| /* |
| pybind11/cast.h: Partial template specializations to cast between |
| C++ and Python types |
| |
| Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> |
| |
| All rights reserved. Use of this source code is governed by a |
| BSD-style license that can be found in the LICENSE file. |
| */ |
| |
| #pragma once |
| |
| #include "pytypes.h" |
| #include "detail/typeid.h" |
| #include "detail/descr.h" |
| #include "detail/internals.h" |
| #include <array> |
| #include <limits> |
| #include <tuple> |
| |
| #if defined(PYBIND11_CPP17) |
| # if defined(__has_include) |
| # if __has_include(<string_view>) |
| # define PYBIND11_HAS_STRING_VIEW |
| # endif |
| # elif defined(_MSC_VER) |
| # define PYBIND11_HAS_STRING_VIEW |
| # endif |
| #endif |
| #ifdef PYBIND11_HAS_STRING_VIEW |
| #include <string_view> |
| #endif |
| |
| NAMESPACE_BEGIN(PYBIND11_NAMESPACE) |
| NAMESPACE_BEGIN(detail) |
| |
| /// A life support system for temporary objects created by `type_caster::load()`. |
| /// Adding a patient will keep it alive up until the enclosing function returns. |
| class loader_life_support { |
| public: |
| /// A new patient frame is created when a function is entered |
| loader_life_support() { |
| get_internals().loader_patient_stack.push_back(nullptr); |
| } |
| |
| /// ... and destroyed after it returns |
| ~loader_life_support() { |
| auto &stack = get_internals().loader_patient_stack; |
| if (stack.empty()) |
| pybind11_fail("loader_life_support: internal error"); |
| |
| auto ptr = stack.back(); |
| stack.pop_back(); |
| Py_CLEAR(ptr); |
| |
| // A heuristic to reduce the stack's capacity (e.g. after long recursive calls) |
| if (stack.capacity() > 16 && stack.size() != 0 && stack.capacity() / stack.size() > 2) |
| stack.shrink_to_fit(); |
| } |
| |
| /// This can only be used inside a pybind11-bound function, either by `argument_loader` |
| /// at argument preparation time or by `py::cast()` at execution time. |
| PYBIND11_NOINLINE static void add_patient(handle h) { |
| auto &stack = get_internals().loader_patient_stack; |
| if (stack.empty()) |
| throw cast_error("When called outside a bound function, py::cast() cannot " |
| "do Python -> C++ conversions which require the creation " |
| "of temporary values"); |
| |
| auto &list_ptr = stack.back(); |
| if (list_ptr == nullptr) { |
| list_ptr = PyList_New(1); |
| if (!list_ptr) |
| pybind11_fail("loader_life_support: error allocating list"); |
| PyList_SET_ITEM(list_ptr, 0, h.inc_ref().ptr()); |
| } else { |
| auto result = PyList_Append(list_ptr, h.ptr()); |
| if (result == -1) |
| pybind11_fail("loader_life_support: error adding patient"); |
| } |
| } |
| }; |
| |
| // Gets the cache entry for the given type, creating it if necessary. The return value is the pair |
| // returned by emplace, i.e. an iterator for the entry and a bool set to `true` if the entry was |
| // just created. |
| inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type); |
| |
| // Populates a just-created cache entry. |
| PYBIND11_NOINLINE inline void all_type_info_populate(PyTypeObject *t, std::vector<type_info *> &bases) { |
| std::vector<PyTypeObject *> check; |
| for (handle parent : reinterpret_borrow<tuple>(t->tp_bases)) |
| check.push_back((PyTypeObject *) parent.ptr()); |
| |
| auto const &type_dict = get_internals().registered_types_py; |
| for (size_t i = 0; i < check.size(); i++) { |
| auto type = check[i]; |
| // Ignore Python2 old-style class super type: |
| if (!PyType_Check((PyObject *) type)) continue; |
| |
| // Check `type` in the current set of registered python types: |
| auto it = type_dict.find(type); |
| if (it != type_dict.end()) { |
| // We found a cache entry for it, so it's either pybind-registered or has pre-computed |
| // pybind bases, but we have to make sure we haven't already seen the type(s) before: we |
| // want to follow Python/virtual C++ rules that there should only be one instance of a |
| // common base. |
| for (auto *tinfo : it->second) { |
| // NB: Could use a second set here, rather than doing a linear search, but since |
| // having a large number of immediate pybind11-registered types seems fairly |
| // unlikely, that probably isn't worthwhile. |
| bool found = false; |
| for (auto *known : bases) { |
| if (known == tinfo) { found = true; break; } |
| } |
| if (!found) bases.push_back(tinfo); |
| } |
| } |
| else if (type->tp_bases) { |
| // It's some python type, so keep follow its bases classes to look for one or more |
| // registered types |
| if (i + 1 == check.size()) { |
| // When we're at the end, we can pop off the current element to avoid growing |
| // `check` when adding just one base (which is typical--i.e. when there is no |
| // multiple inheritance) |
| check.pop_back(); |
| i--; |
| } |
| for (handle parent : reinterpret_borrow<tuple>(type->tp_bases)) |
| check.push_back((PyTypeObject *) parent.ptr()); |
| } |
| } |
| } |
| |
| /** |
| * Extracts vector of type_info pointers of pybind-registered roots of the given Python type. Will |
| * be just 1 pybind type for the Python type of a pybind-registered class, or for any Python-side |
| * derived class that uses single inheritance. Will contain as many types as required for a Python |
| * class that uses multiple inheritance to inherit (directly or indirectly) from multiple |
| * pybind-registered classes. Will be empty if neither the type nor any base classes are |
| * pybind-registered. |
| * |
| * The value is cached for the lifetime of the Python type. |
| */ |
| inline const std::vector<detail::type_info *> &all_type_info(PyTypeObject *type) { |
| auto ins = all_type_info_get_cache(type); |
| if (ins.second) |
| // New cache entry: populate it |
| all_type_info_populate(type, ins.first->second); |
| |
| return ins.first->second; |
| } |
| |
| /** |
| * Gets a single pybind11 type info for a python type. Returns nullptr if neither the type nor any |
| * ancestors are pybind11-registered. Throws an exception if there are multiple bases--use |
| * `all_type_info` instead if you want to support multiple bases. |
| */ |
| PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) { |
| auto &bases = all_type_info(type); |
| if (bases.size() == 0) |
| return nullptr; |
| if (bases.size() > 1) |
| pybind11_fail("pybind11::detail::get_type_info: type has multiple pybind11-registered bases"); |
| return bases.front(); |
| } |
| |
| inline detail::type_info *get_local_type_info(const std::type_index &tp) { |
| auto &locals = registered_local_types_cpp(); |
| auto it = locals.find(tp); |
| if (it != locals.end()) |
| return it->second; |
| return nullptr; |
| } |
| |
| inline detail::type_info *get_global_type_info(const std::type_index &tp) { |
| auto &types = get_internals().registered_types_cpp; |
| auto it = types.find(tp); |
| if (it != types.end()) |
| return it->second; |
| return nullptr; |
| } |
| |
| /// Return the type info for a given C++ type; on lookup failure can either throw or return nullptr. |
| PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_index &tp, |
| bool throw_if_missing = false) { |
| if (auto ltype = get_local_type_info(tp)) |
| return ltype; |
| if (auto gtype = get_global_type_info(tp)) |
| return gtype; |
| |
| if (throw_if_missing) { |
| std::string tname = tp.name(); |
| detail::clean_type_id(tname); |
| pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\""); |
| } |
| return nullptr; |
| } |
| |
| PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) { |
| detail::type_info *type_info = get_type_info(tp, throw_if_missing); |
| return handle(type_info ? ((PyObject *) type_info->type) : nullptr); |
| } |
| |
| struct value_and_holder { |
| instance *inst; |
| size_t index; |
| const detail::type_info *type; |
| void **vh; |
| |
| // Main constructor for a found value/holder: |
| value_and_holder(instance *i, const detail::type_info *type, size_t vpos, size_t index) : |
| inst{i}, index{index}, type{type}, |
| vh{inst->simple_layout ? inst->simple_value_holder : &inst->nonsimple.values_and_holders[vpos]} |
| {} |
| |
| // Default constructor (used to signal a value-and-holder not found by get_value_and_holder()) |
| value_and_holder() : inst{nullptr} {} |
| |
| // Used for past-the-end iterator |
| value_and_holder(size_t index) : index{index} {} |
| |
| template <typename V = void> V *&value_ptr() const { |
| return reinterpret_cast<V *&>(vh[0]); |
| } |
| // True if this `value_and_holder` has a non-null value pointer |
| explicit operator bool() const { return value_ptr(); } |
| |
| template <typename H> H &holder() const { |
| return reinterpret_cast<H &>(vh[1]); |
| } |
| bool holder_constructed() const { |
| return inst->simple_layout |
| ? inst->simple_holder_constructed |
| : inst->nonsimple.status[index] & instance::status_holder_constructed; |
| } |
| void set_holder_constructed(bool v = true) { |
| if (inst->simple_layout) |
| inst->simple_holder_constructed = v; |
| else if (v) |
| inst->nonsimple.status[index] |= instance::status_holder_constructed; |
| else |
| inst->nonsimple.status[index] &= (uint8_t) ~instance::status_holder_constructed; |
| } |
| bool instance_registered() const { |
| return inst->simple_layout |
| ? inst->simple_instance_registered |
| : inst->nonsimple.status[index] & instance::status_instance_registered; |
| } |
| void set_instance_registered(bool v = true) { |
| if (inst->simple_layout) |
| inst->simple_instance_registered = v; |
| else if (v) |
| inst->nonsimple.status[index] |= instance::status_instance_registered; |
| else |
| inst->nonsimple.status[index] &= (uint8_t) ~instance::status_instance_registered; |
| } |
| }; |
| |
| // Container for accessing and iterating over an instance's values/holders |
| struct values_and_holders { |
