blob: 715b67603e4224983b55050f21aa1ad10d3a19a6 [file] [log] [blame]
/*
* Copyright (c) 2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
* Andrew Schultz
* Miguel Serrano
*/
/* @file
* A single PCI device configuration space entry.
*/
#include <list>
#include <string>
#include <vector>
#include "base/inifile.hh"
#include "base/intmath.hh"
#include "base/misc.hh"
#include "base/str.hh"
#include "base/trace.hh"
#include "debug/PCIDEV.hh"
#include "dev/alpha/tsunamireg.h"
#include "dev/pciconfigall.hh"
#include "dev/pcidev.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "sim/byteswap.hh"
#include "sim/core.hh"
PciDevice::PciConfigPort::PciConfigPort(PciDevice *dev, int busid, int devid,
int funcid, Platform *p)
: SimpleTimingPort(dev->name() + "-pciconf", dev), device(dev),
platform(p), busId(busid), deviceId(devid), functionId(funcid)
{
configAddr = platform->calcPciConfigAddr(busId, deviceId, functionId);
}
Tick
PciDevice::PciConfigPort::recvAtomic(PacketPtr pkt)
{
assert(pkt->getAddr() >= configAddr &&
pkt->getAddr() < configAddr + PCI_CONFIG_SIZE);
// @todo someone should pay for this
pkt->firstWordDelay = pkt->lastWordDelay = 0;
return pkt->isRead() ? device->readConfig(pkt) : device->writeConfig(pkt);
}
AddrRangeList
PciDevice::PciConfigPort::getAddrRanges() const
{
AddrRangeList ranges;
if (configAddr != ULL(-1))
ranges.push_back(RangeSize(configAddr, PCI_CONFIG_SIZE+1));
return ranges;
}
PciDevice::PciDevice(const Params *p)
: DmaDevice(p),
PMCAP_BASE(p->PMCAPBaseOffset),
PMCAP_ID_OFFSET(p->PMCAPBaseOffset+PMCAP_ID),
PMCAP_PC_OFFSET(p->PMCAPBaseOffset+PMCAP_PC),
PMCAP_PMCS_OFFSET(p->PMCAPBaseOffset+PMCAP_PMCS),
MSICAP_BASE(p->MSICAPBaseOffset),
MSIXCAP_BASE(p->MSIXCAPBaseOffset),
MSIXCAP_ID_OFFSET(p->MSIXCAPBaseOffset+MSIXCAP_ID),
MSIXCAP_MXC_OFFSET(p->MSIXCAPBaseOffset+MSIXCAP_MXC),
MSIXCAP_MTAB_OFFSET(p->MSIXCAPBaseOffset+MSIXCAP_MTAB),
MSIXCAP_MPBA_OFFSET(p->MSIXCAPBaseOffset+MSIXCAP_MPBA),
PXCAP_BASE(p->PXCAPBaseOffset),
platform(p->platform),
pioDelay(p->pio_latency),
configDelay(p->config_latency),
configPort(this, params()->pci_bus, params()->pci_dev,
params()->pci_func, params()->platform)
{
config.vendor = htole(p->VendorID);
config.device = htole(p->DeviceID);
config.command = htole(p->Command);
config.status = htole(p->Status);
config.revision = htole(p->Revision);
config.progIF = htole(p->ProgIF);
config.subClassCode = htole(p->SubClassCode);
config.classCode = htole(p->ClassCode);
config.cacheLineSize = htole(p->CacheLineSize);
config.latencyTimer = htole(p->LatencyTimer);
config.headerType = htole(p->HeaderType);
config.bist = htole(p->BIST);
config.baseAddr[0] = htole(p->BAR0);
config.baseAddr[1] = htole(p->BAR1);
config.baseAddr[2] = htole(p->BAR2);
config.baseAddr[3] = htole(p->BAR3);
config.baseAddr[4] = htole(p->BAR4);
config.baseAddr[5] = htole(p->BAR5);
config.cardbusCIS = htole(p->CardbusCIS);
config.subsystemVendorID = htole(p->SubsystemVendorID);
config.subsystemID = htole(p->SubsystemID);
config.expansionROM = htole(p->ExpansionROM);
config.capabilityPtr = htole(p->CapabilityPtr);
// Zero out the 7 bytes of reserved space in the PCI Config space register.
