blob: 5a8cfae6de89e4557f81efb13b21e0be55751d65 [file] [log] [blame]
/*
* Copyright (c) 1999-2013 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
machine(MachineType:L2Cache, "MESI Directory L2 Cache CMP")
: CacheMemory * L2cache;
Cycles l2_request_latency := 2;
Cycles l2_response_latency := 2;
Cycles to_l1_latency := 1;
// Message Queues
// From local bank of L2 cache TO the network
MessageBuffer * DirRequestFromL2Cache, network="To", virtual_network="0",
vnet_type="request"; // this L2 bank -> Memory
MessageBuffer * L1RequestFromL2Cache, network="To", virtual_network="2",
vnet_type="request"; // this L2 bank -> a local L1
MessageBuffer * responseFromL2Cache, network="To", virtual_network="1",
vnet_type="response"; // this L2 bank -> a local L1 || Memory
// FROM the network to this local bank of L2 cache
MessageBuffer * unblockToL2Cache, network="From", virtual_network="2",
vnet_type="unblock"; // a local L1 || Memory -> this L2 bank
MessageBuffer * L1RequestToL2Cache, network="From", virtual_network="0",
vnet_type="request"; // a local L1 -> this L2 bank
MessageBuffer * responseToL2Cache, network="From", virtual_network="1",
vnet_type="response"; // a local L1 || Memory -> this L2 bank
{
// STATES
state_declaration(State, desc="L2 Cache states", default="L2Cache_State_NP") {
// Base states
NP, AccessPermission:Invalid, desc="Not present in either cache";
SS, AccessPermission:Read_Only, desc="L2 cache entry Shared, also present in one or more L1s";
M, AccessPermission:Read_Write, desc="L2 cache entry Modified, not present in any L1s", format="!b";
MT, AccessPermission:Maybe_Stale, desc="L2 cache entry Modified in a local L1, assume L2 copy stale", format="!b";
// L2 replacement
M_I, AccessPermission:Busy, desc="L2 cache replacing, have all acks, sent dirty data to memory, waiting for ACK from memory";
MT_I, AccessPermission:Busy, desc="L2 cache replacing, getting data from exclusive";
MCT_I, AccessPermission:Busy, desc="L2 cache replacing, clean in L2, getting data or ack from exclusive";
I_I, AccessPermission:Busy, desc="L2 replacing clean data, need to inv sharers and then drop data";
S_I, AccessPermission:Busy, desc="L2 replacing dirty data, collecting acks from L1s";
// Transient States for fetching data from memory
ISS, AccessPermission:Busy, desc="L2 idle, got single L1_GETS, issued memory fetch, have not seen response yet";
IS, AccessPermission:Busy, desc="L2 idle, got L1_GET_INSTR or multiple L1_GETS, issued memory fetch, have not seen response yet";
IM, AccessPermission:Busy, desc="L2 idle, got L1_GETX, issued memory fetch, have not seen response(s) yet";
// Blocking states
SS_MB, AccessPermission:Busy, desc="Blocked for L1_GETX from SS";
MT_MB, AccessPermission:Busy, desc="Blocked for L1_GETX from MT";
MT_IIB, AccessPermission:Busy, desc="Blocked for L1_GETS from MT, waiting for unblock and data";
MT_IB, AccessPermission:Busy, desc="Blocked for L1_GETS from MT, got unblock, waiting for data";
MT_SB, AccessPermission:Busy, desc="Blocked for L1_GETS from MT, got data, waiting for unblock";
}
// EVENTS
enumeration(Event, desc="L2 Cache events") {
// L2 events
// events initiated by the local L1s
L1_GET_INSTR, desc="a L1I GET INSTR request for a block maped to us";
L1_GETS, desc="a L1D GETS request for a block maped to us";
L1_GETX, desc="a L1D GETX request for a block maped to us";
L1_UPGRADE, desc="a L1D GETX request for a block maped to us";
L1_PUTX, desc="L1 replacing data";
L1_PUTX_old, desc="L1 replacing data, but no longer sharer";
