| /* |
| * Copyright (c) 2001-2005 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <sstream> |
| #include <string> |
| #include <vector> |
| |
| #include "arch/alpha/alpha_memory.hh" |
| #include "base/inifile.hh" |
| #include "base/str.hh" |
| #include "base/trace.hh" |
| #include "config/alpha_tlaser.hh" |
| #include "cpu/exec_context.hh" |
| #include "sim/builder.hh" |
| |
| using namespace std; |
| using namespace EV5; |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // Alpha TLB |
| // |
| #ifdef DEBUG |
| bool uncacheBit39 = false; |
| bool uncacheBit40 = false; |
| #endif |
| |
| #define MODE2MASK(X) (1 << (X)) |
| |
| AlphaTLB::AlphaTLB(const string &name, int s) |
| : SimObject(name), size(s), nlu(0) |
| { |
| table = new AlphaISA::PTE[size]; |
| memset(table, 0, sizeof(AlphaISA::PTE[size])); |
| } |
| |
| AlphaTLB::~AlphaTLB() |
| { |
| if (table) |
| delete [] table; |
| } |
| |
| // look up an entry in the TLB |
| AlphaISA::PTE * |
| AlphaTLB::lookup(Addr vpn, uint8_t asn) const |
| { |
| // assume not found... |
| AlphaISA::PTE *retval = NULL; |
| |
| PageTable::const_iterator i = lookupTable.find(vpn); |
| if (i != lookupTable.end()) { |
| while (i->first == vpn) { |
| int index = i->second; |
| AlphaISA::PTE *pte = &table[index]; |
| assert(pte->valid); |
| if (vpn == pte->tag && (pte->asma || pte->asn == asn)) { |
| retval = pte; |
| break; |
| } |
| |
| ++i; |
| } |
| } |
| |
| DPRINTF(TLB, "lookup %#x, asn %#x -> %s ppn %#x\n", vpn, (int)asn, |
| retval ? "hit" : "miss", retval ? retval->ppn : 0); |
| return retval; |
| } |
| |
| |
| void |
| AlphaTLB::checkCacheability(MemReqPtr &req) |
| { |
| // in Alpha, cacheability is controlled by upper-level bits of the |
| // physical address |
| |
| /* |
| * We support having the uncacheable bit in either bit 39 or bit 40. |
| * The Turbolaser platform (and EV5) support having the bit in 39, but |
| * Tsunami (which Linux assumes uses an EV6) generates accesses with |
| * the bit in 40. So we must check for both, but we have debug flags |
| * to catch a weird case where both are used, which shouldn't happen. |
| */ |
| |
| |
| #if ALPHA_TLASER |
| if (req->paddr & PAddrUncachedBit39) { |
| #else |
| if (req->paddr & PAddrUncachedBit43) { |
| #endif |
| // IPR memory space not implemented |
| if (PAddrIprSpace(req->paddr)) { |
| if (!req->xc->misspeculating()) { |
| switch (req->paddr) { |
| case ULL(0xFFFFF00188): |
| req->data = 0; |
| break; |
| |
| default: |
| panic("IPR memory space not implemented! PA=%x\n", |
| req->paddr); |
| } |
| } |
| } else { |
| // mark request as uncacheable |
| req->flags |= UNCACHEABLE; |
| |
| #if !ALPHA_TLASER |
| // Clear bits 42:35 of the physical address (10-2 in Tsunami manual) |
| req->paddr &= PAddrUncachedMask; |
| #endif |
| } |
| } |
| } |
| |
| |
| // insert a new TLB entry |
| void |
| AlphaTLB::insert(Addr addr, AlphaISA::PTE &pte) |
| { |
| AlphaISA::VAddr vaddr = addr; |
| if (table[nlu].valid) { |
| Addr oldvpn = table[nlu].tag; |
| PageTable::iterator i = lookupTable.find(oldvpn); |
| |
| if (i == lookupTable.end()) |