bzero(config.reserved, 7*sizeof(uint8_t));
config.interruptLine = htole(p->InterruptLine);
config.interruptPin = htole(p->InterruptPin);
config.minimumGrant = htole(p->MinimumGrant);
config.maximumLatency = htole(p->MaximumLatency);
// Initialize the capability lists
// These structs are bitunions, meaning the data is stored in host
// endianess and must be converted to Little Endian when accessed
// by the guest
// PMCAP
pmcap.pid = (uint16_t)p->PMCAPCapId; // pid.cid
pmcap.pid |= (uint16_t)p->PMCAPNextCapability << 8; //pid.next
pmcap.pc = p->PMCAPCapabilities;
pmcap.pmcs = p->PMCAPCtrlStatus;
// MSICAP
msicap.mid = (uint16_t)p->MSICAPCapId; //mid.cid
msicap.mid |= (uint16_t)p->MSICAPNextCapability << 8; //mid.next
msicap.mc = p->MSICAPMsgCtrl;
msicap.ma = p->MSICAPMsgAddr;
msicap.mua = p->MSICAPMsgUpperAddr;
msicap.md = p->MSICAPMsgData;
msicap.mmask = p->MSICAPMaskBits;
msicap.mpend = p->MSICAPPendingBits;
// MSIXCAP
msixcap.mxid = (uint16_t)p->MSIXCAPCapId; //mxid.cid
msixcap.mxid |= (uint16_t)p->MSIXCAPNextCapability << 8; //mxid.next
msixcap.mxc = p->MSIXMsgCtrl;
msixcap.mtab = p->MSIXTableOffset;
msixcap.mpba = p->MSIXPbaOffset;
// allocate MSIX structures if MSIXCAP_BASE
// indicates the MSIXCAP is being used by having a
// non-zero base address.
// The MSIX tables are stored by the guest in
// little endian byte-order as according the
// PCIe specification. Make sure to take the proper
// actions when manipulating these tables on the host
uint16_t msixcap_mxc_ts = msixcap.mxc & 0x07ff;
if (MSIXCAP_BASE != 0x0) {
int msix_vecs = msixcap_mxc_ts + 1;
MSIXTable tmp1 = {{0UL,0UL,0UL,0UL}};
msix_table.resize(msix_vecs, tmp1);
MSIXPbaEntry tmp2 = {0};
int pba_size = msix_vecs / MSIXVECS_PER_PBA;
if ((msix_vecs % MSIXVECS_PER_PBA) > 0) {
pba_size++;
}
msix_pba.resize(pba_size, tmp2);
}
MSIX_TABLE_OFFSET = msixcap.mtab & 0xfffffffc;
MSIX_TABLE_END = MSIX_TABLE_OFFSET +
(msixcap_mxc_ts + 1) * sizeof(MSIXTable);
MSIX_PBA_OFFSET = msixcap.mpba & 0xfffffffc;
MSIX_PBA_END = MSIX_PBA_OFFSET +
((msixcap_mxc_ts + 1) / MSIXVECS_PER_PBA)
* sizeof(MSIXPbaEntry);
if (((msixcap_mxc_ts + 1) % MSIXVECS_PER_PBA) > 0) {
MSIX_PBA_END += sizeof(MSIXPbaEntry);
}
// PXCAP
pxcap.pxid = (uint16_t)p->PXCAPCapId; //pxid.cid
pxcap.pxid |= (uint16_t)p->PXCAPNextCapability << 8; //pxid.next
pxcap.pxcap = p->PXCAPCapabilities;
pxcap.pxdcap = p->PXCAPDevCapabilities;
pxcap.pxdc = p->PXCAPDevCtrl;
pxcap.pxds = p->PXCAPDevStatus;
pxcap.pxlcap = p->PXCAPLinkCap;
pxcap.pxlc = p->PXCAPLinkCtrl;
pxcap.pxls = p->PXCAPLinkStatus;
pxcap.pxdcap2 = p->PXCAPDevCap2;
pxcap.pxdc2 = p->PXCAPDevCtrl2;
BARSize[0] = p->BAR0Size;
BARSize[1] = p->BAR1Size;