// events initiated by this L2
L2_Replacement, desc="L2 Replacement", format="!r";
L2_Replacement_clean, desc="L2 Replacement, but data is clean", format="!r";
// events from memory controller
Mem_Data, desc="data from memory", format="!r";
Mem_Ack, desc="ack from memory", format="!r";
// M->S data writeback
WB_Data, desc="data from L1";
WB_Data_clean, desc="clean data from L1";
Ack, desc="writeback ack";
Ack_all, desc="writeback ack";
Unblock, desc="Unblock from L1 requestor";
Exclusive_Unblock, desc="Unblock from L1 requestor";
MEM_Inv, desc="Invalidation from directory";
}
// TYPES
// CacheEntry
structure(Entry, desc="...", interface="AbstractCacheEntry") {
State CacheState, desc="cache state";
NetDest Sharers, desc="tracks the L1 shares on-chip";
MachineID Exclusive, desc="Exclusive holder of block";
DataBlock DataBlk, desc="data for the block";
bool Dirty, default="false", desc="data is dirty";
}
// TBE fields
structure(TBE, desc="...") {
Addr addr, desc="Physical address for this TBE";
State TBEState, desc="Transient state";
DataBlock DataBlk, desc="Buffer for the data block";
bool Dirty, default="false", desc="Data is Dirty";
NetDest L1_GetS_IDs, desc="Set of the internal processors that want the block in shared state";
MachineID L1_GetX_ID, desc="ID of the L1 cache to forward the block to once we get a response";
int pendingAcks, desc="number of pending acks for invalidates during writeback";
}
structure(TBETable, external="yes") {
TBE lookup(Addr);
void allocate(Addr);
void deallocate(Addr);
bool isPresent(Addr);
}
TBETable TBEs, template="<L2Cache_TBE>", constructor="m_number_of_TBEs";
Tick clockEdge();
Tick cyclesToTicks(Cycles c);
Cycles ticksToCycles(Tick t);
void set_cache_entry(AbstractCacheEntry a);
void unset_cache_entry();
void set_tbe(TBE a);
void unset_tbe();
void wakeUpBuffers(Addr a);
void profileMsgDelay(int virtualNetworkType, Cycles c);
MachineID mapAddressToMachine(Addr addr, MachineType mtype);
// inclusive cache, returns L2 entries only
Entry getCacheEntry(Addr addr), return_by_pointer="yes" {
return static_cast(Entry, "pointer", L2cache[addr]);
}
bool isSharer(Addr addr, MachineID requestor, Entry cache_entry) {
if (is_valid(cache_entry)) {
return cache_entry.Sharers.isElement(requestor);
} else {
return false;
}
}
void addSharer(Addr addr, MachineID requestor, Entry cache_entry) {
assert(is_valid(cache_entry));
DPRINTF(RubySlicc, "machineID: %s, requestor: %s, address: %#x\n",
machineID, requestor, addr);
cache_entry.Sharers.add(requestor);
}
State getState(TBE tbe, Entry cache_entry, Addr addr) {
if(is_valid(tbe)) {
return tbe.TBEState;
} else if (is_valid(cache_entry)) {
return cache_entry.CacheState;
}
return State:NP;
}
void setState(TBE tbe, Entry cache_entry, Addr addr, State state) {
// MUST CHANGE
if (is_valid(tbe)) {
tbe.TBEState := state;
}
if (is_valid(cache_entry)) {
cache_entry.CacheState := state;
}
}
AccessPermission getAccessPermission(Addr addr) {
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
DPRINTF(RubySlicc, "%s\n", L2Cache_State_to_permission(tbe.TBEState));
return L2Cache_State_to_permission(tbe.TBEState);
}
Entry cache_entry := getCacheEntry(addr);
if(is_valid(cache_entry)) {
DPRINTF(RubySlicc, "%s\n", L2Cache_State_to_permission(cache_entry.CacheState));
return L2Cache_State_to_permission(cache_entry.CacheState);
}
DPRINTF(RubySlicc, "%s\n", AccessPermission:NotPresent);
return AccessPermission:NotPresent;
}
void functionalRead(Addr addr, Packet *pkt) {
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