| private: |
| instance *inst; |
| using type_vec = std::vector<detail::type_info *>; |
| const type_vec &tinfo; |
| |
| public: |
| values_and_holders(instance *inst) : inst{inst}, tinfo(all_type_info(Py_TYPE(inst))) {} |
| |
| struct iterator { |
| private: |
| instance *inst; |
| const type_vec *types; |
| value_and_holder curr; |
| friend struct values_and_holders; |
| iterator(instance *inst, const type_vec *tinfo) |
| : inst{inst}, types{tinfo}, |
| curr(inst /* instance */, |
| types->empty() ? nullptr : (*types)[0] /* type info */, |
| 0, /* vpos: (non-simple types only): the first vptr comes first */ |
| 0 /* index */) |
| {} |
| // Past-the-end iterator: |
| iterator(size_t end) : curr(end) {} |
| public: |
| bool operator==(const iterator &other) { return curr.index == other.curr.index; } |
| bool operator!=(const iterator &other) { return curr.index != other.curr.index; } |
| iterator &operator++() { |
| if (!inst->simple_layout) |
| curr.vh += 1 + (*types)[curr.index]->holder_size_in_ptrs; |
| ++curr.index; |
| curr.type = curr.index < types->size() ? (*types)[curr.index] : nullptr; |
| return *this; |
| } |
| value_and_holder &operator*() { return curr; } |
| value_and_holder *operator->() { return &curr; } |
| }; |
| |
| iterator begin() { return iterator(inst, &tinfo); } |
| iterator end() { return iterator(tinfo.size()); } |
| |
| iterator find(const type_info *find_type) { |
| auto it = begin(), endit = end(); |
| while (it != endit && it->type != find_type) ++it; |
| return it; |
| } |
| |
| size_t size() { return tinfo.size(); } |
| }; |
| |
| /** |
| * Extracts C++ value and holder pointer references from an instance (which may contain multiple |
| * values/holders for python-side multiple inheritance) that match the given type. Throws an error |
| * if the given type (or ValueType, if omitted) is not a pybind11 base of the given instance. If |
| * `find_type` is omitted (or explicitly specified as nullptr) the first value/holder are returned, |
| * regardless of type (and the resulting .type will be nullptr). |
| * |
| * The returned object should be short-lived: in particular, it must not outlive the called-upon |
| * instance. |
| */ |
| PYBIND11_NOINLINE inline value_and_holder instance::get_value_and_holder(const type_info *find_type /*= nullptr default in common.h*/, bool throw_if_missing /*= true in common.h*/) { |
| // Optimize common case: |
| if (!find_type || Py_TYPE(this) == find_type->type) |
| return value_and_holder(this, find_type, 0, 0); |
| |
| detail::values_and_holders vhs(this); |
| auto it = vhs.find(find_type); |
| if (it != vhs.end()) |
| return *it; |
| |
| if (!throw_if_missing) |
| return value_and_holder(); |
| |
| #if defined(NDEBUG) |
| pybind11_fail("pybind11::detail::instance::get_value_and_holder: " |
| "type is not a pybind11 base of the given instance " |
| "(compile in debug mode for type details)"); |
| #else |
| pybind11_fail("pybind11::detail::instance::get_value_and_holder: `" + |
| std::string(find_type->type->tp_name) + "' is not a pybind11 base of the given `" + |
| std::string(Py_TYPE(this)->tp_name) + "' instance"); |
| #endif |
| } |
| |
| PYBIND11_NOINLINE inline void instance::allocate_layout() { |
| auto &tinfo = all_type_info(Py_TYPE(this)); |
| |
| const size_t n_types = tinfo.size(); |
| |
| if (n_types == 0) |
| pybind11_fail("instance allocation failed: new instance has no pybind11-registered base types"); |
| |
| simple_layout = |
| n_types == 1 && tinfo.front()->holder_size_in_ptrs <= instance_simple_holder_in_ptrs(); |
| |
| // Simple path: no python-side multiple inheritance, and a small-enough holder |
| if (simple_layout) { |
| simple_value_holder[0] = nullptr; |
| simple_holder_constructed = false; |
| simple_instance_registered = false; |
| } |
| else { // multiple base types or a too-large holder |
| // Allocate space to hold: [v1*][h1][v2*][h2]...[bb...] where [vN*] is a value pointer, |
| // [hN] is the (uninitialized) holder instance for value N, and [bb...] is a set of bool |
| // values that tracks whether each associated holder has been initialized. Each [block] is |
| // padded, if necessary, to an integer multiple of sizeof(void *). |
| size_t space = 0; |
| for (auto t : tinfo) { |
| space += 1; // value pointer |
| space += t->holder_size_in_ptrs; // holder instance |
| } |
| size_t flags_at = space; |
| space += size_in_ptrs(n_types); // status bytes (holder_constructed and instance_registered) |
| |
| // Allocate space for flags, values, and holders, and initialize it to 0 (flags and values, |
| // in particular, need to be 0). Use Python's memory allocation functions: in Python 3.6 |
| // they default to using pymalloc, which is designed to be efficient for small allocations |
| // like the one we're doing here; in earlier versions (and for larger allocations) they are |
| // just wrappers around malloc. |
| #if PY_VERSION_HEX >= 0x03050000 |
| nonsimple.values_and_holders = (void **) PyMem_Calloc(space, sizeof(void *)); |
| if (!nonsimple.values_and_holders) throw std::bad_alloc(); |
| #else |
| nonsimple.values_and_holders = (void **) PyMem_New(void *, space); |
| if (!nonsimple.values_and_holders) throw std::bad_alloc(); |
| std::memset(nonsimple.values_and_holders, 0, space * sizeof(void *)); |
| #endif |
| nonsimple.status = reinterpret_cast<uint8_t *>(&nonsimple.values_and_holders[flags_at]); |
| } |
| owned = true; |
| } |
| |
| PYBIND11_NOINLINE inline void instance::deallocate_layout() { |
| if (!simple_layout) |
| PyMem_Free(nonsimple.values_and_holders); |
| } |
| |
| PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) { |
| handle type = detail::get_type_handle(tp, false); |
| if (!type) |
| return false; |
| return isinstance(obj, type); |
| } |
| |
| PYBIND11_NOINLINE inline std::string error_string() { |
| if (!PyErr_Occurred()) { |
| PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred"); |
| return "Unknown internal error occurred"; |
| } |
| |
| error_scope scope; // Preserve error state |
| |
| std::string errorString; |
| if (scope.type) { |
| errorString += handle(scope.type).attr("__name__").cast<std::string>(); |
| errorString += ": "; |
| } |
| if (scope.value) |
| errorString += (std::string) str(scope.value); |
| |
| PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace); |
| |
| #if PY_MAJOR_VERSION >= 3 |
| if (scope.trace != nullptr) |
| PyException_SetTraceback(scope.value, scope.trace); |
| #endif |
| |
| #if !defined(PYPY_VERSION) |
| if (scope.trace) { |
| PyTracebackObject *trace = (PyTracebackObject *) scope.trace; |
| |
| /* Get the deepest trace possible */ |
| while (trace->tb_next) |
| trace = trace->tb_next; |
| |
| PyFrameObject *frame = trace->tb_frame; |
| errorString += "\n\nAt:\n"; |
| while (frame) { |
| int lineno = PyFrame_GetLineNumber(frame); |
| errorString += |
| " " + handle(frame->f_code->co_filename).cast<std::string>() + |
| "(" + std::to_string(lineno) + "): " + |
| handle(frame->f_code->co_name).cast<std::string>() + "\n"; |
| frame = frame->f_back; |
| } |
| } |
| #endif |
| |
| return errorString; |
| } |
| |
| PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) { |
| auto &instances = get_internals().registered_instances; |
| auto range = instances.equal_range(ptr); |
| for (auto it = range.first; it != range.second; ++it) { |
| for (auto vh : values_and_holders(it->second)) { |
| if (vh.type == type) |
| return handle((PyObject *) it->second); |
| } |
| } |
| return handle(); |
| } |
| |
| inline PyThreadState *get_thread_state_unchecked() { |
| #if defined(PYPY_VERSION) |
| return PyThreadState_GET(); |
| #elif PY_VERSION_HEX < 0x03000000 |
| return _PyThreadState_Current; |
| #elif PY_VERSION_HEX < 0x03050000 |
| return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current); |
| #elif PY_VERSION_HEX < 0x03050200 |
| return (PyThreadState*) _PyThreadState_Current.value; |
| #else |
| return _PyThreadState_UncheckedGet(); |
| #endif |
| } |
| |
| // Forward declarations |
| inline void keep_alive_impl(handle nurse, handle patient); |
| inline PyObject *make_new_instance(PyTypeObject *type); |
| |
| class type_caster_generic { |
| public: |
| PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info) |
| : typeinfo(get_type_info(type_info)), cpptype(&type_info) { } |
| |
| type_caster_generic(const type_info *typeinfo) |
| : typeinfo(typeinfo), cpptype(typeinfo ? typeinfo->cpptype : nullptr) { } |
| |
| bool load(handle src, bool convert) { |
| return load_impl<type_caster_generic>(src, convert); |
| } |
| |
| PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent, |
| const detail::type_info *tinfo, |
| void *(*copy_constructor)(const void *), |
| void *(*move_constructor)(const void *), |
| const void *existing_holder = nullptr) { |
| if (!tinfo) // no type info: error will be set already |
| return handle(); |
| |
| void *src = const_cast<void *>(_src); |
| if (src == nullptr) |
| return none().release(); |
| |
| auto it_instances = get_internals().registered_instances.equal_range(src); |
| for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) { |
| for (auto instance_type : detail::all_type_info(Py_TYPE(it_i->second))) { |
| if (instance_type && same_type(*instance_type->cpptype, *tinfo->cpptype)) |
| return handle((PyObject *) it_i->second).inc_ref(); |
| } |
| } |
| |
| auto inst = reinterpret_steal<object>(make_new_instance(tinfo->type)); |
| auto wrapper = reinterpret_cast<instance *>(inst.ptr()); |
| wrapper->owned = false; |
| void *&valueptr = values_and_holders(wrapper).begin()->value_ptr(); |
| |
| switch (policy) { |
| case return_value_policy::automatic: |
| case return_value_policy::take_ownership: |
| valueptr = src; |
| wrapper->owned = true; |