| panic("TLB entry not found in lookupTable"); |
| |
| int index; |
| while ((index = i->second) != nlu) { |
| if (table[index].tag != oldvpn) |
| panic("TLB entry not found in lookupTable"); |
| |
| ++i; |
| } |
| |
| DPRINTF(TLB, "remove @%d: %#x -> %#x\n", nlu, oldvpn, table[nlu].ppn); |
| |
| lookupTable.erase(i); |
| } |
| |
| DPRINTF(TLB, "insert @%d: %#x -> %#x\n", nlu, vaddr.vpn(), pte.ppn); |
| |
| table[nlu] = pte; |
| table[nlu].tag = vaddr.vpn(); |
| table[nlu].valid = true; |
| |
| lookupTable.insert(make_pair(vaddr.vpn(), nlu)); |
| nextnlu(); |
| } |
| |
| void |
| AlphaTLB::flushAll() |
| { |
| DPRINTF(TLB, "flushAll\n"); |
| memset(table, 0, sizeof(AlphaISA::PTE[size])); |
| lookupTable.clear(); |
| nlu = 0; |
| } |
| |
| void |
| AlphaTLB::flushProcesses() |
| { |
| PageTable::iterator i = lookupTable.begin(); |
| PageTable::iterator end = lookupTable.end(); |
| while (i != end) { |
| int index = i->second; |
| AlphaISA::PTE *pte = &table[index]; |
| assert(pte->valid); |
| |
| // we can't increment i after we erase it, so save a copy and |
| // increment it to get the next entry now |
| PageTable::iterator cur = i; |
| ++i; |
| |
| if (!pte->asma) { |
| DPRINTF(TLB, "flush @%d: %#x -> %#x\n", index, pte->tag, pte->ppn); |
| pte->valid = false; |
| lookupTable.erase(cur); |
| } |
| } |
| } |
| |
| void |
| AlphaTLB::flushAddr(Addr addr, uint8_t asn) |
| { |
| AlphaISA::VAddr vaddr = addr; |
| |
| PageTable::iterator i = lookupTable.find(vaddr.vpn()); |
| if (i == lookupTable.end()) |
| return; |
| |
| while (i->first == vaddr.vpn()) { |
| int index = i->second; |
| AlphaISA::PTE *pte = &table[index]; |
| assert(pte->valid); |
| |
| if (vaddr.vpn() == pte->tag && (pte->asma || pte->asn == asn)) { |
| DPRINTF(TLB, "flushaddr @%d: %#x -> %#x\n", index, vaddr.vpn(), |
| pte->ppn); |
| |
| // invalidate this entry |
| pte->valid = false; |
| |
| lookupTable.erase(i); |
| } |
| |
| ++i; |
| } |
| } |
| |
| |
| void |
| AlphaTLB::serialize(ostream &os) |
| { |
| SERIALIZE_SCALAR(size); |
| SERIALIZE_SCALAR(nlu); |
| |
| for (int i = 0; i < size; i++) { |
| nameOut(os, csprintf("%s.PTE%d", name(), i)); |
| table[i].serialize(os); |
| } |
| } |
| |
| void |
| AlphaTLB::unserialize(Checkpoint *cp, const string §ion) |
| { |
| UNSERIALIZE_SCALAR(size); |
| UNSERIALIZE_SCALAR(nlu); |
| |
| for (int i = 0; i < size; i++) { |
| table[i].unserialize(cp, csprintf("%s.PTE%d", section, i)); |
| if (table[i].valid) { |
| lookupTable.insert(make_pair(table[i].tag, i)); |
| } |
| } |
| } |
| |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // Alpha ITB |
| // |
| AlphaITB::AlphaITB(const std::string &name, int size) |
| : AlphaTLB(name, size) |
| {} |
| |
| |
| void |
| AlphaITB::regStats() |
| { |
| hits |
| .name(name() + ".hits") |
| .desc("ITB hits"); |
| misses |
| .name(name() + ".misses") |
| .desc("ITB misses"); |
| acv |
| .name(name() + ".acv") |
| .desc("ITB acv"); |
| accesses |
| .name(name() + ".accesses") |
| .desc("ITB accesses"); |
| |
| accesses = hits + misses; |
| } |
| |
| void |
| AlphaITB::fault(Addr pc, ExecContext *xc) const |
| { |
| uint64_t *ipr = xc->regs.ipr; |