BARSize[2] = p->BAR2Size;
BARSize[3] = p->BAR3Size;
BARSize[4] = p->BAR4Size;
BARSize[5] = p->BAR5Size;
legacyIO[0] = p->BAR0LegacyIO;
legacyIO[1] = p->BAR1LegacyIO;
legacyIO[2] = p->BAR2LegacyIO;
legacyIO[3] = p->BAR3LegacyIO;
legacyIO[4] = p->BAR4LegacyIO;
legacyIO[5] = p->BAR5LegacyIO;
for (int i = 0; i < 6; ++i) {
if (legacyIO[i]) {
BARAddrs[i] = p->LegacyIOBase + letoh(config.baseAddr[i]);
config.baseAddr[i] = 0;
} else {
BARAddrs[i] = 0;
uint32_t barsize = BARSize[i];
if (barsize != 0 && !isPowerOf2(barsize)) {
fatal("BAR %d size %d is not a power of 2\n", i, BARSize[i]);
}
}
}
platform->registerPciDevice(p->pci_bus, p->pci_dev, p->pci_func,
letoh(config.interruptLine));
}
void
PciDevice::init()
{
if (!configPort.isConnected())
panic("PCI config port on %s not connected to anything!\n", name());
configPort.sendRangeChange();
DmaDevice::init();
}
unsigned int
PciDevice::drain(DrainManager *dm)
{
unsigned int count;
count = pioPort.drain(dm) + dmaPort.drain(dm) + configPort.drain(dm);
if (count)
setDrainState(Drainable::Draining);
else
setDrainState(Drainable::Drained);
return count;
}
Tick
PciDevice::readConfig(PacketPtr pkt)
{
int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
/* Return 0 for accesses to unimplemented PCI configspace areas */
if (offset >= PCI_DEVICE_SPECIFIC &&
offset < PCI_CONFIG_SIZE) {
warn_once("Device specific PCI config space "
"not implemented for %s!\n", this->name());
switch (pkt->getSize()) {
case sizeof(uint8_t):
pkt->set<uint8_t>(0);
break;
case sizeof(uint16_t):
pkt->set<uint16_t>(0);
break;
case sizeof(uint32_t):
pkt->set<uint32_t>(0);
break;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
} else if (offset > PCI_CONFIG_SIZE) {
panic("Out-of-range access to PCI config space!\n");
}
switch (pkt->getSize()) {
case sizeof(uint8_t):
pkt->set<uint8_t>(config.data[offset]);
DPRINTF(PCIDEV,
"readConfig: dev %#x func %#x reg %#x 1 bytes: data = %#x\n",
params()->pci_dev, params()->pci_func, offset,
(uint32_t)pkt->get<uint8_t>());
break;
case sizeof(uint16_t):
pkt->set<uint16_t>(*(uint16_t*)&config.data[offset]);
DPRINTF(PCIDEV,
"readConfig: dev %#x func %#x reg %#x 2 bytes: data = %#x\n",
params()->pci_dev, params()->pci_func, offset,
(uint32_t)pkt->get<uint16_t>());
break;
case sizeof(uint32_t):
pkt->set<uint32_t>(*(uint32_t*)&config.data[offset]);
DPRINTF(PCIDEV,
"readConfig: dev %#x func %#x reg %#x 4 bytes: data = %#x\n",
params()->pci_dev, params()->pci_func, offset,
(uint32_t)pkt->get<uint32_t>());
break;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
pkt->makeAtomicResponse();
return configDelay;
}
AddrRangeList
PciDevice::getAddrRanges() const
{
AddrRangeList ranges;