| break; |
| |
| case return_value_policy::automatic_reference: |
| case return_value_policy::reference: |
| valueptr = src; |
| wrapper->owned = false; |
| break; |
| |
| case return_value_policy::copy: |
| if (copy_constructor) |
| valueptr = copy_constructor(src); |
| else |
| throw cast_error("return_value_policy = copy, but the " |
| "object is non-copyable!"); |
| wrapper->owned = true; |
| break; |
| |
| case return_value_policy::move: |
| if (move_constructor) |
| valueptr = move_constructor(src); |
| else if (copy_constructor) |
| valueptr = copy_constructor(src); |
| else |
| throw cast_error("return_value_policy = move, but the " |
| "object is neither movable nor copyable!"); |
| wrapper->owned = true; |
| break; |
| |
| case return_value_policy::reference_internal: |
| valueptr = src; |
| wrapper->owned = false; |
| keep_alive_impl(inst, parent); |
| break; |
| |
| default: |
| throw cast_error("unhandled return_value_policy: should not happen!"); |
| } |
| |
| tinfo->init_instance(wrapper, existing_holder); |
| |
| return inst.release(); |
| } |
| |
| // Base methods for generic caster; there are overridden in copyable_holder_caster |
| void load_value(value_and_holder &&v_h) { |
| auto *&vptr = v_h.value_ptr(); |
| // Lazy allocation for unallocated values: |
| if (vptr == nullptr) { |
| auto *type = v_h.type ? v_h.type : typeinfo; |
| vptr = type->operator_new(type->type_size); |
| } |
| value = vptr; |
| } |
| bool try_implicit_casts(handle src, bool convert) { |
| for (auto &cast : typeinfo->implicit_casts) { |
| type_caster_generic sub_caster(*cast.first); |
| if (sub_caster.load(src, convert)) { |
| value = cast.second(sub_caster.value); |
| return true; |
| } |
| } |
| return false; |
| } |
| bool try_direct_conversions(handle src) { |
| for (auto &converter : *typeinfo->direct_conversions) { |
| if (converter(src.ptr(), value)) |
| return true; |
| } |
| return false; |
| } |
| void check_holder_compat() {} |
| |
| PYBIND11_NOINLINE static void *local_load(PyObject *src, const type_info *ti) { |
| auto caster = type_caster_generic(ti); |
| if (caster.load(src, false)) |
| return caster.value; |
| return nullptr; |
| } |
| |
| /// Try to load with foreign typeinfo, if available. Used when there is no |
| /// native typeinfo, or when the native one wasn't able to produce a value. |
| PYBIND11_NOINLINE bool try_load_foreign_module_local(handle src) { |
| constexpr auto *local_key = PYBIND11_MODULE_LOCAL_ID; |
| const auto pytype = src.get_type(); |
| if (!hasattr(pytype, local_key)) |
| return false; |
| |
| type_info *foreign_typeinfo = reinterpret_borrow<capsule>(getattr(pytype, local_key)); |
| // Only consider this foreign loader if actually foreign and is a loader of the correct cpp type |
| if (foreign_typeinfo->module_local_load == &local_load |
| || (cpptype && !same_type(*cpptype, *foreign_typeinfo->cpptype))) |
| return false; |
| |
| if (auto result = foreign_typeinfo->module_local_load(src.ptr(), foreign_typeinfo)) { |
| value = result; |
| return true; |
| } |
| return false; |
| } |
| |
| // Implementation of `load`; this takes the type of `this` so that it can dispatch the relevant |
| // bits of code between here and copyable_holder_caster where the two classes need different |
| // logic (without having to resort to virtual inheritance). |
| template <typename ThisT> |
| PYBIND11_NOINLINE bool load_impl(handle src, bool convert) { |
| if (!src) return false; |
| if (!typeinfo) return try_load_foreign_module_local(src); |
| if (src.is_none()) { |
| // Defer accepting None to other overloads (if we aren't in convert mode): |
| if (!convert) return false; |
| value = nullptr; |
| return true; |
| } |
| |
| auto &this_ = static_cast<ThisT &>(*this); |
| this_.check_holder_compat(); |
| |
| PyTypeObject *srctype = Py_TYPE(src.ptr()); |
| |
| // Case 1: If src is an exact type match for the target type then we can reinterpret_cast |
| // the instance's value pointer to the target type: |
| if (srctype == typeinfo->type) { |
| this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder()); |
| return true; |
| } |
| // Case 2: We have a derived class |
| else if (PyType_IsSubtype(srctype, typeinfo->type)) { |
| auto &bases = all_type_info(srctype); |
| bool no_cpp_mi = typeinfo->simple_type; |
| |
| // Case 2a: the python type is a Python-inherited derived class that inherits from just |
| // one simple (no MI) pybind11 class, or is an exact match, so the C++ instance is of |
| // the right type and we can use reinterpret_cast. |
| // (This is essentially the same as case 2b, but because not using multiple inheritance |
| // is extremely common, we handle it specially to avoid the loop iterator and type |
| // pointer lookup overhead) |
| if (bases.size() == 1 && (no_cpp_mi || bases.front()->type == typeinfo->type)) { |
| this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder()); |
| return true; |
| } |
| // Case 2b: the python type inherits from multiple C++ bases. Check the bases to see if |
| // we can find an exact match (or, for a simple C++ type, an inherited match); if so, we |
| // can safely reinterpret_cast to the relevant pointer. |
| else if (bases.size() > 1) { |
| for (auto base : bases) { |
| if (no_cpp_mi ? PyType_IsSubtype(base->type, typeinfo->type) : base->type == typeinfo->type) { |
| this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder(base)); |
| return true; |
| } |
| } |
| } |
| |
| // Case 2c: C++ multiple inheritance is involved and we couldn't find an exact type match |
| // in the registered bases, above, so try implicit casting (needed for proper C++ casting |
| // when MI is involved). |
| if (this_.try_implicit_casts(src, convert)) |
| return true; |
| } |
| |
| // Perform an implicit conversion |
| if (convert) { |
| for (auto &converter : typeinfo->implicit_conversions) { |
| auto temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type)); |
| if (load_impl<ThisT>(temp, false)) { |
| loader_life_support::add_patient(temp); |
| return true; |
| } |
| } |
| if (this_.try_direct_conversions(src)) |
| return true; |
| } |
| |
| // Failed to match local typeinfo. Try again with global. |
| if (typeinfo->module_local) { |
| if (auto gtype = get_global_type_info(*typeinfo->cpptype)) { |
| typeinfo = gtype; |
| return load(src, false); |
| } |
| } |
| |
| // Global typeinfo has precedence over foreign module_local |
| return try_load_foreign_module_local(src); |
| } |
| |
| |
| // Called to do type lookup and wrap the pointer and type in a pair when a dynamic_cast |
| // isn't needed or can't be used. If the type is unknown, sets the error and returns a pair |
| // with .second = nullptr. (p.first = nullptr is not an error: it becomes None). |
| PYBIND11_NOINLINE static std::pair<const void *, const type_info *> src_and_type( |
| const void *src, const std::type_info &cast_type, const std::type_info *rtti_type = nullptr) { |
| if (auto *tpi = get_type_info(cast_type)) |
| return {src, const_cast<const type_info *>(tpi)}; |
| |
| // Not found, set error: |
| std::string tname = rtti_type ? rtti_type->name() : cast_type.name(); |
| detail::clean_type_id(tname); |
| std::string msg = "Unregistered type : " + tname; |
| PyErr_SetString(PyExc_TypeError, msg.c_str()); |
| return {nullptr, nullptr}; |
| } |
| |
| const type_info *typeinfo = nullptr; |
| const std::type_info *cpptype = nullptr; |
| void *value = nullptr; |
| }; |
| |
| /** |
| * Determine suitable casting operator for pointer-or-lvalue-casting type casters. The type caster |
| * needs to provide `operator T*()` and `operator T&()` operators. |
| * |
| * If the type supports moving the value away via an `operator T&&() &&` method, it should use |
| * `movable_cast_op_type` instead. |
| */ |
| template <typename T> |
| using cast_op_type = |
| conditional_t<std::is_pointer<remove_reference_t<T>>::value, |
| typename std::add_pointer<intrinsic_t<T>>::type, |
| typename std::add_lvalue_reference<intrinsic_t<T>>::type>; |
| |
| /** |
| * Determine suitable casting operator for a type caster with a movable value. Such a type caster |
| * needs to provide `operator T*()`, `operator T&()`, and `operator T&&() &&`. The latter will be |
| * called in appropriate contexts where the value can be moved rather than copied. |
| * |
| * These operator are automatically provided when using the PYBIND11_TYPE_CASTER macro. |
| */ |
| template <typename T> |
| using movable_cast_op_type = |
| conditional_t<std::is_pointer<typename std::remove_reference<T>::type>::value, |
| typename std::add_pointer<intrinsic_t<T>>::type, |
| conditional_t<std::is_rvalue_reference<T>::value, |
| typename std::add_rvalue_reference<intrinsic_t<T>>::type, |
| typename std::add_lvalue_reference<intrinsic_t<T>>::type>>; |
| |
| // std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when |
| // T is non-copyable, but code containing such a copy constructor fails to actually compile. |
| template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {}; |
| |
| // Specialization for types that appear to be copy constructible but also look like stl containers |
| // (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if |
| // so, copy constructability depends on whether the value_type is copy constructible. |
| template <typename Container> struct is_copy_constructible<Container, enable_if_t<all_of< |
| std::is_copy_constructible<Container>, |
| std::is_same<typename Container::value_type &, typename Container::reference> |
| >::value>> : is_copy_constructible<typename Container::value_type> {}; |
| |
| #if !defined(PYBIND11_CPP17) |
| // Likewise for std::pair before C++17 (which mandates that the copy constructor not exist when the |