testAndRead(addr, tbe.DataBlk, pkt);
} else {
testAndRead(addr, getCacheEntry(addr).DataBlk, pkt);
}
}
int functionalWrite(Addr addr, Packet *pkt) {
int num_functional_writes := 0;
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
num_functional_writes := num_functional_writes +
testAndWrite(addr, tbe.DataBlk, pkt);
return num_functional_writes;
}
num_functional_writes := num_functional_writes +
testAndWrite(addr, getCacheEntry(addr).DataBlk, pkt);
return num_functional_writes;
}
void setAccessPermission(Entry cache_entry, Addr addr, State state) {
if (is_valid(cache_entry)) {
cache_entry.changePermission(L2Cache_State_to_permission(state));
}
}
Event L1Cache_request_type_to_event(CoherenceRequestType type, Addr addr,
MachineID requestor, Entry cache_entry) {
if(type == CoherenceRequestType:GETS) {
return Event:L1_GETS;
} else if(type == CoherenceRequestType:GET_INSTR) {
return Event:L1_GET_INSTR;
} else if (type == CoherenceRequestType:GETX) {
return Event:L1_GETX;
} else if (type == CoherenceRequestType:UPGRADE) {
if ( is_valid(cache_entry) && cache_entry.Sharers.isElement(requestor) ) {
return Event:L1_UPGRADE;
} else {
return Event:L1_GETX;
}
} else if (type == CoherenceRequestType:PUTX) {
if (isSharer(addr, requestor, cache_entry)) {
return Event:L1_PUTX;
} else {
return Event:L1_PUTX_old;
}
} else {
DPRINTF(RubySlicc, "address: %#x, Request Type: %s\n", addr, type);
error("Invalid L1 forwarded request type");
}
}
int getPendingAcks(TBE tbe) {
return tbe.pendingAcks;
}
bool isDirty(Entry cache_entry) {
assert(is_valid(cache_entry));
return cache_entry.Dirty;
}
// ** OUT_PORTS **
out_port(L1RequestL2Network_out, RequestMsg, L1RequestFromL2Cache);
out_port(DirRequestL2Network_out, RequestMsg, DirRequestFromL2Cache);
out_port(responseL2Network_out, ResponseMsg, responseFromL2Cache);
in_port(L1unblockNetwork_in, ResponseMsg, unblockToL2Cache, rank = 2) {
if(L1unblockNetwork_in.isReady(clockEdge())) {
peek(L1unblockNetwork_in, ResponseMsg) {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
DPRINTF(RubySlicc, "Addr: %#x State: %s Sender: %s Type: %s Dest: %s\n",
in_msg.addr, getState(tbe, cache_entry, in_msg.addr),
in_msg.Sender, in_msg.Type, in_msg.Destination);
assert(in_msg.Destination.isElement(machineID));
if (in_msg.Type == CoherenceResponseType:EXCLUSIVE_UNBLOCK) {
trigger(Event:Exclusive_Unblock, in_msg.addr, cache_entry, tbe);
} else if (in_msg.Type == CoherenceResponseType:UNBLOCK) {
trigger(Event:Unblock, in_msg.addr, cache_entry, tbe);
} else {
error("unknown unblock message");
}
}
}
}
// Response L2 Network - response msg to this particular L2 bank
in_port(responseL2Network_in, ResponseMsg, responseToL2Cache, rank = 1) {
if (responseL2Network_in.isReady(clockEdge())) {
peek(responseL2Network_in, ResponseMsg) {
// test wether it's from a local L1 or an off chip source
assert(in_msg.Destination.isElement(machineID));
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
if(machineIDToMachineType(in_msg.Sender) == MachineType:L1Cache) {
if(in_msg.Type == CoherenceResponseType:DATA) {
if (in_msg.Dirty) {
trigger(Event:WB_Data, in_msg.addr, cache_entry, tbe);
} else {
trigger(Event:WB_Data_clean, in_msg.addr, cache_entry, tbe);
}
} else if (in_msg.Type == CoherenceResponseType:ACK) {
if ((getPendingAcks(tbe) - in_msg.AckCount) == 0) {
trigger(Event:Ack_all, in_msg.addr, cache_entry, tbe);
} else {
trigger(Event:Ack, in_msg.addr, cache_entry, tbe);
}
} else {
error("unknown message type");
}
} else { // external message
if(in_msg.Type == CoherenceResponseType:MEMORY_DATA) {