| |
| if (!xc->misspeculating()) { |
| ipr[AlphaISA::IPR_ITB_TAG] = pc; |
| ipr[AlphaISA::IPR_IFAULT_VA_FORM] = |
| ipr[AlphaISA::IPR_IVPTBR] | (AlphaISA::VAddr(pc).vpn() << 3); |
| } |
| } |
| |
| |
| Fault |
| AlphaITB::translate(MemReqPtr &req) const |
| { |
| InternalProcReg *ipr = req->xc->regs.ipr; |
| |
| if (AlphaISA::PcPAL(req->vaddr)) { |
| // strip off PAL PC marker (lsb is 1) |
| req->paddr = (req->vaddr & ~3) & PAddrImplMask; |
| hits++; |
| return No_Fault; |
| } |
| |
| if (req->flags & PHYSICAL) { |
| req->paddr = req->vaddr; |
| } else { |
| // verify that this is a good virtual address |
| if (!validVirtualAddress(req->vaddr)) { |
| fault(req->vaddr, req->xc); |
| acv++; |
| return ITB_Acv_Fault; |
| } |
| |
| |
| // VA<42:41> == 2, VA<39:13> maps directly to PA<39:13> for EV5 |
| // VA<47:41> == 0x7e, VA<40:13> maps directly to PA<40:13> for EV6 |
| #if ALPHA_TLASER |
| if ((MCSR_SP(ipr[AlphaISA::IPR_MCSR]) & 2) && |
| VAddrSpaceEV5(req->vaddr) == 2) { |
| #else |
| if (VAddrSpaceEV6(req->vaddr) == 0x7e) { |
| #endif |
| // only valid in kernel mode |
| if (ICM_CM(ipr[AlphaISA::IPR_ICM]) != |
| AlphaISA::mode_kernel) { |
| fault(req->vaddr, req->xc); |
| acv++; |
| return ITB_Acv_Fault; |
| } |
| |
| req->paddr = req->vaddr & PAddrImplMask; |
| |
| #if !ALPHA_TLASER |
| // sign extend the physical address properly |
| if (req->paddr & PAddrUncachedBit40) |
| req->paddr |= ULL(0xf0000000000); |
| else |
| req->paddr &= ULL(0xffffffffff); |
| #endif |
| |
| } else { |
| // not a physical address: need to look up pte |
| AlphaISA::PTE *pte = lookup(AlphaISA::VAddr(req->vaddr).vpn(), |
| DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN])); |
| |
| if (!pte) { |
| fault(req->vaddr, req->xc); |
| misses++; |
| return ITB_Fault_Fault; |
| } |
| |
| req->paddr = (pte->ppn << AlphaISA::PageShift) + |
| (AlphaISA::VAddr(req->vaddr).offset() & ~3); |
| |
| // check permissions for this access |
| if (!(pte->xre & (1 << ICM_CM(ipr[AlphaISA::IPR_ICM])))) { |
| // instruction access fault |
| fault(req->vaddr, req->xc); |
| acv++; |
| return ITB_Acv_Fault; |
| } |
| |
| hits++; |
| } |
| } |
| |
| // check that the physical address is ok (catch bad physical addresses) |
| if (req->paddr & ~PAddrImplMask) |
| return Machine_Check_Fault; |
| |
| checkCacheability(req); |
| |
| return No_Fault; |
| } |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // Alpha DTB |
| // |
| AlphaDTB::AlphaDTB(const std::string &name, int size) |
| : AlphaTLB(name, size) |
| {} |
| |
| void |
| AlphaDTB::regStats() |
| { |
| read_hits |
| .name(name() + ".read_hits") |
| .desc("DTB read hits") |
| ; |
| |
| read_misses |
| .name(name() + ".read_misses") |
| .desc("DTB read misses") |
| ; |
| |
| read_acv |
| .name(name() + ".read_acv") |
| .desc("DTB read access violations") |
| ; |
| |
| read_accesses |
| .name(name() + ".read_accesses") |
| .desc("DTB read accesses") |
| ; |
| |
| write_hits |
| .name(name() + ".write_hits") |
| .desc("DTB write hits") |
| ; |
| |
| write_misses |
| .name(name() + ".write_misses") |
| .desc("DTB write misses") |