| // two types aren't themselves copy constructible). |
| template <typename T1, typename T2> struct is_copy_constructible<std::pair<T1, T2>> |
| : all_of<is_copy_constructible<T1>, is_copy_constructible<T2>> {}; |
| #endif |
| |
| /// Generic type caster for objects stored on the heap |
| template <typename type> class type_caster_base : public type_caster_generic { |
| using itype = intrinsic_t<type>; |
| public: |
| static PYBIND11_DESCR name() { return type_descr(_<type>()); } |
| |
| type_caster_base() : type_caster_base(typeid(type)) { } |
| explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { } |
| |
| static handle cast(const itype &src, return_value_policy policy, handle parent) { |
| if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) |
| policy = return_value_policy::copy; |
| return cast(&src, policy, parent); |
| } |
| |
| static handle cast(itype &&src, return_value_policy, handle parent) { |
| return cast(&src, return_value_policy::move, parent); |
| } |
| |
| // Returns a (pointer, type_info) pair taking care of necessary RTTI type lookup for a |
| // polymorphic type. If the instance isn't derived, returns the non-RTTI base version. |
| template <typename T = itype, enable_if_t<std::is_polymorphic<T>::value, int> = 0> |
| static std::pair<const void *, const type_info *> src_and_type(const itype *src) { |
| const void *vsrc = src; |
| auto &cast_type = typeid(itype); |
| const std::type_info *instance_type = nullptr; |
| if (vsrc) { |
| instance_type = &typeid(*src); |
| if (!same_type(cast_type, *instance_type)) { |
| // This is a base pointer to a derived type; if it is a pybind11-registered type, we |
| // can get the correct derived pointer (which may be != base pointer) by a |
| // dynamic_cast to most derived type: |
| if (auto *tpi = get_type_info(*instance_type)) |
| return {dynamic_cast<const void *>(src), const_cast<const type_info *>(tpi)}; |
| } |
| } |
| // Otherwise we have either a nullptr, an `itype` pointer, or an unknown derived pointer, so |
| // don't do a cast |
| return type_caster_generic::src_and_type(vsrc, cast_type, instance_type); |
| } |
| |
| // Non-polymorphic type, so no dynamic casting; just call the generic version directly |
| template <typename T = itype, enable_if_t<!std::is_polymorphic<T>::value, int> = 0> |
| static std::pair<const void *, const type_info *> src_and_type(const itype *src) { |
| return type_caster_generic::src_and_type(src, typeid(itype)); |
| } |
| |
| static handle cast(const itype *src, return_value_policy policy, handle parent) { |
| auto st = src_and_type(src); |
| return type_caster_generic::cast( |
| st.first, policy, parent, st.second, |
| make_copy_constructor(src), make_move_constructor(src)); |
| } |
| |
| static handle cast_holder(const itype *src, const void *holder) { |
| auto st = src_and_type(src); |
| return type_caster_generic::cast( |
| st.first, return_value_policy::take_ownership, {}, st.second, |
| nullptr, nullptr, holder); |
| } |
| |
| template <typename T> using cast_op_type = cast_op_type<T>; |
| |
| operator itype*() { return (type *) value; } |
| operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); } |
| |
| protected: |
| using Constructor = void *(*)(const void *); |
| |
| /* Only enabled when the types are {copy,move}-constructible *and* when the type |
| does not have a private operator new implementation. */ |
| template <typename T, typename = enable_if_t<is_copy_constructible<T>::value>> |
| static auto make_copy_constructor(const T *x) -> decltype(new T(*x), Constructor{}) { |
| return [](const void *arg) -> void * { |
| return new T(*reinterpret_cast<const T *>(arg)); |
| }; |
| } |
| |
| template <typename T, typename = enable_if_t<std::is_move_constructible<T>::value>> |
| static auto make_move_constructor(const T *x) -> decltype(new T(std::move(*const_cast<T *>(x))), Constructor{}) { |
| return [](const void *arg) -> void * { |
| return new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg)))); |
| }; |
| } |
| |
| static Constructor make_copy_constructor(...) { return nullptr; } |
| static Constructor make_move_constructor(...) { return nullptr; } |
| }; |
| |
| template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { }; |
| template <typename type> using make_caster = type_caster<intrinsic_t<type>>; |
| |
| // Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T |
| template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) { |
| return caster.operator typename make_caster<T>::template cast_op_type<T>(); |
| } |
| template <typename T> typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type> |
| cast_op(make_caster<T> &&caster) { |
| return std::move(caster).operator |
| typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>(); |
| } |
| |
| template <typename type> class type_caster<std::reference_wrapper<type>> { |
| private: |
| using caster_t = make_caster<type>; |
| caster_t subcaster; |
| using subcaster_cast_op_type = typename caster_t::template cast_op_type<type>; |
| static_assert(std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value, |
| "std::reference_wrapper<T> caster requires T to have a caster with an `T &` operator"); |
| public: |
| bool load(handle src, bool convert) { return subcaster.load(src, convert); } |
| static PYBIND11_DESCR name() { return caster_t::name(); } |
| static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) { |
| // It is definitely wrong to take ownership of this pointer, so mask that rvp |
| if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic) |
| policy = return_value_policy::automatic_reference; |
| return caster_t::cast(&src.get(), policy, parent); |
| } |
| template <typename T> using cast_op_type = std::reference_wrapper<type>; |
| operator std::reference_wrapper<type>() { return subcaster.operator subcaster_cast_op_type&(); } |
| }; |
| |
| #define PYBIND11_TYPE_CASTER(type, py_name) \ |
| protected: \ |
| type value; \ |
| public: \ |
| static PYBIND11_DESCR name() { return type_descr(py_name); } \ |
| template <typename T_, enable_if_t<std::is_same<type, remove_cv_t<T_>>::value, int> = 0> \ |
| static handle cast(T_ *src, return_value_policy policy, handle parent) { \ |
| if (!src) return none().release(); \ |
| if (policy == return_value_policy::take_ownership) { \ |
| auto h = cast(std::move(*src), policy, parent); delete src; return h; \ |
| } else { \ |
| return cast(*src, policy, parent); \ |
| } \ |
| } \ |
| operator type*() { return &value; } \ |
| operator type&() { return value; } \ |
| operator type&&() && { return std::move(value); } \ |
| template <typename T_> using cast_op_type = pybind11::detail::movable_cast_op_type<T_> |
| |
| |
| template <typename CharT> using is_std_char_type = any_of< |
| std::is_same<CharT, char>, /* std::string */ |
| std::is_same<CharT, char16_t>, /* std::u16string */ |
| std::is_same<CharT, char32_t>, /* std::u32string */ |
| std::is_same<CharT, wchar_t> /* std::wstring */ |
| >; |
| |
| template <typename T> |
| struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> { |
| using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>; |
| using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>; |
| using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>; |
| public: |
| |
| bool load(handle src, bool convert) { |
| py_type py_value; |
| |
| if (!src) |
| return false; |
| |
| if (std::is_floating_point<T>::value) { |
| if (convert || PyFloat_Check(src.ptr())) |
| py_value = (py_type) PyFloat_AsDouble(src.ptr()); |
| else |
| return false; |
| } else if (PyFloat_Check(src.ptr())) { |
| return false; |
| } else if (std::is_unsigned<py_type>::value) { |
| py_value = as_unsigned<py_type>(src.ptr()); |
| } else { // signed integer: |
| py_value = sizeof(T) <= sizeof(long) |
| ? (py_type) PyLong_AsLong(src.ptr()) |
| : (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr()); |
| } |
| |
| bool py_err = py_value == (py_type) -1 && PyErr_Occurred(); |
| if (py_err || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) && |
| (py_value < (py_type) std::numeric_limits<T>::min() || |
| py_value > (py_type) std::numeric_limits<T>::max()))) { |
| bool type_error = py_err && PyErr_ExceptionMatches( |
| #if PY_VERSION_HEX < 0x03000000 && !defined(PYPY_VERSION) |
| PyExc_SystemError |
| #else |
| PyExc_TypeError |
| #endif |
| ); |
| PyErr_Clear(); |
| if (type_error && convert && PyNumber_Check(src.ptr())) { |
| auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value |
| ? PyNumber_Float(src.ptr()) |
| : PyNumber_Long(src.ptr())); |
| PyErr_Clear(); |
| return load(tmp, false); |
| } |
| return false; |
| } |
| |
| value = (T) py_value; |
| return true; |
| } |
| |
| static handle cast(T src, return_value_policy /* policy */, handle /* parent */) { |
| if (std::is_floating_point<T>::value) { |
| return PyFloat_FromDouble((double) src); |
| } else if (sizeof(T) <= sizeof(long)) { |
| if (std::is_signed<T>::value) |
| return PyLong_FromLong((long) src); |
| else |
| return PyLong_FromUnsignedLong((unsigned long) src); |
| } else { |
| if (std::is_signed<T>::value) |
| return PyLong_FromLongLong((long long) src); |
| else |
| return PyLong_FromUnsignedLongLong((unsigned long long) src); |
| } |
| } |
| |
| PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float")); |
| }; |
| |
| template<typename T> struct void_caster { |
| public: |
| bool load(handle src, bool) { |
| if (src && src.is_none()) |
| return true; |
| return false; |
| } |
| static handle cast(T, return_value_policy /* policy */, handle /* parent */) { |
| return none().inc_ref(); |
| } |
| PYBIND11_TYPE_CASTER(T, _("None")); |
| }; |
| |
| template <> class type_caster<void_type> : public void_caster<void_type> {}; |
| |