trigger(Event:Mem_Data, in_msg.addr, cache_entry, tbe);
} else if(in_msg.Type == CoherenceResponseType:MEMORY_ACK) {
trigger(Event:Mem_Ack, in_msg.addr, cache_entry, tbe);
} else if(in_msg.Type == CoherenceResponseType:INV) {
trigger(Event:MEM_Inv, in_msg.addr, cache_entry, tbe);
} else {
error("unknown message type");
}
}
}
} // if not ready, do nothing
}
// L1 Request
in_port(L1RequestL2Network_in, RequestMsg, L1RequestToL2Cache, rank = 0) {
if(L1RequestL2Network_in.isReady(clockEdge())) {
peek(L1RequestL2Network_in, RequestMsg) {
Entry cache_entry := getCacheEntry(in_msg.addr);
TBE tbe := TBEs[in_msg.addr];
DPRINTF(RubySlicc, "Addr: %#x State: %s Req: %s Type: %s Dest: %s\n",
in_msg.addr, getState(tbe, cache_entry, in_msg.addr),
in_msg.Requestor, in_msg.Type, in_msg.Destination);
assert(machineIDToMachineType(in_msg.Requestor) == MachineType:L1Cache);
assert(in_msg.Destination.isElement(machineID));
if (is_valid(cache_entry)) {
// The L2 contains the block, so proceeded with handling the request
trigger(L1Cache_request_type_to_event(in_msg.Type, in_msg.addr,
in_msg.Requestor, cache_entry),
in_msg.addr, cache_entry, tbe);
} else {
if (L2cache.cacheAvail(in_msg.addr)) {
// L2 does't have the line, but we have space for it in the L2
trigger(L1Cache_request_type_to_event(in_msg.Type, in_msg.addr,
in_msg.Requestor, cache_entry),
in_msg.addr, cache_entry, tbe);
} else {
// No room in the L2, so we need to make room before handling the request
Entry L2cache_entry := getCacheEntry(L2cache.cacheProbe(in_msg.addr));
if (isDirty(L2cache_entry)) {
trigger(Event:L2_Replacement, L2cache.cacheProbe(in_msg.addr),
L2cache_entry, TBEs[L2cache.cacheProbe(in_msg.addr)]);
} else {
trigger(Event:L2_Replacement_clean, L2cache.cacheProbe(in_msg.addr),
L2cache_entry, TBEs[L2cache.cacheProbe(in_msg.addr)]);
}
}
}
}
}
}
// ACTIONS
action(a_issueFetchToMemory, "a", desc="fetch data from memory") {
peek(L1RequestL2Network_in, RequestMsg) {
enqueue(DirRequestL2Network_out, RequestMsg, l2_request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:GETS;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Control;
}
}
}
action(b_forwardRequestToExclusive, "b", desc="Forward request to the exclusive L1") {
peek(L1RequestL2Network_in, RequestMsg) {
enqueue(L1RequestL2Network_out, RequestMsg, to_l1_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.add(cache_entry.Exclusive);
out_msg.MessageSize := MessageSizeType:Request_Control;
}
}
}
action(c_exclusiveReplacement, "c", desc="Send data to memory") {
enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:MEMORY_DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.Dirty := cache_entry.Dirty;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(c_exclusiveCleanReplacement, "cc", desc="Send ack to memory for clean replacement") {
enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
action(ct_exclusiveReplacementFromTBE, "ct", desc="Send data to memory") {
enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:MEMORY_DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(d_sendDataToRequestor, "d", desc="Send data from cache to reqeustor") {
peek(L1RequestL2Network_in, RequestMsg) {
enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.AckCount := 0 - cache_entry.Sharers.count();
if (cache_entry.Sharers.isElement(in_msg.Requestor)) {
out_msg.AckCount := out_msg.AckCount + 1;
}
}
}
}
action(dd_sendExclusiveDataToRequestor, "dd", desc="Send data from cache to reqeustor") {
peek(L1RequestL2Network_in, RequestMsg) {
enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.AckCount := 0 - cache_entry.Sharers.count();
if (cache_entry.Sharers.isElement(in_msg.Requestor)) {
out_msg.AckCount := out_msg.AckCount + 1;
}
}
}
}
action(ds_sendSharedDataToRequestor, "ds", desc="Send data from cache to reqeustor") {
peek(L1RequestL2Network_in, RequestMsg) {
enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.MessageSize := MessageSizeType:Response_Data;
out_msg.AckCount := 0;
}
}
}
action(e_sendDataToGetSRequestors, "e", desc="Send data from cache to all GetS IDs") {
assert(is_valid(tbe));
assert(tbe.L1_GetS_IDs.count() > 0);
enqueue(responseL2Network_out, ResponseMsg, to_l1_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination := tbe.L1_GetS_IDs; // internal nodes
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(ex_sendExclusiveDataToGetSRequestors, "ex", desc="Send data from cache to all GetS IDs") {
assert(is_valid(tbe));
assert(tbe.L1_GetS_IDs.count() == 1);
enqueue(responseL2Network_out, ResponseMsg, to_l1_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
out_msg.Sender := machineID;
out_msg.Destination := tbe.L1_GetS_IDs; // internal nodes
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(ee_sendDataToGetXRequestor, "ee", desc="Send data from cache to GetX ID") {
enqueue(responseL2Network_out, ResponseMsg, to_l1_latency) {
assert(is_valid(tbe));
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(tbe.L1_GetX_ID);
DPRINTF(RubySlicc, "%s\n", out_msg.Destination);
out_msg.DataBlk := cache_entry.DataBlk;
DPRINTF(RubySlicc, "Address: %#x, Destination: %s, DataBlock: %s\n",
out_msg.addr, out_msg.Destination, out_msg.DataBlk);
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
action(f_sendInvToSharers, "f", desc="invalidate sharers for L2 replacement") {
enqueue(L1RequestL2Network_out, RequestMsg, to_l1_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:INV;
out_msg.Requestor := machineID;
out_msg.Destination := cache_entry.Sharers;
out_msg.MessageSize := MessageSizeType:Request_Control;
}
}
action(fw_sendFwdInvToSharers, "fw", desc="invalidate sharers for request") {
peek(L1RequestL2Network_in, RequestMsg) {
enqueue(L1RequestL2Network_out, RequestMsg, to_l1_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:INV;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination := cache_entry.Sharers;
out_msg.MessageSize := MessageSizeType:Request_Control;
}
}
}
action(fwm_sendFwdInvToSharersMinusRequestor, "fwm", desc="invalidate sharers for request, requestor is sharer") {
peek(L1RequestL2Network_in, RequestMsg) {
enqueue(L1RequestL2Network_out, RequestMsg, to_l1_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:INV;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination := cache_entry.Sharers;
out_msg.Destination.remove(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Request_Control;
}
}
}
// OTHER ACTIONS
action(i_allocateTBE, "i", desc="Allocate TBE for request") {
check_allocate(TBEs);
assert(is_valid(cache_entry));
TBEs.allocate(address);
set_tbe(TBEs[address]);
tbe.L1_GetS_IDs.clear();
tbe.DataBlk := cache_entry.DataBlk;
tbe.Dirty := cache_entry.Dirty;
tbe.pendingAcks := cache_entry.Sharers.count();
}
action(s_deallocateTBE, "s", desc="Deallocate external TBE") {
TBEs.deallocate(address);
unset_tbe();
}
action(jj_popL1RequestQueue, "\j", desc="Pop incoming L1 request queue") {
Tick delay := L1RequestL2Network_in.dequeue(clockEdge());
profileMsgDelay(0, ticksToCycles(delay));
}
action(k_popUnblockQueue, "k", desc="Pop incoming unblock queue") {
