blob: 64e9f272b2fda6542d982cd401cce59bf631bb92 [file] [log] [blame]
# Copyright (c) 2012-2013 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Andreas Hansson
# Ani Udipi
from m5.params import *
from AbstractMemory import *
# Enum for memory scheduling algorithms, currently First-Come
# First-Served and a First-Row Hit then First-Come First-Served
class MemSched(Enum): vals = ['fcfs', 'frfcfs']
# Enum for the address mapping. With Ra, Co, Ba and Ch denoting rank,
# column, bank and channel, respectively, and going from MSB to LSB.
# Available are RaBaChCo and RaBaCoCh, that are suitable for an
# open-page policy, optimising for sequential accesses hitting in the
# open row. For a closed-page policy, CoRaBaCh maximises parallelism.
class AddrMap(Enum): vals = ['RaBaChCo', 'RaBaCoCh', 'CoRaBaCh']
# Enum for the page policy, either open or close.
class PageManage(Enum): vals = ['open', 'close']
# SimpleDRAM is a single-channel single-ported DRAM controller model
# that aims to model the most important system-level performance
# effects of a DRAM without getting into too much detail of the DRAM
# itself.
class SimpleDRAM(AbstractMemory):
type = 'SimpleDRAM'
cxx_header = "mem/simple_dram.hh"
@classmethod
def makeMultiChannel(cls, nbr_mem_ctrls, mem_start_addr, mem_size,
intlv_high_bit = 11):
"""
Make a multi-channel configuration of this class.
Create multiple instances of the specific class and set their
parameters such that the address range is interleaved between
them.
Returns a list of controllers.
"""
import math
from m5.util import fatal
intlv_bits = int(math.log(nbr_mem_ctrls, 2))
if 2 ** intlv_bits != nbr_mem_ctrls:
fatal("Number of memory channels must be a power of 2")
mem_ctrls = []
for i in xrange(nbr_mem_ctrls):
# The default interleaving granularity is tuned to match a
# row buffer size of 32 cache lines of 64 bytes (starting
# at bit 11 for 2048 bytes). There is unfortunately no
# good way of checking this at instantiation time.
mem_ctrls.append(cls(range = AddrRange(mem_start_addr,
size = mem_size,
intlvHighBit = \
intlv_high_bit,
intlvBits = intlv_bits,
intlvMatch = i),
channels = nbr_mem_ctrls))
return mem_ctrls
# single-ported on the system interface side, instantiate with a
# bus in front of the controller for multiple ports
port = SlavePort("Slave port")
# the basic configuration of the controller architecture
write_buffer_size = Param.Unsigned(32, "Number of read queue entries")
read_buffer_size = Param.Unsigned(32, "Number of write queue entries")
# threshold in percent for when to trigger writes and start
# emptying the write buffer as it starts to get full
write_thresh_perc = Param.Percent(70, "Threshold to trigger writes")
# scheduler, address map and page policy
mem_sched_policy = Param.MemSched('frfcfs', "Memory scheduling policy")
addr_mapping = Param.AddrMap('RaBaChCo', "Address mapping policy")
page_policy = Param.PageManage('open', "Page closure management policy")
# pipeline latency of the controller and PHY, split into a
# frontend part and a backend part, with reads and writes serviced
# by the queues only seeing the frontend contribution, and reads
# serviced by the memory seeing the sum of the two
static_frontend_latency = Param.Latency("10ns", "Static frontend latency")
static_backend_latency = Param.Latency("10ns", "Static backend latency")
# the physical organisation of the DRAM
lines_per_rowbuffer = Param.Unsigned("Row buffer size in cache lines")
ranks_per_channel = Param.Unsigned("Number of ranks per channel")
banks_per_rank = Param.Unsigned("Number of banks per rank")
# only used for the address mapping as the controller by
# construction is a single channel and multiple controllers have
# to be instantiated for a multi-channel configuration
channels = Param.Unsigned(1, "Number of channels")
# timing behaviour and constraints - all in nanoseconds
# the amount of time in nanoseconds from issuing an activate command
# to the data being available in the row buffer for a read/write
tRCD = Param.Latency("RAS to CAS delay")
# the time from issuing a read/write command to seeing the actual data
tCL = Param.Latency("CAS latency")
# minimum time between a precharge and subsequent activate
tRP = Param.Latency("Row precharge time")