| template <> class type_caster<void> : public type_caster<void_type> { |
| public: |
| using type_caster<void_type>::cast; |
| |
| bool load(handle h, bool) { |
| if (!h) { |
| return false; |
| } else if (h.is_none()) { |
| value = nullptr; |
| return true; |
| } |
| |
| /* Check if this is a capsule */ |
| if (isinstance<capsule>(h)) { |
| value = reinterpret_borrow<capsule>(h); |
| return true; |
| } |
| |
| /* Check if this is a C++ type */ |
| auto &bases = all_type_info((PyTypeObject *) h.get_type().ptr()); |
| if (bases.size() == 1) { // Only allowing loading from a single-value type |
| value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr(); |
| return true; |
| } |
| |
| /* Fail */ |
| return false; |
| } |
| |
| static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) { |
| if (ptr) |
| return capsule(ptr).release(); |
| else |
| return none().inc_ref(); |
| } |
| |
| template <typename T> using cast_op_type = void*&; |
| operator void *&() { return value; } |
| static PYBIND11_DESCR name() { return type_descr(_("capsule")); } |
| private: |
| void *value = nullptr; |
| }; |
| |
| template <> class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> { }; |
| |
| template <> class type_caster<bool> { |
| public: |
| bool load(handle src, bool convert) { |
| if (!src) return false; |
| else if (src.ptr() == Py_True) { value = true; return true; } |
| else if (src.ptr() == Py_False) { value = false; return true; } |
| else if (convert || !strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name)) { |
| // (allow non-implicit conversion for numpy booleans) |
| |
| Py_ssize_t res = -1; |
| if (src.is_none()) { |
| res = 0; // None is implicitly converted to False |
| } |
| #if defined(PYPY_VERSION) |
| // On PyPy, check that "__bool__" (or "__nonzero__" on Python 2.7) attr exists |
| else if (hasattr(src, PYBIND11_BOOL_ATTR)) { |
| res = PyObject_IsTrue(src.ptr()); |
| } |
| #else |
| // Alternate approach for CPython: this does the same as the above, but optimized |
| // using the CPython API so as to avoid an unneeded attribute lookup. |
| else if (auto tp_as_number = src.ptr()->ob_type->tp_as_number) { |
| if (PYBIND11_NB_BOOL(tp_as_number)) { |
| res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr()); |
| } |
| } |
| #endif |
| if (res == 0 || res == 1) { |
| value = (bool) res; |
| return true; |
| } |
| } |
| return false; |
| } |
| static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) { |
| return handle(src ? Py_True : Py_False).inc_ref(); |
| } |
| PYBIND11_TYPE_CASTER(bool, _("bool")); |
| }; |
| |
| // Helper class for UTF-{8,16,32} C++ stl strings: |
| template <typename StringType, bool IsView = false> struct string_caster { |
| using CharT = typename StringType::value_type; |
| |
| // Simplify life by being able to assume standard char sizes (the standard only guarantees |
| // minimums, but Python requires exact sizes) |
| static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1"); |
| static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2"); |
| static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4"); |
| // wchar_t can be either 16 bits (Windows) or 32 (everywhere else) |
| static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4, |
| "Unsupported wchar_t size != 2/4"); |
| static constexpr size_t UTF_N = 8 * sizeof(CharT); |
| |
| bool load(handle src, bool) { |
| #if PY_MAJOR_VERSION < 3 |
| object temp; |
| #endif |
| handle load_src = src; |
| if (!src) { |
| return false; |
| } else if (!PyUnicode_Check(load_src.ptr())) { |
| #if PY_MAJOR_VERSION >= 3 |
| return load_bytes(load_src); |
| #else |
| if (sizeof(CharT) == 1) { |
| return load_bytes(load_src); |
| } |
| |
| // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false |
| if (!PYBIND11_BYTES_CHECK(load_src.ptr())) |
| return false; |
| |
| temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr())); |
| if (!temp) { PyErr_Clear(); return false; } |
| load_src = temp; |
| #endif |
| } |
| |
| object utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString( |
| load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr)); |
| if (!utfNbytes) { PyErr_Clear(); return false; } |
| |
| const CharT *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr())); |
| size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT); |
| if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32 |
| value = StringType(buffer, length); |
| |
| // If we're loading a string_view we need to keep the encoded Python object alive: |
| if (IsView) |
| loader_life_support::add_patient(utfNbytes); |
| |
| return true; |
| } |
| |
| static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) { |
| const char *buffer = reinterpret_cast<const char *>(src.data()); |
| ssize_t nbytes = ssize_t(src.size() * sizeof(CharT)); |
| handle s = decode_utfN(buffer, nbytes); |
| if (!s) throw error_already_set(); |
| return s; |
| } |
| |
| PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME)); |
| |
| private: |
| static handle decode_utfN(const char *buffer, ssize_t nbytes) { |
| #if !defined(PYPY_VERSION) |
| return |
| UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) : |
| UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) : |
| PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr); |
| #else |
| // PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version |
| // sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a |
| // non-const char * arguments, which is also a nuissance, so bypass the whole thing by just |
| // passing the encoding as a string value, which works properly: |
| return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr); |
| #endif |
| } |
| |
| // When loading into a std::string or char*, accept a bytes object as-is (i.e. |
| // without any encoding/decoding attempt). For other C++ char sizes this is a no-op. |
| // which supports loading a unicode from a str, doesn't take this path. |
| template <typename C = CharT> |
| bool load_bytes(enable_if_t<sizeof(C) == 1, handle> src) { |
| if (PYBIND11_BYTES_CHECK(src.ptr())) { |
| // We were passed a Python 3 raw bytes; accept it into a std::string or char* |
| // without any encoding attempt. |
| const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr()); |
| if (bytes) { |
| value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr())); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| template <typename C = CharT> |
| bool load_bytes(enable_if_t<sizeof(C) != 1, handle>) { return false; } |
| }; |
| |
| template <typename CharT, class Traits, class Allocator> |
| struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>> |
| : string_caster<std::basic_string<CharT, Traits, Allocator>> {}; |
| |
| #ifdef PYBIND11_HAS_STRING_VIEW |
| template <typename CharT, class Traits> |
| struct type_caster<std::basic_string_view<CharT, Traits>, enable_if_t<is_std_char_type<CharT>::value>> |
| : string_caster<std::basic_string_view<CharT, Traits>, true> {}; |
| #endif |
| |
| // Type caster for C-style strings. We basically use a std::string type caster, but also add the |
| // ability to use None as a nullptr char* (which the string caster doesn't allow). |
| template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> { |
| using StringType = std::basic_string<CharT>; |
| using StringCaster = type_caster<StringType>; |
| StringCaster str_caster; |
| bool none = false; |
| public: |
| bool load(handle src, bool convert) { |
| if (!src) return false; |
| if (src.is_none()) { |
| // Defer accepting None to other overloads (if we aren't in convert mode): |
| if (!convert) return false; |
| none = true; |
| return true; |
| } |
| return str_caster.load(src, convert); |
| } |
| |
| static handle cast(const CharT *src, return_value_policy policy, handle parent) { |
| if (src == nullptr) return pybind11::none().inc_ref(); |
| return StringCaster::cast(StringType(src), policy, parent); |
| } |
| |
| static handle cast(CharT src, return_value_policy policy, handle parent) { |
| if (std::is_same<char, CharT>::value) { |
| handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr); |
| if (!s) throw error_already_set(); |
| return s; |
| } |
| return StringCaster::cast(StringType(1, src), policy, parent); |
| } |
| |
| operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); } |
| operator CharT() { |
| if (none) |
| throw value_error("Cannot convert None to a character"); |
| |
| auto &value = static_cast<StringType &>(str_caster); |
| size_t str_len = value.size(); |
| if (str_len == 0) |
| throw value_error("Cannot convert empty string to a character"); |
| |
| // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that |
| // is too high, and one for multiple unicode characters (caught later), so we need to figure |
| // out how long the first encoded character is in bytes to distinguish between these two |
| // errors. We also allow want to allow unicode characters U+0080 through U+00FF, as those |
| // can fit into a single char value. |
| if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) { |
| unsigned char v0 = static_cast<unsigned char>(value[0]); |
| size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127 |
| (v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence |
| (v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence |
| 4; // 0b11110xxx - start of 4-byte sequence |
| |
| if (char0_bytes == str_len) { |
| // If we have a 128-255 value, we can decode it into a single char: |
| if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx |
| return static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F)); |
| } |
| // Otherwise we have a single character, but it's > U+00FF |
| throw value_error("Character code point not in range(0x100)"); |
| } |
