lddfa_aiup(); |
| //ASI_AS_IF_USER_PRIMARY_LITTLE |
| 0x18: FailUnimpl::lddfa_aiupl(); |
| //ASI_AS_IF_USER_SECONDARY |
| 0x11: FailUnimpl::lddfa_aius(); |
| //ASI_AS_IF_USER_SECONDARY_LITTLE |
| 0x19: FailUnimpl::lddfa_aiusl(); |
| //ASI_REAL |
| 0x14: FailUnimpl::lddfa_real(); |
| //ASI_REAL_LITTLE |
| 0x1C: FailUnimpl::lddfa_real_l(); |
| //ASI_REAL_IO |
| 0x15: FailUnimpl::lddfa_real_io(); |
| //ASI_REAL_IO_LITTLE |
| 0x1D: FailUnimpl::lddfa_real_io_l(); |
| //ASI_PRIMARY |
| 0x80: FailUnimpl::lddfa_p(); |
| //ASI_PRIMARY_LITTLE |
| 0x88: FailUnimpl::lddfa_pl(); |
| //ASI_SECONDARY |
| 0x81: FailUnimpl::lddfa_s(); |
| //ASI_SECONDARY_LITTLE |
| 0x89: FailUnimpl::lddfa_sl(); |
| //ASI_PRIMARY_NO_FAULT |
| 0x82: FailUnimpl::lddfa_pnf(); |
| //ASI_PRIMARY_NO_FAULT_LITTLE |
| 0x8A: FailUnimpl::lddfa_pnfl(); |
| //ASI_SECONDARY_NO_FAULT |
| 0x83: FailUnimpl::lddfa_snf(); |
| //ASI_SECONDARY_NO_FAULT_LITTLE |
| 0x8B: FailUnimpl::lddfa_snfl(); |
| |
| format BlockLoad { |
| // LDBLOCKF |
| //ASI_BLOCK_AS_IF_USER_PRIMARY |
| 0x16: FailUnimpl::ldblockf_aiup(); |
| //ASI_BLOCK_AS_IF_USER_SECONDARY |
| 0x17: FailUnimpl::ldblockf_aius(); |
| //ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE |
| 0x1E: FailUnimpl::ldblockf_aiupl(); |
| //ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE |
| 0x1F: FailUnimpl::ldblockf_aiusl(); |
| //ASI_BLOCK_PRIMARY |
| 0xF0: ldblockf_p({{Frd_N.udw = Mem.udw;}}); |
| //ASI_BLOCK_SECONDARY |
| 0xF1: FailUnimpl::ldblockf_s(); |
| //ASI_BLOCK_PRIMARY_LITTLE |
| 0xF8: FailUnimpl::ldblockf_pl(); |
| //ASI_BLOCK_SECONDARY_LITTLE |
| 0xF9: FailUnimpl::ldblockf_sl(); |
| } |
| |
| //LDSHORTF |
| //ASI_FL8_PRIMARY |
| 0xD0: FailUnimpl::ldshortf_8p(); |
| //ASI_FL8_SECONDARY |
| 0xD1: FailUnimpl::ldshortf_8s(); |
| //ASI_FL8_PRIMARY_LITTLE |
| 0xD8: FailUnimpl::ldshortf_8pl(); |
| //ASI_FL8_SECONDARY_LITTLE |
| 0xD9: FailUnimpl::ldshortf_8sl(); |
| //ASI_FL16_PRIMARY |
| 0xD2: FailUnimpl::ldshortf_16p(); |
| //ASI_FL16_SECONDARY |
| 0xD3: FailUnimpl::ldshortf_16s(); |
| //ASI_FL16_PRIMARY_LITTLE |
| 0xDA: FailUnimpl::ldshortf_16pl(); |
| //ASI_FL16_SECONDARY_LITTLE |
| 0xDB: FailUnimpl::ldshortf_16sl(); |
| //Not an ASI which is legal with lddfa |
| default: Trap::lddfa_bad_asi( |
| {{fault = new DataAccessException;}}); |
| } |
| } |
| 0x34: Store::stfa({{Mem.uw = Frds.uw;}}); |
| 0x36: stqfa({{fault = new FpDisabled;}}); |
| format StoreAlt { |
| 0x37: decode EXT_ASI { |
| //ASI_NUCLEUS |
| 0x04: FailUnimpl::stdfa_n(); |
| //ASI_NUCLEUS_LITTLE |
| 0x0C: FailUnimpl::stdfa_nl(); |
| //ASI_AS_IF_USER_PRIMARY |
| 0x10: FailUnimpl::stdfa_aiup(); |