Tick delay := L1unblockNetwork_in.dequeue(clockEdge());
profileMsgDelay(0, ticksToCycles(delay));
}
action(o_popIncomingResponseQueue, "o", desc="Pop Incoming Response queue") {
Tick delay := responseL2Network_in.dequeue(clockEdge());
profileMsgDelay(1, ticksToCycles(delay));
}
action(m_writeDataToCache, "m", desc="Write data from response queue to cache") {
peek(responseL2Network_in, ResponseMsg) {
assert(is_valid(cache_entry));
cache_entry.DataBlk := in_msg.DataBlk;
if (in_msg.Dirty) {
cache_entry.Dirty := in_msg.Dirty;
}
}
}
action(mr_writeDataToCacheFromRequest, "mr", desc="Write data from response queue to cache") {
peek(L1RequestL2Network_in, RequestMsg) {
assert(is_valid(cache_entry));
if (in_msg.Dirty) {
cache_entry.DataBlk := in_msg.DataBlk;
cache_entry.Dirty := in_msg.Dirty;
}
}
}
action(q_updateAck, "q", desc="update pending ack count") {
peek(responseL2Network_in, ResponseMsg) {
assert(is_valid(tbe));
tbe.pendingAcks := tbe.pendingAcks - in_msg.AckCount;
APPEND_TRANSITION_COMMENT(in_msg.AckCount);
APPEND_TRANSITION_COMMENT(" p: ");
APPEND_TRANSITION_COMMENT(tbe.pendingAcks);
}
}
action(qq_writeDataToTBE, "\qq", desc="Write data from response queue to TBE") {
peek(responseL2Network_in, ResponseMsg) {
assert(is_valid(tbe));
tbe.DataBlk := in_msg.DataBlk;
tbe.Dirty := in_msg.Dirty;
}
}
action(ss_recordGetSL1ID, "\s", desc="Record L1 GetS for load response") {
peek(L1RequestL2Network_in, RequestMsg) {
assert(is_valid(tbe));
tbe.L1_GetS_IDs.add(in_msg.Requestor);
}
}
action(xx_recordGetXL1ID, "\x", desc="Record L1 GetX for store response") {
peek(L1RequestL2Network_in, RequestMsg) {
assert(is_valid(tbe));
tbe.L1_GetX_ID := in_msg.Requestor;
}
}
action(set_setMRU, "\set", desc="set the MRU entry") {
L2cache.setMRU(address);
}
action(qq_allocateL2CacheBlock, "\q", desc="Set L2 cache tag equal to tag of block B.") {
if (is_invalid(cache_entry)) {
set_cache_entry(L2cache.allocate(address, new Entry));
}
}
action(rr_deallocateL2CacheBlock, "\r", desc="Deallocate L2 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") {
L2cache.deallocate(address);
unset_cache_entry();
}
action(t_sendWBAck, "t", desc="Send writeback ACK") {
peek(L1RequestL2Network_in, RequestMsg) {
enqueue(responseL2Network_out, ResponseMsg, to_l1_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:WB_ACK;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
}
action(ts_sendInvAckToUpgrader, "ts", desc="Send ACK to upgrader") {
peek(L1RequestL2Network_in, RequestMsg) {
enqueue(responseL2Network_out, ResponseMsg, to_l1_latency) {
assert(is_valid(cache_entry));
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Response_Control;
// upgrader doesn't get ack from itself, hence the + 1
out_msg.AckCount := 0 - cache_entry.Sharers.count() + 1;
}
}
}
action(uu_profileMiss, "\um", desc="Profile the demand miss") {
++L2cache.demand_misses;
}
action(uu_profileHit, "\uh", desc="Profile the demand hit") {
++L2cache.demand_hits;
}
action(nn_addSharer, "\n", desc="Add L1 sharer to list") {
peek(L1RequestL2Network_in, RequestMsg) {
assert(is_valid(cache_entry));
addSharer(address, in_msg.Requestor, cache_entry);
APPEND_TRANSITION_COMMENT( cache_entry.Sharers );
}
}
action(nnu_addSharerFromUnblock, "\nu", desc="Add L1 sharer to list") {
peek(L1unblockNetwork_in, ResponseMsg) {
assert(is_valid(cache_entry));
addSharer(address, in_msg.Sender, cache_entry);
}
}
action(kk_removeRequestSharer, "\k", desc="Remove L1 Request sharer from list") {
peek(L1RequestL2Network_in, RequestMsg) {
assert(is_valid(cache_entry));