# time to complete a burst transfer, typically the burst length
# divided by two due to the DDR bus, but by making it a parameter
# it is easier to also evaluate SDR memories like WideIO.
# This parameter has to account for bus width and burst length.
# Adjustment also necessary if cache line size is greater than
# data size read/written by one full burst.
tBURST = Param.Latency("Burst duration (for DDR burst length / 2 cycles)")
# time taken to complete one refresh cycle (N rows in all banks)
tRFC = Param.Latency("Refresh cycle time")
# refresh command interval, how often a "ref" command needs
# to be sent. It is 7.8 us for a 64ms refresh requirement
tREFI = Param.Latency("Refresh command interval")
# write-to-read turn around penalty, assumed same as read-to-write
tWTR = Param.Latency("Write to read switching time")
# time window in which a maximum number of activates are allowed
# to take place, set to 0 to disable
tXAW = Param.Latency("X activation window")
activation_limit = Param.Unsigned("Max number of activates in window")
# Currently rolled into other params
######################################################################
# the minimum amount of time between a row being activated, and
# precharged (de-activated)
# tRAS - assumed to be 3 * tRP
# tRC - assumed to be 4 * tRP
# burst length for an access derived from peerBlockSize
# A single DDR3 x64 interface (one command and address bus), with
# default timings based on DDR3-1600 4 Gbit parts in an 8x8
# configuration, which would amount to 4 Gbyte of memory.
class DDR3_1600_x64(SimpleDRAM):
# Assuming 64 byte cache lines, and a 1kbyte page size per module
# (this depends on the memory density)
lines_per_rowbuffer = 128
# Use two ranks
ranks_per_channel = 2
# DDR3 has 8 banks in all configurations
banks_per_rank = 8
# DDR3-1600 11-11-11
tRCD = '13.75ns'
tCL = '13.75ns'
tRP = '13.75ns'
# Assuming 64 byte cache lines, across an x64
# interface, translates to BL8, 4 clocks @ 800 MHz
tBURST = '5ns'
# DDR3, 4 Gbit has a tRFC of 240 CK and tCK = 1.25 ns
tRFC = '300ns'
# DDR3, <=85C, half for >85C
tREFI = '7.8us'
# Greater of 4 CK or 7.5 ns, 4 CK @ 800 MHz = 5 ns
tWTR = '7.5ns'
# With a 2kbyte page size, DDR3-1600 lands around 40 ns
tXAW = '40ns'
activation_limit = 4
# A single LPDDR2-S4 x32 interface (one command/address bus), with
# default timings based on a LPDDR2-1066 4 Gbit part in a 1x32
# configuration.
class LPDDR2_S4_1066_x32(SimpleDRAM):
# Assuming 64 byte cache lines, use a 1kbyte page size, this
# depends on the memory density
lines_per_rowbuffer = 16
# Use a single rank
ranks_per_channel = 1
# LPDDR2-S4 has 8 banks in all configurations
banks_per_rank = 8
# Fixed at 15 ns
tRCD = '15ns'
# 8 CK read latency, 4 CK write latency @ 533 MHz, 1.876 ns cycle time
tCL = '15ns'
# Pre-charge one bank 15 ns (all banks 18 ns)
tRP = '15ns'
# Assuming 64 byte cache lines, across a x32 DDR interface
# translates to two BL8, 8 clocks @ 533 MHz. Note that this is a
# simplification
tBURST = '15ns'
# LPDDR2-S4, 4 Gbit
tRFC = '130ns'
tREFI = '3.9us'
# Irrespective of speed grade, tWTR is 7.5 ns
tWTR = '7.5ns'
# Irrespective of density, tFAW is 50 ns
tXAW = '50ns'
activation_limit = 4
# A single WideIO x128 interface (one command and address bus), with
# default timings based on an estimated WIO-200 8 Gbit part.
class WideIO_200_x128(SimpleDRAM):
# Assuming 64 byte cache lines, use a 4kbyte page size, this
# depends on the memory density
lines_per_rowbuffer = 64
# Use one rank for a one-high die stack
ranks_per_channel = 1
# WideIO has 4 banks in all configurations
banks_per_rank = 4
# WIO-200
tRCD = '18ns'
tCL = '18ns'
tRP = '18ns'
# Assuming 64 byte cache lines, across an x128 SDR interface,
# translates to BL4, 4 clocks @ 200 MHz
tBURST = '20ns'
# WIO 8 Gb
tRFC = '210ns'
# WIO 8 Gb, <=85C, half for >85C
tREFI = '3.9us'
# Greater of 2 CK or 15 ns, 2 CK @ 200 MHz = 10 ns
tWTR = '15ns'
# Two instead of four activation window
tXAW = '50ns'
activation_limit = 2
# A single LPDDR3 x32 interface (one command/address bus), with
# default timings based on a LPDDR3-1600 4 Gbit part in a 1x32
# configuration
class LPDDR3_1600_x32(SimpleDRAM):
# 4 Gbit and 8 Gbit devices use a 1 kByte page size, so ssuming 64
# byte cache lines, that is 16 lines
lines_per_rowbuffer = 16
# Use a single rank
ranks_per_channel = 1
# LPDDR3 has 8 banks in all configurations
banks_per_rank = 8
# Fixed at 15 ns
tRCD = '15ns'
# 12 CK read latency, 6 CK write latency @ 800 MHz, 1.25 ns cycle time
tCL = '15ns'
# Pre-charge one bank 15 ns (all banks 18 ns)
tRP = '15ns'
# Assuming 64 byte cache lines, across a x32 DDR interface
# translates to two bursts of BL8, 8 clocks @ 800 MHz
tBURST = '10ns'
# LPDDR3, 4 Gb
tRFC = '130ns'
tREFI = '3.9us'
# Irrespective of speed grade, tWTR is 7.5 ns
tWTR = '7.5ns'
# Irrespective of size, tFAW is 50 ns
tXAW = '50ns'
activation_limit = 4