int x = 0;
for (x = 0; x < 6; x++)
if (BARAddrs[x] != 0)
ranges.push_back(RangeSize(BARAddrs[x],BARSize[x]));
return ranges;
}
Tick
PciDevice::writeConfig(PacketPtr pkt)
{
int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
/* No effect if we write to config space that is not implemented*/
if (offset >= PCI_DEVICE_SPECIFIC &&
offset < PCI_CONFIG_SIZE) {
warn_once("Device specific PCI config space "
"not implemented for %s!\n", this->name());
switch (pkt->getSize()) {
case sizeof(uint8_t):
case sizeof(uint16_t):
case sizeof(uint32_t):
break;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
} else if (offset > PCI_CONFIG_SIZE) {
panic("Out-of-range access to PCI config space!\n");
}
switch (pkt->getSize()) {
case sizeof(uint8_t):
switch (offset) {
case PCI0_INTERRUPT_LINE:
config.interruptLine = pkt->get<uint8_t>();
break;
case PCI_CACHE_LINE_SIZE:
config.cacheLineSize = pkt->get<uint8_t>();
break;
case PCI_LATENCY_TIMER:
config.latencyTimer = pkt->get<uint8_t>();
break;
/* Do nothing for these read-only registers */
case PCI0_INTERRUPT_PIN:
case PCI0_MINIMUM_GRANT:
case PCI0_MAXIMUM_LATENCY:
case PCI_CLASS_CODE:
case PCI_REVISION_ID:
break;
default:
panic("writing to a read only register");
}
DPRINTF(PCIDEV,
"writeConfig: dev %#x func %#x reg %#x 1 bytes: data = %#x\n",
params()->pci_dev, params()->pci_func, offset,
(uint32_t)pkt->get<uint8_t>());
break;
case sizeof(uint16_t):
switch (offset) {
case PCI_COMMAND:
config.command = pkt->get<uint8_t>();
break;
case PCI_STATUS:
config.status = pkt->get<uint8_t>();
break;
case PCI_CACHE_LINE_SIZE:
config.cacheLineSize = pkt->get<uint8_t>();
break;
default:
panic("writing to a read only register");
}
DPRINTF(PCIDEV,
"writeConfig: dev %#x func %#x reg %#x 2 bytes: data = %#x\n",
params()->pci_dev, params()->pci_func, offset,
(uint32_t)pkt->get<uint16_t>());
break;
case sizeof(uint32_t):
switch (offset) {
case PCI0_BASE_ADDR0:
case PCI0_BASE_ADDR1:
case PCI0_BASE_ADDR2:
case PCI0_BASE_ADDR3:
case PCI0_BASE_ADDR4:
case PCI0_BASE_ADDR5:
{
int barnum = BAR_NUMBER(offset);
if (!legacyIO[barnum]) {
// convert BAR values to host endianness
uint32_t he_old_bar = letoh(config.baseAddr[barnum]);
uint32_t he_new_bar = letoh(pkt->get<uint32_t>());
uint32_t bar_mask =
BAR_IO_SPACE(he_old_bar) ? BAR_IO_MASK : BAR_MEM_MASK;
// Writing 0xffffffff to a BAR tells the card to set the
// value of the bar to a bitmask indicating the size of
// memory it needs
if (he_new_bar == 0xffffffff) {
he_new_bar = ~(BARSize[barnum] - 1);
} else {
// does it mean something special to write 0 to a BAR?
he_new_bar &= ~bar_mask;
if (he_new_bar) {
BARAddrs[barnum] = BAR_IO_SPACE(he_old_bar) ?