| } |
| |
| // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a |
| // surrogate pair with total length 2 instantly indicates a range error (but not a "your |
| // string was too long" error). |
| else if (StringCaster::UTF_N == 16 && str_len == 2) { |
| char16_t v0 = static_cast<char16_t>(value[0]); |
| if (v0 >= 0xD800 && v0 < 0xE000) |
| throw value_error("Character code point not in range(0x10000)"); |
| } |
| |
| if (str_len != 1) |
| throw value_error("Expected a character, but multi-character string found"); |
| |
| return value[0]; |
| } |
| |
| static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); } |
| template <typename _T> using cast_op_type = remove_reference_t<pybind11::detail::cast_op_type<_T>>; |
| }; |
| |
| // Base implementation for std::tuple and std::pair |
| template <template<typename...> class Tuple, typename... Ts> class tuple_caster { |
| using type = Tuple<Ts...>; |
| static constexpr auto size = sizeof...(Ts); |
| using indices = make_index_sequence<size>; |
| public: |
| |
| bool load(handle src, bool convert) { |
| if (!isinstance<sequence>(src)) |
| return false; |
| const auto seq = reinterpret_borrow<sequence>(src); |
| if (seq.size() != size) |
| return false; |
| return load_impl(seq, convert, indices{}); |
| } |
| |
| template <typename T> |
| static handle cast(T &&src, return_value_policy policy, handle parent) { |
| return cast_impl(std::forward<T>(src), policy, parent, indices{}); |
| } |
| |
| static PYBIND11_DESCR name() { |
| return type_descr(_("Tuple[") + detail::concat(make_caster<Ts>::name()...) + _("]")); |
| } |
| |
| template <typename T> using cast_op_type = type; |
| |
| operator type() & { return implicit_cast(indices{}); } |
| operator type() && { return std::move(*this).implicit_cast(indices{}); } |
| |
| protected: |
| template <size_t... Is> |
| type implicit_cast(index_sequence<Is...>) & { return type(cast_op<Ts>(std::get<Is>(subcasters))...); } |
| template <size_t... Is> |
| type implicit_cast(index_sequence<Is...>) && { return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...); } |
| |
| static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; } |
| |
| template <size_t... Is> |
| bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) { |
| for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...}) |
| if (!r) |
| return false; |
| return true; |
| } |
| |
| /* Implementation: Convert a C++ tuple into a Python tuple */ |
| template <typename T, size_t... Is> |
| static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) { |
| std::array<object, size> entries{{ |
| reinterpret_steal<object>(make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))... |
| }}; |
| for (const auto &entry: entries) |
| if (!entry) |
| return handle(); |
| tuple result(size); |
| int counter = 0; |
| for (auto & entry: entries) |
| PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr()); |
| return result.release(); |
| } |
| |
| Tuple<make_caster<Ts>...> subcasters; |
| }; |
| |
| template <typename T1, typename T2> class type_caster<std::pair<T1, T2>> |
| : public tuple_caster<std::pair, T1, T2> {}; |
| |
| template <typename... Ts> class type_caster<std::tuple<Ts...>> |
| : public tuple_caster<std::tuple, Ts...> {}; |
| |
| /// Helper class which abstracts away certain actions. Users can provide specializations for |
| /// custom holders, but it's only necessary if the type has a non-standard interface. |
| template <typename T> |
| struct holder_helper { |
| static auto get(const T &p) -> decltype(p.get()) { return p.get(); } |
| }; |
| |
| /// Type caster for holder types like std::shared_ptr, etc. |
| template <typename type, typename holder_type> |
| struct copyable_holder_caster : public type_caster_base<type> { |
| public: |
| using base = type_caster_base<type>; |
| static_assert(std::is_base_of<base, type_caster<type>>::value, |
| "Holder classes are only supported for custom types"); |
| using base::base; |
| using base::cast; |
| using base::typeinfo; |
| using base::value; |
| |
| bool load(handle src, bool convert) { |
| return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert); |
| } |
| |
| explicit operator type*() { return this->value; } |
| explicit operator type&() { return *(this->value); } |
| explicit operator holder_type*() { return &holder; } |
| |
| // Workaround for Intel compiler bug |
| // see pybind11 issue 94 |
| #if defined(__ICC) || defined(__INTEL_COMPILER) |
| operator holder_type&() { return holder; } |
| #else |
| explicit operator holder_type&() { return holder; } |
| #endif |
| |
| static handle cast(const holder_type &src, return_value_policy, handle) { |
| const auto *ptr = holder_helper<holder_type>::get(src); |
| return type_caster_base<type>::cast_holder(ptr, &src); |
| } |
| |
| protected: |
| friend class type_caster_generic; |
| void check_holder_compat() { |
| if (typeinfo->default_holder) |
| throw cast_error("Unable to load a custom holder type from a default-holder instance"); |
| } |
| |
| bool load_value(value_and_holder &&v_h) { |
| if (v_h.holder_constructed()) { |
| value = v_h.value_ptr(); |
| holder = v_h.holder<holder_type>(); |
| return true; |
| } else { |
| throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) " |
| #if defined(NDEBUG) |
| "(compile in debug mode for type information)"); |
| #else |
| "of type '" + type_id<holder_type>() + "''"); |
| #endif |
| } |
| } |
| |
| template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0> |
| bool try_implicit_casts(handle, bool) { return false; } |
| |
| template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0> |
| bool try_implicit_casts(handle src, bool convert) { |
| for (auto &cast : typeinfo->implicit_casts) { |
| copyable_holder_caster sub_caster(*cast.first); |
| if (sub_caster.load(src, convert)) { |
| value = cast.second(sub_caster.value); |
| holder = holder_type(sub_caster.holder, (type *) value); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool try_direct_conversions(handle) { return false; } |
| |
| |
| holder_type holder; |
| }; |
| |
| /// Specialize for the common std::shared_ptr, so users don't need to |
| template <typename T> |
| class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { }; |
| |
| template <typename type, typename holder_type> |
| struct move_only_holder_caster { |
| static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value, |
| "Holder classes are only supported for custom types"); |
| |
| static handle cast(holder_type &&src, return_value_policy, handle) { |
| auto *ptr = holder_helper<holder_type>::get(src); |
| return type_caster_base<type>::cast_holder(ptr, &src); |
| } |
| static PYBIND11_DESCR name() { return type_caster_base<type>::name(); } |
| }; |
| |
| template <typename type, typename deleter> |
| class type_caster<std::unique_ptr<type, deleter>> |
| : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { }; |
| |
| template <typename type, typename holder_type> |
| using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value, |
| copyable_holder_caster<type, holder_type>, |
| move_only_holder_caster<type, holder_type>>; |
| |
| template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; }; |
| |
| /// Create a specialization for custom holder types (silently ignores std::shared_ptr) |
| #define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \ |
| namespace pybind11 { namespace detail { \ |
| template <typename type> \ |
| struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__> { }; \ |
| template <typename type> \ |
| class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \ |
| : public type_caster_holder<type, holder_type> { }; \ |
| }} |
| |
| // PYBIND11_DECLARE_HOLDER_TYPE holder types: |
| template <typename base, typename holder> struct is_holder_type : |
| std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {}; |
| // Specialization for always-supported unique_ptr holders: |
| template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> : |
| std::true_type {}; |
| |
| template <typename T> struct handle_type_name { static PYBIND11_DESCR name() { return _<T>(); } }; |
| template <> struct handle_type_name<bytes> { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } }; |
| template <> struct handle_type_name<args> { static PYBIND11_DESCR name() { return _("*args"); } }; |
| template <> struct handle_type_name<kwargs> { static PYBIND11_DESCR name() { return _("**kwargs"); } }; |
| |
| template <typename type> |
| struct pyobject_caster { |
| template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0> |
| bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); } |
| |
| template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0> |
| bool load(handle src, bool /* convert */) { |
| if (!isinstance<type>(src)) |
| return false; |
| value = reinterpret_borrow<type>(src); |
| return true; |
| } |
| |
| static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) { |
| return src.inc_ref(); |
| } |
| PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name()); |
| }; |
| |
| template <typename T> |
| class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { }; |
| |
| // Our conditions for enabling moving are quite restrictive: |
| // At compile time: |
| // - T needs to be a non-const, non-pointer, non-reference type |
| // - type_caster<T>::operator T&() must exist |
| // - the type must be move constructible (obviously) |
| // At run-time: |
| // - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it |
| // must have ref_count() == 1)h |
| // If any of the above are not satisfied, we fall back to copying. |
| template <typename T> using move_is_plain_type = satisfies_none_of<T, |
| std::is_void, std::is_pointer, std::is_reference, std::is_const |