| ; |
| |
| write_acv |
| .name(name() + ".write_acv") |
| .desc("DTB write access violations") |
| ; |
| |
| write_accesses |
| .name(name() + ".write_accesses") |
| .desc("DTB write accesses") |
| ; |
| |
| hits |
| .name(name() + ".hits") |
| .desc("DTB hits") |
| ; |
| |
| misses |
| .name(name() + ".misses") |
| .desc("DTB misses") |
| ; |
| |
| acv |
| .name(name() + ".acv") |
| .desc("DTB access violations") |
| ; |
| |
| accesses |
| .name(name() + ".accesses") |
| .desc("DTB accesses") |
| ; |
| |
| hits = read_hits + write_hits; |
| misses = read_misses + write_misses; |
| acv = read_acv + write_acv; |
| accesses = read_accesses + write_accesses; |
| } |
| |
| void |
| AlphaDTB::fault(MemReqPtr &req, uint64_t flags) const |
| { |
| ExecContext *xc = req->xc; |
| AlphaISA::VAddr vaddr = req->vaddr; |
| uint64_t *ipr = xc->regs.ipr; |
| |
| // Set fault address and flags. Even though we're modeling an |
| // EV5, we use the EV6 technique of not latching fault registers |
| // on VPTE loads (instead of locking the registers until IPR_VA is |
| // read, like the EV5). The EV6 approach is cleaner and seems to |
| // work with EV5 PAL code, but not the other way around. |
| if (!xc->misspeculating() |
| && !(req->flags & VPTE) && !(req->flags & NO_FAULT)) { |
| // set VA register with faulting address |
| ipr[AlphaISA::IPR_VA] = req->vaddr; |
| |
| // set MM_STAT register flags |
| ipr[AlphaISA::IPR_MM_STAT] = |
| (((Opcode(xc->getInst()) & 0x3f) << 11) |
| | ((Ra(xc->getInst()) & 0x1f) << 6) |
| | (flags & 0x3f)); |
| |
| // set VA_FORM register with faulting formatted address |
| ipr[AlphaISA::IPR_VA_FORM] = |
| ipr[AlphaISA::IPR_MVPTBR] | (vaddr.vpn() << 3); |
| } |
| } |
| |
| Fault |
| AlphaDTB::translate(MemReqPtr &req, bool write) const |
| { |
| RegFile *regs = &req->xc->regs; |
| Addr pc = regs->pc; |
| InternalProcReg *ipr = regs->ipr; |
| |
| AlphaISA::mode_type mode = |
| (AlphaISA::mode_type)DTB_CM_CM(ipr[AlphaISA::IPR_DTB_CM]); |
| |
| |
| /** |
| * Check for alignment faults |
| */ |
| if (req->vaddr & (req->size - 1)) { |
| fault(req, write ? MM_STAT_WR_MASK : 0); |
| DPRINTF(TLB, "Alignment Fault on %#x, size = %d", req->vaddr, |
| req->size); |
| return Alignment_Fault; |
| } |
| |
| if (pc & 0x1) { |
| mode = (req->flags & ALTMODE) ? |
| (AlphaISA::mode_type)ALT_MODE_AM(ipr[AlphaISA::IPR_ALT_MODE]) |
| : AlphaISA::mode_kernel; |
| } |
| |
| if (req->flags & PHYSICAL) { |
| req->paddr = req->vaddr; |
| } else { |
| // verify that this is a good virtual address |
| if (!validVirtualAddress(req->vaddr)) { |
| fault(req, (write ? MM_STAT_WR_MASK : 0) | |
| MM_STAT_BAD_VA_MASK | |
| MM_STAT_ACV_MASK); |
| |
| if (write) { write_acv++; } else { read_acv++; } |
| return DTB_Fault_Fault; |
| } |
| |
| // Check for "superpage" mapping |
| #if ALPHA_TLASER |
| if ((MCSR_SP(ipr[AlphaISA::IPR_MCSR]) & 2) && |
| VAddrSpaceEV5(req->vaddr) == 2) { |
| #else |
| if (VAddrSpaceEV6(req->vaddr) == 0x7e) { |
| #endif |
| |
| // only valid in kernel mode |
| if (DTB_CM_CM(ipr[AlphaISA::IPR_DTB_CM]) != |
| AlphaISA::mode_kernel) { |
| fault(req, ((write ? MM_STAT_WR_MASK : 0) | |