| //ASI_AS_IF_USER_PRIMARY_LITTLE |
| 0x18: FailUnimpl::stdfa_aiupl(); |
| //ASI_AS_IF_USER_SECONDARY |
| 0x11: FailUnimpl::stdfa_aius(); |
| //ASI_AS_IF_USER_SECONDARY_LITTLE |
| 0x19: FailUnimpl::stdfa_aiusl(); |
| //ASI_REAL |
| 0x14: FailUnimpl::stdfa_real(); |
| //ASI_REAL_LITTLE |
| 0x1C: FailUnimpl::stdfa_real_l(); |
| //ASI_REAL_IO |
| 0x15: FailUnimpl::stdfa_real_io(); |
| //ASI_REAL_IO_LITTLE |
| 0x1D: FailUnimpl::stdfa_real_io_l(); |
| //ASI_PRIMARY |
| 0x80: FailUnimpl::stdfa_p(); |
| //ASI_PRIMARY_LITTLE |
| 0x88: FailUnimpl::stdfa_pl(); |
| //ASI_SECONDARY |
| 0x81: FailUnimpl::stdfa_s(); |
| //ASI_SECONDARY_LITTLE |
| 0x89: FailUnimpl::stdfa_sl(); |
| //ASI_PRIMARY_NO_FAULT |
| 0x82: FailUnimpl::stdfa_pnf(); |
| //ASI_PRIMARY_NO_FAULT_LITTLE |
| 0x8A: FailUnimpl::stdfa_pnfl(); |
| //ASI_SECONDARY_NO_FAULT |
| 0x83: FailUnimpl::stdfa_snf(); |
| //ASI_SECONDARY_NO_FAULT_LITTLE |
| 0x8B: FailUnimpl::stdfa_snfl(); |
| |
| format BlockStore { |
| // STBLOCKF |
| //ASI_BLOCK_AS_IF_USER_PRIMARY |
| 0x16: FailUnimpl::stblockf_aiup(); |
| //ASI_BLOCK_AS_IF_USER_SECONDARY |
| 0x17: FailUnimpl::stblockf_aius(); |
| //ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE |
| 0x1E: FailUnimpl::stblockf_aiupl(); |
| //ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE |
| 0x1F: FailUnimpl::stblockf_aiusl(); |
| //ASI_BLOCK_PRIMARY |
| 0xF0: stblockf_p({{Mem.udw = Frd_N.udw;}}); |
| //ASI_BLOCK_SECONDARY |
| 0xF1: FailUnimpl::stblockf_s(); |
| //ASI_BLOCK_PRIMARY_LITTLE |
| 0xF8: FailUnimpl::stblockf_pl(); |
| //ASI_BLOCK_SECONDARY_LITTLE |
| 0xF9: FailUnimpl::stblockf_sl(); |
| } |
| |
| //STSHORTF |
| //ASI_FL8_PRIMARY |
| 0xD0: FailUnimpl::stshortf_8p(); |
| //ASI_FL8_SECONDARY |
| 0xD1: FailUnimpl::stshortf_8s(); |
| //ASI_FL8_PRIMARY_LITTLE |
| 0xD8: FailUnimpl::stshortf_8pl(); |
| //ASI_FL8_SECONDARY_LITTLE |
| 0xD9: FailUnimpl::stshortf_8sl(); |
| //ASI_FL16_PRIMARY |
| 0xD2: FailUnimpl::stshortf_16p(); |
| //ASI_FL16_SECONDARY |
| 0xD3: FailUnimpl::stshortf_16s(); |
| //ASI_FL16_PRIMARY_LITTLE |
| 0xDA: FailUnimpl::stshortf_16pl(); |
| //ASI_FL16_SECONDARY_LITTLE |
| 0xDB: FailUnimpl::stshortf_16sl(); |
| //Not an ASI which is legal with lddfa |
| default: Trap::stdfa_bad_asi( |
| {{fault = new DataAccessException;}}); |
| } |
| } |
| 0x3C: CasAlt::casa({{ |
| mem_data = htog(Rs2.uw); |
| Mem.uw = Rd.uw;}}, |
| {{ |
| uint32_t tmp = mem_data; |
| Rd.uw = tmp; |
| }}, MEM_SWAP_COND); |
| 0x3D: Nop::prefetcha({{ }}); |
| 0x3E: CasAlt::casxa({{mem_data = gtoh(Rs2); |
| Mem.udw = Rd.udw; }}, |
| {{ Rd.udw = mem_data; }}, MEM_SWAP_COND); |
| } |
| } |
| } |