| >; |
| template <typename T, typename SFINAE = void> struct move_always : std::false_type {}; |
| template <typename T> struct move_always<T, enable_if_t<all_of< |
| move_is_plain_type<T>, |
| negation<is_copy_constructible<T>>, |
| std::is_move_constructible<T>, |
| std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&> |
| >::value>> : std::true_type {}; |
| template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {}; |
| template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of< |
| move_is_plain_type<T>, |
| negation<move_always<T>>, |
| std::is_move_constructible<T>, |
| std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&> |
| >::value>> : std::true_type {}; |
| template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>; |
| |
| // Detect whether returning a `type` from a cast on type's type_caster is going to result in a |
| // reference or pointer to a local variable of the type_caster. Basically, only |
| // non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe; |
| // everything else returns a reference/pointer to a local variable. |
| template <typename type> using cast_is_temporary_value_reference = bool_constant< |
| (std::is_reference<type>::value || std::is_pointer<type>::value) && |
| !std::is_base_of<type_caster_generic, make_caster<type>>::value |
| >; |
| |
| // When a value returned from a C++ function is being cast back to Python, we almost always want to |
| // force `policy = move`, regardless of the return value policy the function/method was declared |
| // with. Some classes (most notably Eigen::Ref and related) need to avoid this, and so can do so by |
| // specializing this struct. |
| template <typename Return, typename SFINAE = void> struct return_value_policy_override { |
| static return_value_policy policy(return_value_policy p) { |
| return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value |
| ? return_value_policy::move : p; |
| } |
| }; |
| |
| // Basic python -> C++ casting; throws if casting fails |
| template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) { |
| if (!conv.load(handle, true)) { |
| #if defined(NDEBUG) |
| throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)"); |
| #else |
| throw cast_error("Unable to cast Python instance of type " + |
| (std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "''"); |
| #endif |
| } |
| return conv; |
| } |
| // Wrapper around the above that also constructs and returns a type_caster |
| template <typename T> make_caster<T> load_type(const handle &handle) { |
| make_caster<T> conv; |
| load_type(conv, handle); |
| return conv; |
| } |
| |
| NAMESPACE_END(detail) |
| |
| // pytype -> C++ type |
| template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0> |
| T cast(const handle &handle) { |
| using namespace detail; |
| static_assert(!cast_is_temporary_value_reference<T>::value, |
| "Unable to cast type to reference: value is local to type caster"); |
| return cast_op<T>(load_type<T>(handle)); |
| } |
| |
| // pytype -> pytype (calls converting constructor) |
| template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0> |
| T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); } |
| |
| // C++ type -> py::object |
| template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0> |
| object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference, |
| handle parent = handle()) { |
| if (policy == return_value_policy::automatic) |
| policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy; |
| else if (policy == return_value_policy::automatic_reference) |
| policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy; |
| return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent)); |
| } |
| |
| template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); } |
| template <> inline void handle::cast() const { return; } |
| |
| template <typename T> |
| detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) { |
| if (obj.ref_count() > 1) |
| #if defined(NDEBUG) |
| throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references" |
| " (compile in debug mode for details)"); |
| #else |
| throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) + |
| " instance to C++ " + type_id<T>() + " instance: instance has multiple references"); |
| #endif |
| |
| // Move into a temporary and return that, because the reference may be a local value of `conv` |
| T ret = std::move(detail::load_type<T>(obj).operator T&()); |
| return ret; |
| } |
| |
| // Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does: |
| // - If we have to move (because T has no copy constructor), do it. This will fail if the moved |
| // object has multiple references, but trying to copy will fail to compile. |
| // - If both movable and copyable, check ref count: if 1, move; otherwise copy |
| // - Otherwise (not movable), copy. |
| template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) { |
| return move<T>(std::move(object)); |
| } |
| template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) { |
| if (object.ref_count() > 1) |
| return cast<T>(object); |
| else |
| return move<T>(std::move(object)); |
| } |
| template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) { |
| return cast<T>(object); |
| } |
| |
| template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); } |
| template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); } |
| template <> inline void object::cast() const & { return; } |
| template <> inline void object::cast() && { return; } |
| |
| NAMESPACE_BEGIN(detail) |
| |
| // Declared in pytypes.h: |
| template <typename T, enable_if_t<!is_pyobject<T>::value, int>> |
| object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); } |
| |
| struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro |
| template <typename ret_type> using overload_caster_t = conditional_t< |
| cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>; |
| |
| // Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then |
| // store the result in the given variable. For other types, this is a no-op. |
| template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) { |
| return cast_op<T>(load_type(caster, o)); |
| } |
| template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) { |
| pybind11_fail("Internal error: cast_ref fallback invoked"); } |
| |
| // Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even |
| // though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in |
| // cases where pybind11::cast is valid. |
| template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) { |
| return pybind11::cast<T>(std::move(o)); } |
| template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) { |
| pybind11_fail("Internal error: cast_safe fallback invoked"); } |
| template <> inline void cast_safe<void>(object &&) {} |
| |
| NAMESPACE_END(detail) |
| |
| template <return_value_policy policy = return_value_policy::automatic_reference, |
| typename... Args> tuple make_tuple(Args&&... args_) { |
| constexpr size_t size = sizeof...(Args); |
| std::array<object, size> args { |
| { reinterpret_steal<object>(detail::make_caster<Args>::cast( |
| std::forward<Args>(args_), policy, nullptr))... } |
| }; |
| for (size_t i = 0; i < args.size(); i++) { |
| if (!args[i]) { |
| #if defined(NDEBUG) |
| throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)"); |
| #else |
| std::array<std::string, size> argtypes { {type_id<Args>()...} }; |
| throw cast_error("make_tuple(): unable to convert argument of type '" + |
| argtypes[i] + "' to Python object"); |
| #endif |
| } |
| } |
| tuple result(size); |
| int counter = 0; |
| for (auto &arg_value : args) |
| PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr()); |
| return result; |
| } |
| |
| /// \ingroup annotations |
| /// Annotation for arguments |
| struct arg { |
| /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument. |
| constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { } |
| /// Assign a value to this argument |
| template <typename T> arg_v operator=(T &&value) const; |
| /// Indicate that the type should not be converted in the type caster |
| arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; } |
| /// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args) |
| arg &none(bool flag = true) { flag_none = flag; return *this; } |
| |
| const char *name; ///< If non-null, this is a named kwargs argument |
| bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!) |
| bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument |
| }; |
| |
| /// \ingroup annotations |
| /// Annotation for arguments with values |
| struct arg_v : arg { |
| private: |
| template <typename T> |
| arg_v(arg &&base, T &&x, const char *descr = nullptr) |
| : arg(base), |
| value(reinterpret_steal<object>( |
| detail::make_caster<T>::cast(x, return_value_policy::automatic, {}) |
| )), |
| descr(descr) |
| #if !defined(NDEBUG) |
| , type(type_id<T>()) |
| #endif |
| { } |
| |
| public: |
| /// Direct construction with name, default, and description |
| template <typename T> |
| arg_v(const char *name, T &&x, const char *descr = nullptr) |
| : arg_v(arg(name), std::forward<T>(x), descr) { } |
| |
| /// Called internally when invoking `py::arg("a") = value` |
| template <typename T> |
| arg_v(const arg &base, T &&x, const char *descr = nullptr) |
| : arg_v(arg(base), std::forward<T>(x), descr) { } |
| |
| /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg& |
| arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; } |
| |
| /// Same as `arg::nonone()`, but returns *this as arg_v&, not arg& |
| arg_v &none(bool flag = true) { arg::none(flag); return *this; } |
| |
| /// The default value |
| object value; |
| /// The (optional) description of the default value |