| MM_STAT_ACV_MASK)); |
| if (write) { write_acv++; } else { read_acv++; } |
| return DTB_Acv_Fault; |
| } |
| |
| req->paddr = req->vaddr & PAddrImplMask; |
| |
| #if !ALPHA_TLASER |
| // sign extend the physical address properly |
| if (req->paddr & PAddrUncachedBit40) |
| req->paddr |= ULL(0xf0000000000); |
| else |
| req->paddr &= ULL(0xffffffffff); |
| #endif |
| |
| } else { |
| if (write) |
| write_accesses++; |
| else |
| read_accesses++; |
| |
| // not a physical address: need to look up pte |
| AlphaISA::PTE *pte = lookup(AlphaISA::VAddr(req->vaddr).vpn(), |
| DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN])); |
| |
| if (!pte) { |
| // page fault |
| fault(req, (write ? MM_STAT_WR_MASK : 0) | |
| MM_STAT_DTB_MISS_MASK); |
| if (write) { write_misses++; } else { read_misses++; } |
| return (req->flags & VPTE) ? Pdtb_Miss_Fault : Ndtb_Miss_Fault; |
| } |
| |
| req->paddr = (pte->ppn << AlphaISA::PageShift) + |
| AlphaISA::VAddr(req->vaddr).offset(); |
| |
| if (write) { |
| if (!(pte->xwe & MODE2MASK(mode))) { |
| // declare the instruction access fault |
| fault(req, MM_STAT_WR_MASK | |
| MM_STAT_ACV_MASK | |
| (pte->fonw ? MM_STAT_FONW_MASK : 0)); |
| write_acv++; |
| return DTB_Fault_Fault; |
| } |
| if (pte->fonw) { |
| fault(req, MM_STAT_WR_MASK | |
| MM_STAT_FONW_MASK); |
| write_acv++; |
| return DTB_Fault_Fault; |
| } |
| } else { |
| if (!(pte->xre & MODE2MASK(mode))) { |
| fault(req, MM_STAT_ACV_MASK | |
| (pte->fonr ? MM_STAT_FONR_MASK : 0)); |
| read_acv++; |
| return DTB_Acv_Fault; |
| } |
| if (pte->fonr) { |
| fault(req, MM_STAT_FONR_MASK); |
| read_acv++; |
| return DTB_Fault_Fault; |
| } |
| } |
| } |
| |
| if (write) |
| write_hits++; |
| else |
| read_hits++; |
| } |
| |
| // check that the physical address is ok (catch bad physical addresses) |
| if (req->paddr & ~PAddrImplMask) |
| return Machine_Check_Fault; |
| |
| checkCacheability(req); |
| |
| return No_Fault; |
| } |
| |
| AlphaISA::PTE & |
| AlphaTLB::index(bool advance) |
| { |
| AlphaISA::PTE *pte = &table[nlu]; |
| |
| if (advance) |
| nextnlu(); |
| |
| return *pte; |
| } |
| |
| DEFINE_SIM_OBJECT_CLASS_NAME("AlphaTLB", AlphaTLB) |
| |
| BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaITB) |
| |
| Param<int> size; |
| |
| END_DECLARE_SIM_OBJECT_PARAMS(AlphaITB) |
| |
| BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaITB) |
| |
| INIT_PARAM_DFLT(size, "TLB size", 48) |
| |
| END_INIT_SIM_OBJECT_PARAMS(AlphaITB) |
| |
| |
| CREATE_SIM_OBJECT(AlphaITB) |
| { |
| return new AlphaITB(getInstanceName(), size); |
| } |
| |
| REGISTER_SIM_OBJECT("AlphaITB", AlphaITB) |
| |
| BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB) |
| |
| Param<int> size; |
| |
| END_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB) |
| |
| BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaDTB) |
| |
| INIT_PARAM_DFLT(size, "TLB size", 64) |
| |
| END_INIT_SIM_OBJECT_PARAMS(AlphaDTB) |
| |
| |
| CREATE_SIM_OBJECT(AlphaDTB) |
| { |
| return new AlphaDTB(getInstanceName(), size); |
| } |
| |
| REGISTER_SIM_OBJECT("AlphaDTB", AlphaDTB) |
| |