platform->calcPciIOAddr(he_new_bar) :
platform->calcPciMemAddr(he_new_bar);
pioPort.sendRangeChange();
}
}
config.baseAddr[barnum] = htole((he_new_bar & ~bar_mask) |
(he_old_bar & bar_mask));
}
}
break;
case PCI0_ROM_BASE_ADDR:
if (letoh(pkt->get<uint32_t>()) == 0xfffffffe)
config.expansionROM = htole((uint32_t)0xffffffff);
else
config.expansionROM = pkt->get<uint32_t>();
break;
case PCI_COMMAND:
// This could also clear some of the error bits in the Status
// register. However they should never get set, so lets ignore
// it for now
config.command = pkt->get<uint32_t>();
break;
default:
DPRINTF(PCIDEV, "Writing to a read only register");
}
DPRINTF(PCIDEV,
"writeConfig: dev %#x func %#x reg %#x 4 bytes: data = %#x\n",
params()->pci_dev, params()->pci_func, offset,
(uint32_t)pkt->get<uint32_t>());
break;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
pkt->makeAtomicResponse();
return configDelay;
}
void
PciDevice::serialize(std::ostream &os)
{
SERIALIZE_ARRAY(BARSize, sizeof(BARSize) / sizeof(BARSize[0]));
SERIALIZE_ARRAY(BARAddrs, sizeof(BARAddrs) / sizeof(BARAddrs[0]));
SERIALIZE_ARRAY(config.data, sizeof(config.data) / sizeof(config.data[0]));
// serialize the capability list registers
paramOut(os, csprintf("pmcap.pid"), uint16_t(pmcap.pid));
paramOut(os, csprintf("pmcap.pc"), uint16_t(pmcap.pc));
paramOut(os, csprintf("pmcap.pmcs"), uint16_t(pmcap.pmcs));
paramOut(os, csprintf("msicap.mid"), uint16_t(msicap.mid));
paramOut(os, csprintf("msicap.mc"), uint16_t(msicap.mc));
paramOut(os, csprintf("msicap.ma"), uint32_t(msicap.ma));
SERIALIZE_SCALAR(msicap.mua);
paramOut(os, csprintf("msicap.md"), uint16_t(msicap.md));
SERIALIZE_SCALAR(msicap.mmask);
SERIALIZE_SCALAR(msicap.mpend);
paramOut(os, csprintf("msixcap.mxid"), uint16_t(msixcap.mxid));
paramOut(os, csprintf("msixcap.mxc"), uint16_t(msixcap.mxc));
paramOut(os, csprintf("msixcap.mtab"), uint32_t(msixcap.mtab));
paramOut(os, csprintf("msixcap.mpba"), uint32_t(msixcap.mpba));
// Only serialize if we have a non-zero base address
if (MSIXCAP_BASE != 0x0) {
uint16_t msixcap_mxc_ts = msixcap.mxc & 0x07ff;
int msix_array_size = msixcap_mxc_ts + 1;
int pba_array_size = msix_array_size/MSIXVECS_PER_PBA;
if ((msix_array_size % MSIXVECS_PER_PBA) > 0) {
pba_array_size++;
}
SERIALIZE_SCALAR(msix_array_size);
SERIALIZE_SCALAR(pba_array_size);
for (int i = 0; i < msix_array_size; i++) {
paramOut(os, csprintf("msix_table[%d].addr_lo", i),
msix_table[i].fields.addr_lo);
paramOut(os, csprintf("msix_table[%d].addr_hi", i),
msix_table[i].fields.addr_hi);
paramOut(os, csprintf("msix_table[%d].msg_data", i),
msix_table[i].fields.msg_data);
paramOut(os, csprintf("msix_table[%d].vec_ctrl", i),
msix_table[i].fields.vec_ctrl);
}
for (int i = 0; i < pba_array_size; i++) {
paramOut(os, csprintf("msix_pba[%d].bits", i),
msix_pba[i].bits);
}
}
paramOut(os, csprintf("pxcap.pxid"), uint16_t(pxcap.pxid));
paramOut(os, csprintf("pxcap.pxcap"), uint16_t(pxcap.pxcap));
paramOut(os, csprintf("pxcap.pxdcap"), uint32_t(pxcap.pxdcap));
paramOut(os, csprintf("pxcap.pxdc"), uint16_t(pxcap.pxdc));
paramOut(os, csprintf("pxcap.pxds"), uint16_t(pxcap.pxds));
paramOut(os, csprintf("pxcap.pxlcap"), uint32_t(pxcap.pxlcap));