cache_entry.Sharers.remove(in_msg.Requestor);
}
}
action(ll_clearSharers, "\l", desc="Remove all L1 sharers from list") {
peek(L1RequestL2Network_in, RequestMsg) {
assert(is_valid(cache_entry));
cache_entry.Sharers.clear();
}
}
action(mm_markExclusive, "\m", desc="set the exclusive owner") {
peek(L1RequestL2Network_in, RequestMsg) {
assert(is_valid(cache_entry));
cache_entry.Sharers.clear();
cache_entry.Exclusive := in_msg.Requestor;
addSharer(address, in_msg.Requestor, cache_entry);
}
}
action(mmu_markExclusiveFromUnblock, "\mu", desc="set the exclusive owner") {
peek(L1unblockNetwork_in, ResponseMsg) {
assert(is_valid(cache_entry));
cache_entry.Sharers.clear();
cache_entry.Exclusive := in_msg.Sender;
addSharer(address, in_msg.Sender, cache_entry);
}
}
action(zz_stallAndWaitL1RequestQueue, "zz", desc="recycle L1 request queue") {
stall_and_wait(L1RequestL2Network_in, address);
}
action(zn_recycleResponseNetwork, "zn", desc="recycle memory request") {
responseL2Network_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(kd_wakeUpDependents, "kd", desc="wake-up dependents") {
wakeUpBuffers(address);
}
//*****************************************************
// TRANSITIONS
//*****************************************************
//===============================================
// BASE STATE - I
// Transitions from I (Idle)
transition({NP, IS, ISS, IM, SS, M, M_I, I_I, S_I, MT_IB, MT_SB}, L1_PUTX) {
t_sendWBAck;
jj_popL1RequestQueue;
}
transition({NP, SS, M, MT, M_I, I_I, S_I, IS, ISS, IM, MT_IB, MT_SB}, L1_PUTX_old) {
t_sendWBAck;
jj_popL1RequestQueue;
}
transition({IM, IS, ISS, SS_MB, MT_MB, MT_IIB, MT_IB, MT_SB}, {L2_Replacement, L2_Replacement_clean}) {
zz_stallAndWaitL1RequestQueue;
}
transition({IM, IS, ISS, SS_MB, MT_MB, MT_IIB, MT_IB, MT_SB}, MEM_Inv) {
zn_recycleResponseNetwork;
}
transition({I_I, S_I, M_I, MT_I, MCT_I, NP}, MEM_Inv) {
o_popIncomingResponseQueue;
}
transition({SS_MB, MT_MB, MT_IIB, MT_IB, MT_SB}, {L1_GETS, L1_GET_INSTR, L1_GETX, L1_UPGRADE}) {
zz_stallAndWaitL1RequestQueue;
}
transition(NP, L1_GETS, ISS) {
qq_allocateL2CacheBlock;
ll_clearSharers;
nn_addSharer;
i_allocateTBE;
ss_recordGetSL1ID;
a_issueFetchToMemory;
uu_profileMiss;
jj_popL1RequestQueue;
}
transition(NP, L1_GET_INSTR, IS) {
qq_allocateL2CacheBlock;
ll_clearSharers;
nn_addSharer;
i_allocateTBE;
ss_recordGetSL1ID;
a_issueFetchToMemory;
uu_profileMiss;
jj_popL1RequestQueue;
}
transition(NP, L1_GETX, IM) {
qq_allocateL2CacheBlock;
ll_clearSharers;
// nn_addSharer;
i_allocateTBE;
xx_recordGetXL1ID;
a_issueFetchToMemory;
uu_profileMiss;
jj_popL1RequestQueue;
}
// transitions from IS/IM
transition(ISS, Mem_Data, MT_MB) {
m_writeDataToCache;
ex_sendExclusiveDataToGetSRequestors;
s_deallocateTBE;
o_popIncomingResponseQueue;
}
transition(IS, Mem_Data, SS) {
m_writeDataToCache;
e_sendDataToGetSRequestors;
s_deallocateTBE;
o_popIncomingResponseQueue;
kd_wakeUpDependents;
}
transition(IM, Mem_Data, MT_MB) {
m_writeDataToCache;
ee_sendDataToGetXRequestor;
s_deallocateTBE;
o_popIncomingResponseQueue;
}
transition({IS, ISS}, {L1_GETS, L1_GET_INSTR}, IS) {
nn_addSharer;
ss_recordGetSL1ID;
uu_profileMiss;
jj_popL1RequestQueue;
}
transition({IS, ISS}, L1_GETX) {
zz_stallAndWaitL1RequestQueue;
}
transition(IM, {L1_GETX, L1_GETS, L1_GET_INSTR}) {
zz_stallAndWaitL1RequestQueue;
}
// transitions from SS
transition(SS, {L1_GETS, L1_GET_INSTR}) {
ds_sendSharedDataToRequestor;
nn_addSharer;
set_setMRU;
uu_profileHit;
jj_popL1RequestQueue;
}
transition(SS, L1_GETX, SS_MB) {
d_sendDataToRequestor;
