blob: b3e98aefbda5ead4bba8a70920f3339faefe240e [file] [log] [blame]
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* Copyright (c) 2016 The University of Virginia
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
* Ali Saidi
* Korey Sewell
* Alec Roelke
*/
#include "arch/riscv/process.hh"
#include <algorithm>
#include <cstddef>
#include <iostream>
#include <iterator>
#include <map>
#include <string>
#include <vector>
#include "arch/riscv/isa_traits.hh"
#include "base/loader/elf_object.hh"
#include "base/loader/object_file.hh"
#include "base/logging.hh"
#include "base/random.hh"
#include "cpu/thread_context.hh"
#include "debug/Stack.hh"
#include "mem/page_table.hh"
#include "params/Process.hh"
#include "sim/aux_vector.hh"
#include "sim/process.hh"
#include "sim/process_impl.hh"
#include "sim/syscall_return.hh"
#include "sim/system.hh"
using namespace std;
using namespace RiscvISA;
RiscvProcess::RiscvProcess(ProcessParams *params, ObjectFile *objFile) :
Process(params,
new EmulationPageTable(params->name, params->pid, PageBytes),
objFile)
{
fatal_if(params->useArchPT, "Arch page tables not implemented.");
const Addr stack_base = 0x7FFFFFFFFFFFFFFFL;
const Addr max_stack_size = 8 * 1024 * 1024;
const Addr next_thread_stack_base = stack_base - max_stack_size;
const Addr brk_point = roundUp(objFile->bssBase() + objFile->bssSize(),
PageBytes);
const Addr mmap_end = 0x4000000000000000L;
memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
next_thread_stack_base, mmap_end);
}
void
RiscvProcess::initState()
{
Process::initState();
argsInit<uint64_t>(PageBytes);
}
template<class IntType> void
RiscvProcess::argsInit(int pageSize)
{
const int RandomBytes = 16;
updateBias();
objFile->loadSections(initVirtMem);
ElfObject* elfObject = dynamic_cast<ElfObject*>(objFile);
memState->setStackMin(memState->getStackBase());
// Determine stack size and populate auxv
Addr stack_top = memState->getStackMin();
stack_top -= RandomBytes;
for (const string& arg: argv)
stack_top -= arg.size() + 1;
for (const string& env: envp)
stack_top -= env.size() + 1;
stack_top &= -sizeof(Addr);
vector<AuxVector<IntType>> auxv;
if (elfObject != nullptr) {
auxv.push_back({M5_AT_ENTRY, objFile->entryPoint()});
auxv.push_back({M5_AT_PHNUM, elfObject->programHeaderCount()});
auxv.push_back({M5_AT_PHENT, elfObject->programHeaderSize()});
auxv.push_back({M5_AT_PHDR, elfObject->programHeaderTable()});
auxv.push_back({M5_AT_PAGESZ, PageBytes});
auxv.push_back({M5_AT_SECURE, 0});
auxv.push_back({M5_AT_RANDOM, stack_top});
auxv.push_back({M5_AT_NULL, 0});
}
stack_top -= (1 + argv.size()) * sizeof(Addr) +
(1 + envp.size()) * sizeof(Addr) +
sizeof(Addr) + 2 * sizeof(IntType) * auxv.size();
stack_top &= -2*sizeof(Addr);
memState->setStackSize(memState->getStackBase() - stack_top);
allocateMem(roundDown(stack_top, pageSize),
roundUp(memState->getStackSize(), pageSize));
// Copy random bytes (for AT_RANDOM) to stack
memState->setStackMin(memState->getStackMin() - RandomBytes);
uint8_t at_random[RandomBytes];
generate(begin(at_random), end(at_random),
[&]{ return random_mt.random(0, 0xFF); });
initVirtMem.writeBlob(memState->getStackMin(), at_random, RandomBytes);
// Copy argv to stack
vector<Addr> argPointers;
for (const string& arg: argv) {
memState->setStackMin(memState->getStackMin() - (arg.size() + 1));