paramOut(os, csprintf("pxcap.pxlc"), uint16_t(pxcap.pxlc));
paramOut(os, csprintf("pxcap.pxls"), uint16_t(pxcap.pxls));
paramOut(os, csprintf("pxcap.pxdcap2"), uint32_t(pxcap.pxdcap2));
paramOut(os, csprintf("pxcap.pxdc2"), uint32_t(pxcap.pxdc2));
}
void
PciDevice::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_ARRAY(BARSize, sizeof(BARSize) / sizeof(BARSize[0]));
UNSERIALIZE_ARRAY(BARAddrs, sizeof(BARAddrs) / sizeof(BARAddrs[0]));
UNSERIALIZE_ARRAY(config.data,
sizeof(config.data) / sizeof(config.data[0]));
// unserialize the capability list registers
uint16_t tmp16;
uint32_t tmp32;
paramIn(cp, section, csprintf("pmcap.pid"), tmp16);
pmcap.pid = tmp16;
paramIn(cp, section, csprintf("pmcap.pc"), tmp16);
pmcap.pc = tmp16;
paramIn(cp, section, csprintf("pmcap.pmcs"), tmp16);
pmcap.pmcs = tmp16;
paramIn(cp, section, csprintf("msicap.mid"), tmp16);
msicap.mid = tmp16;
paramIn(cp, section, csprintf("msicap.mc"), tmp16);
msicap.mc = tmp16;
paramIn(cp, section, csprintf("msicap.ma"), tmp32);
msicap.ma = tmp32;
UNSERIALIZE_SCALAR(msicap.mua);
paramIn(cp, section, csprintf("msicap.md"), tmp16);;
msicap.md = tmp16;
UNSERIALIZE_SCALAR(msicap.mmask);
UNSERIALIZE_SCALAR(msicap.mpend);
paramIn(cp, section, csprintf("msixcap.mxid"), tmp16);
msixcap.mxid = tmp16;
paramIn(cp, section, csprintf("msixcap.mxc"), tmp16);
msixcap.mxc = tmp16;
paramIn(cp, section, csprintf("msixcap.mtab"), tmp32);
msixcap.mtab = tmp32;
paramIn(cp, section, csprintf("msixcap.mpba"), tmp32);
msixcap.mpba = tmp32;
// Only allocate if MSIXCAP_BASE is not 0x0
if (MSIXCAP_BASE != 0x0) {
int msix_array_size;
int pba_array_size;
UNSERIALIZE_SCALAR(msix_array_size);
UNSERIALIZE_SCALAR(pba_array_size);
MSIXTable tmp1 = {{0UL, 0UL, 0UL, 0UL}};
msix_table.resize(msix_array_size, tmp1);
MSIXPbaEntry tmp2 = {0};
msix_pba.resize(pba_array_size, tmp2);
for (int i = 0; i < msix_array_size; i++) {
paramIn(cp, section, csprintf("msix_table[%d].addr_lo", i),
msix_table[i].fields.addr_lo);
paramIn(cp, section, csprintf("msix_table[%d].addr_hi", i),
msix_table[i].fields.addr_hi);
paramIn(cp, section, csprintf("msix_table[%d].msg_data", i),
msix_table[i].fields.msg_data);
paramIn(cp, section, csprintf("msix_table[%d].vec_ctrl", i),
msix_table[i].fields.vec_ctrl);
}
for (int i = 0; i < pba_array_size; i++) {
paramIn(cp, section, csprintf("msix_pba[%d].bits", i),
msix_pba[i].bits);
}
}
paramIn(cp, section, csprintf("pxcap.pxid"), tmp16);
pxcap.pxid = tmp16;
paramIn(cp, section, csprintf("pxcap.pxcap"), tmp16);
pxcap.pxcap = tmp16;
paramIn(cp, section, csprintf("pxcap.pxdcap"), tmp32);
pxcap.pxdcap = tmp32;
paramIn(cp, section, csprintf("pxcap.pxdc"), tmp16);
pxcap.pxdc = tmp16;
paramIn(cp, section, csprintf("pxcap.pxds"), tmp16);
pxcap.pxds = tmp16;
paramIn(cp, section, csprintf("pxcap.pxlcap"), tmp32);
pxcap.pxlcap = tmp32;
paramIn(cp, section, csprintf("pxcap.pxlc"), tmp16);
pxcap.pxlc = tmp16;
paramIn(cp, section, csprintf("pxcap.pxls"), tmp16);
pxcap.pxls = tmp16;
paramIn(cp, section, csprintf("pxcap.pxdcap2"), tmp32);
pxcap.pxdcap2 = tmp32;
paramIn(cp, section, csprintf("pxcap.pxdc2"), tmp32);
pxcap.pxdc2 = tmp32;
pioPort.sendRangeChange();
}