// fw_sendFwdInvToSharers;
fwm_sendFwdInvToSharersMinusRequestor;
set_setMRU;
uu_profileHit;
jj_popL1RequestQueue;
}
transition(SS, L1_UPGRADE, SS_MB) {
fwm_sendFwdInvToSharersMinusRequestor;
ts_sendInvAckToUpgrader;
set_setMRU;
uu_profileHit;
jj_popL1RequestQueue;
}
transition(SS, L2_Replacement_clean, I_I) {
i_allocateTBE;
f_sendInvToSharers;
rr_deallocateL2CacheBlock;
}
transition(SS, {L2_Replacement, MEM_Inv}, S_I) {
i_allocateTBE;
f_sendInvToSharers;
rr_deallocateL2CacheBlock;
}
transition(M, L1_GETX, MT_MB) {
d_sendDataToRequestor;
set_setMRU;
uu_profileHit;
jj_popL1RequestQueue;
}
transition(M, L1_GET_INSTR, SS) {
d_sendDataToRequestor;
nn_addSharer;
set_setMRU;
uu_profileHit;
jj_popL1RequestQueue;
}
transition(M, L1_GETS, MT_MB) {
dd_sendExclusiveDataToRequestor;
set_setMRU;
uu_profileHit;
jj_popL1RequestQueue;
}
transition(M, {L2_Replacement, MEM_Inv}, M_I) {
i_allocateTBE;
c_exclusiveReplacement;
rr_deallocateL2CacheBlock;
}
transition(M, L2_Replacement_clean, M_I) {
i_allocateTBE;
c_exclusiveCleanReplacement;
rr_deallocateL2CacheBlock;
}
// transitions from MT
transition(MT, L1_GETX, MT_MB) {
b_forwardRequestToExclusive;
uu_profileMiss;
set_setMRU;
jj_popL1RequestQueue;
}
transition(MT, {L1_GETS, L1_GET_INSTR}, MT_IIB) {
b_forwardRequestToExclusive;
uu_profileMiss;
set_setMRU;
jj_popL1RequestQueue;
}
transition(MT, {L2_Replacement, MEM_Inv}, MT_I) {
i_allocateTBE;
f_sendInvToSharers;
rr_deallocateL2CacheBlock;
}
transition(MT, L2_Replacement_clean, MCT_I) {
i_allocateTBE;
f_sendInvToSharers;
rr_deallocateL2CacheBlock;
}
transition(MT, L1_PUTX, M) {
ll_clearSharers;
mr_writeDataToCacheFromRequest;
t_sendWBAck;
jj_popL1RequestQueue;
}
transition({SS_MB,MT_MB}, Exclusive_Unblock, MT) {
// update actual directory
mmu_markExclusiveFromUnblock;
k_popUnblockQueue;
kd_wakeUpDependents;
}
transition(MT_IIB, {L1_PUTX, L1_PUTX_old}){
zz_stallAndWaitL1RequestQueue;
}
transition(MT_IIB, Unblock, MT_IB) {
nnu_addSharerFromUnblock;
k_popUnblockQueue;
}
transition(MT_IIB, {WB_Data, WB_Data_clean}, MT_SB) {
m_writeDataToCache;
o_popIncomingResponseQueue;
}
transition(MT_IB, {WB_Data, WB_Data_clean}, SS) {
m_writeDataToCache;
o_popIncomingResponseQueue;
kd_wakeUpDependents;
}
transition(MT_SB, Unblock, SS) {
nnu_addSharerFromUnblock;
k_popUnblockQueue;
kd_wakeUpDependents;
}
// writeback states
transition({I_I, S_I, MT_I, MCT_I, M_I}, {L1_GETX, L1_UPGRADE, L1_GETS, L1_GET_INSTR}) {
zz_stallAndWaitL1RequestQueue;
}
transition(I_I, Ack) {
q_updateAck;
o_popIncomingResponseQueue;
}
transition(I_I, Ack_all, M_I) {
c_exclusiveCleanReplacement;
o_popIncomingResponseQueue;
}
transition({MT_I, MCT_I}, WB_Data, M_I) {
qq_writeDataToTBE;
ct_exclusiveReplacementFromTBE;
o_popIncomingResponseQueue;
}
transition(MCT_I, {WB_Data_clean, Ack_all}, M_I) {
c_exclusiveCleanReplacement;
o_popIncomingResponseQueue;
}
transition(MCT_I, {L1_PUTX, L1_PUTX_old}){
zz_stallAndWaitL1RequestQueue;
}
// L1 never changed Dirty data
transition(MT_I, {WB_Data_clean, Ack_all}, M_I) {
ct_exclusiveReplacementFromTBE;
o_popIncomingResponseQueue;
}
transition(MT_I, {L1_PUTX, L1_PUTX_old}){
zz_stallAndWaitL1RequestQueue;
}
// possible race between unblock and immediate replacement
transition({MT_MB,SS_MB}, {L1_PUTX, L1_PUTX_old}) {
zz_stallAndWaitL1RequestQueue;
}
transition(S_I, Ack) {
q_updateAck;
o_popIncomingResponseQueue;
}
transition(S_I, Ack_all, M_I) {
ct_exclusiveReplacementFromTBE;
o_popIncomingResponseQueue;
}
transition(M_I, Mem_Ack, NP) {
s_deallocateTBE;
o_popIncomingResponseQueue;
kd_wakeUpDependents;
}
}