initVirtMem.writeString(memState->getStackMin(), arg.c_str());
argPointers.push_back(memState->getStackMin());
if (DTRACE(Stack)) {
string wrote;
initVirtMem.readString(wrote, argPointers.back());
DPRINTFN("Wrote arg \"%s\" to address %p\n",
wrote, (void*)memState->getStackMin());
}
}
argPointers.push_back(0);
// Copy envp to stack
vector<Addr> envPointers;
for (const string& env: envp) {
memState->setStackMin(memState->getStackMin() - (env.size() + 1));
initVirtMem.writeString(memState->getStackMin(), env.c_str());
envPointers.push_back(memState->getStackMin());
DPRINTF(Stack, "Wrote env \"%s\" to address %p\n",
env, (void*)memState->getStackMin());
}
envPointers.push_back(0);
// Align stack
memState->setStackMin(memState->getStackMin() & -sizeof(Addr));
// Calculate bottom of stack
memState->setStackMin(memState->getStackMin() -
((1 + argv.size()) * sizeof(Addr) +
(1 + envp.size()) * sizeof(Addr) +
sizeof(Addr) + 2 * sizeof(IntType) * auxv.size()));
memState->setStackMin(memState->getStackMin() & -2*sizeof(Addr));
Addr sp = memState->getStackMin();
const auto pushOntoStack =
[this, &sp](const uint8_t* data, const size_t size) {
initVirtMem.writeBlob(sp, data, size);
sp += size;
};
// Push argc and argv pointers onto stack
IntType argc = htog((IntType)argv.size());
DPRINTF(Stack, "Wrote argc %d to address %p\n",
argv.size(), (void*)sp);
pushOntoStack((uint8_t*)&argc, sizeof(IntType));
for (const Addr& argPointer: argPointers) {
DPRINTF(Stack, "Wrote argv pointer %p to address %p\n",
(void*)argPointer, (void*)sp);
pushOntoStack((uint8_t*)&argPointer, sizeof(Addr));
}
// Push env pointers onto stack
for (const Addr& envPointer: envPointers) {
DPRINTF(Stack, "Wrote envp pointer %p to address %p\n",
(void*)envPointer, (void*)sp);
pushOntoStack((uint8_t*)&envPointer, sizeof(Addr));
}
// Push aux vector onto stack
std::map<IntType, string> aux_keys = {
{M5_AT_ENTRY, "M5_AT_ENTRY"},
{M5_AT_PHNUM, "M5_AT_PHNUM"},
{M5_AT_PHENT, "M5_AT_PHENT"},
{M5_AT_PHDR, "M5_AT_PHDR"},
{M5_AT_PAGESZ, "M5_AT_PAGESZ"},
{M5_AT_SECURE, "M5_AT_SECURE"},
{M5_AT_RANDOM, "M5_AT_RANDOM"},
{M5_AT_NULL, "M5_AT_NULL"}
};
for (const AuxVector<IntType>& aux: auxv) {
DPRINTF(Stack, "Wrote aux key %s to address %p\n",
aux_keys[aux.a_type], (void*)sp);
pushOntoStack((uint8_t*)&aux.a_type, sizeof(IntType));
DPRINTF(Stack, "Wrote aux value %x to address %p\n",
aux.a_val, (void*)sp);
pushOntoStack((uint8_t*)&aux.a_val, sizeof(IntType));
}
ThreadContext *tc = system->getThreadContext(contextIds[0]);
tc->setIntReg(StackPointerReg, memState->getStackMin());
tc->pcState(getStartPC());
memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
}
RiscvISA::IntReg
RiscvProcess::getSyscallArg(ThreadContext *tc, int &i)
{
// If a larger index is requested than there are syscall argument
// registers, return 0
RiscvISA::IntReg retval = 0;
if (i < SyscallArgumentRegs.size())
retval = tc->readIntReg(SyscallArgumentRegs[i]);
i++;
return retval;
}
void
RiscvProcess::setSyscallArg(ThreadContext *tc, int i, RiscvISA::IntReg val)
{
tc->setIntReg(SyscallArgumentRegs[i], val);
}
void
RiscvProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
{
if (sysret.successful()) {
// no error
tc->setIntReg(SyscallPseudoReturnReg, sysret.returnValue());
} else {
// got an error, return details
tc->setIntReg(SyscallPseudoReturnReg, sysret.errnoValue());
}
}