| const char *descr; |
| #if !defined(NDEBUG) |
| /// The C++ type name of the default value (only available when compiled in debug mode) |
| std::string type; |
| #endif |
| }; |
| |
| template <typename T> |
| arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; } |
| |
| /// Alias for backward compatibility -- to be removed in version 2.0 |
| template <typename /*unused*/> using arg_t = arg_v; |
| |
| inline namespace literals { |
| /** \rst |
| String literal version of `arg` |
| \endrst */ |
| constexpr arg operator"" _a(const char *name, size_t) { return arg(name); } |
| } |
| |
| NAMESPACE_BEGIN(detail) |
| |
| // forward declaration (definition in attr.h) |
| struct function_record; |
| |
| /// Internal data associated with a single function call |
| struct function_call { |
| function_call(function_record &f, handle p); // Implementation in attr.h |
| |
| /// The function data: |
| const function_record &func; |
| |
| /// Arguments passed to the function: |
| std::vector<handle> args; |
| |
| /// The `convert` value the arguments should be loaded with |
| std::vector<bool> args_convert; |
| |
| /// The parent, if any |
| handle parent; |
| |
| /// If this is a call to an initializer, this argument contains `self` |
| handle init_self; |
| }; |
| |
| |
| /// Helper class which loads arguments for C++ functions called from Python |
| template <typename... Args> |
| class argument_loader { |
| using indices = make_index_sequence<sizeof...(Args)>; |
| |
| template <typename Arg> using argument_is_args = std::is_same<intrinsic_t<Arg>, args>; |
| template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>; |
| // Get args/kwargs argument positions relative to the end of the argument list: |
| static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args), |
| kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args); |
| |
| static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1; |
| |
| static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function"); |
| |
| public: |
| static constexpr bool has_kwargs = kwargs_pos < 0; |
| static constexpr bool has_args = args_pos < 0; |
| |
| static PYBIND11_DESCR arg_names() { return detail::concat(make_caster<Args>::name()...); } |
| |
| bool load_args(function_call &call) { |
| return load_impl_sequence(call, indices{}); |
| } |
| |
| template <typename Return, typename Guard, typename Func> |
| enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && { |
| return std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{}); |
| } |
| |
| template <typename Return, typename Guard, typename Func> |
| enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && { |
| std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{}); |
| return void_type(); |
| } |
| |
| private: |
| |
| static bool load_impl_sequence(function_call &, index_sequence<>) { return true; } |
| |
| template <size_t... Is> |
| bool load_impl_sequence(function_call &call, index_sequence<Is...>) { |
| for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...}) |
| if (!r) |
| return false; |
| return true; |
| } |
| |
| template <typename Return, typename Func, size_t... Is, typename Guard> |
| Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) { |
| return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...); |
| } |
| |
| std::tuple<make_caster<Args>...> argcasters; |
| }; |
| |
| /// Helper class which collects only positional arguments for a Python function call. |
| /// A fancier version below can collect any argument, but this one is optimal for simple calls. |
| template <return_value_policy policy> |
| class simple_collector { |
| public: |
| template <typename... Ts> |
| explicit simple_collector(Ts &&...values) |
| : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { } |
| |
| const tuple &args() const & { return m_args; } |
| dict kwargs() const { return {}; } |
| |
| tuple args() && { return std::move(m_args); } |
| |
| /// Call a Python function and pass the collected arguments |
| object call(PyObject *ptr) const { |
| PyObject *result = PyObject_CallObject(ptr, m_args.ptr()); |
| if (!result) |
| throw error_already_set(); |
| return reinterpret_steal<object>(result); |
| } |
| |
| private: |
| tuple m_args; |
| }; |
| |
| /// Helper class which collects positional, keyword, * and ** arguments for a Python function call |
| template <return_value_policy policy> |
| class unpacking_collector { |
| public: |
| template <typename... Ts> |
| explicit unpacking_collector(Ts &&...values) { |
| // Tuples aren't (easily) resizable so a list is needed for collection, |
| // but the actual function call strictly requires a tuple. |
| auto args_list = list(); |
| int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... }; |
| ignore_unused(_); |
| |
| m_args = std::move(args_list); |
| } |
| |
| const tuple &args() const & { return m_args; } |
| const dict &kwargs() const & { return m_kwargs; } |
| |
| tuple args() && { return std::move(m_args); } |
| dict kwargs() && { return std::move(m_kwargs); } |
| |
| /// Call a Python function and pass the collected arguments |
| object call(PyObject *ptr) const { |
| PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr()); |
| if (!result) |
| throw error_already_set(); |
| return reinterpret_steal<object>(result); |
| } |
| |
| private: |
| template <typename T> |
| void process(list &args_list, T &&x) { |
| auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {})); |
| if (!o) { |
| #if defined(NDEBUG) |
| argument_cast_error(); |
| #else |
| argument_cast_error(std::to_string(args_list.size()), type_id<T>()); |
| #endif |
| } |
| args_list.append(o); |
| } |
| |
| void process(list &args_list, detail::args_proxy ap) { |
| for (const auto &a : ap) |
| args_list.append(a); |
| } |
| |
| void process(list &/*args_list*/, arg_v a) { |
| if (!a.name) |
| #if defined(NDEBUG) |
| nameless_argument_error(); |
| #else |
| nameless_argument_error(a.type); |
| #endif |
| |
| if (m_kwargs.contains(a.name)) { |
| #if defined(NDEBUG) |
| multiple_values_error(); |
| #else |
| multiple_values_error(a.name); |
| #endif |
| } |
| if (!a.value) { |
| #if defined(NDEBUG) |
| argument_cast_error(); |
| #else |
| argument_cast_error(a.name, a.type); |
| #endif |
| } |
| m_kwargs[a.name] = a.value; |
| } |
| |
| void process(list &/*args_list*/, detail::kwargs_proxy kp) { |
| if (!kp) |
| return; |
| for (const auto &k : reinterpret_borrow<dict>(kp)) { |
| if (m_kwargs.contains(k.first)) { |
| #if defined(NDEBUG) |
| multiple_values_error(); |
| #else |
| multiple_values_error(str(k.first)); |
| #endif |
| } |
| m_kwargs[k.first] = k.second; |
| } |
| } |
| |
| [[noreturn]] static void nameless_argument_error() { |
| throw type_error("Got kwargs without a name; only named arguments " |
| "may be passed via py::arg() to a python function call. " |
| "(compile in debug mode for details)"); |
| } |
| [[noreturn]] static void nameless_argument_error(std::string type) { |
| throw type_error("Got kwargs without a name of type '" + type + "'; only named " |
| "arguments may be passed via py::arg() to a python function call. "); |
| } |
| [[noreturn]] static void multiple_values_error() { |
| throw type_error("Got multiple values for keyword argument " |
| "(compile in debug mode for details)"); |
| } |
| |
| [[noreturn]] static void multiple_values_error(std::string name) { |
| throw type_error("Got multiple values for keyword argument '" + name + "'"); |
| } |
| |
| [[noreturn]] static void argument_cast_error() { |
| throw cast_error("Unable to convert call argument to Python object " |
| "(compile in debug mode for details)"); |
| } |
| |
| [[noreturn]] static void argument_cast_error(std::string name, std::string type) { |
| throw cast_error("Unable to convert call argument '" + name |
| + "' of type '" + type + "' to Python object"); |
| } |
| |
| private: |
| tuple m_args; |
| dict m_kwargs; |
| }; |
| |
| /// Collect only positional arguments for a Python function call |
| template <return_value_policy policy, typename... Args, |
| typename = enable_if_t<all_of<is_positional<Args>...>::value>> |
| simple_collector<policy> collect_arguments(Args &&...args) { |
| return simple_collector<policy>(std::forward<Args>(args)...); |
| } |
| |
| /// Collect all arguments, including keywords and unpacking (only instantiated when needed) |
| template <return_value_policy policy, typename... Args, |
| typename = enable_if_t<!all_of<is_positional<Args>...>::value>> |
| unpacking_collector<policy> collect_arguments(Args &&...args) { |
| // Following argument order rules for generalized unpacking according to PEP 448 |
| static_assert( |
| constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>() |
| && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(), |
| "Invalid function call: positional args must precede keywords and ** unpacking; " |
| "* unpacking must precede ** unpacking" |
| ); |
| return unpacking_collector<policy>(std::forward<Args>(args)...); |
| } |
| |
| template <typename Derived> |
| template <return_value_policy policy, typename... Args> |
| object object_api<Derived>::operator()(Args &&...args) const { |
| return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr()); |
| } |
| |
| template <typename Derived> |
| template <return_value_policy policy, typename... Args> |
| object object_api<Derived>::call(Args &&...args) const { |
| return operator()<policy>(std::forward<Args>(args)...); |
| } |
| |
| NAMESPACE_END(detail) |
| |
| #define PYBIND11_MAKE_OPAQUE(Type) \ |
| namespace pybind11 { namespace detail { \ |
| template<> class type_caster<Type> : public type_caster_base<Type> { }; \ |
| }} |
| |
| NAMESPACE_END(PYBIND11_NAMESPACE) |