blob: 37684ec5d86cdb060b0214b4e10fc0a417ce6a83 [file] [log] [blame]
/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Erik Hallnor
* Steve Reinhardt
*/
// FIX ME: make trackBlkAddr use blocksize from actual cache, not hard coded
#include <iomanip>
#include <set>
#include <string>
#include <vector>
#include "base/misc.hh"
#include "base/statistics.hh"
#include "cpu/testers/memtest/memtest.hh"
#include "debug/MemTest.hh"
#include "mem/mem_object.hh"
#include "mem/packet.hh"
#include "mem/port.hh"
#include "mem/request.hh"
#include "sim/sim_events.hh"
#include "sim/stats.hh"
#include "sim/system.hh"
using namespace std;
int TESTER_ALLOCATOR=0;
bool
MemTest::CpuPort::recvTimingResp(PacketPtr pkt)
{
memtest->completeRequest(pkt);
return true;
}
void
MemTest::CpuPort::recvRetry()
{
memtest->doRetry();
}
void
MemTest::sendPkt(PacketPtr pkt) {
if (atomic) {
cachePort.sendAtomic(pkt);
completeRequest(pkt);
}
else if (!cachePort.sendTimingReq(pkt)) {
DPRINTF(MemTest, "accessRetry setting to true\n");
//
// dma requests should never be retried
//
if (issueDmas) {
panic("Nacked DMA requests are not supported\n");
}
accessRetry = true;
retryPkt = pkt;
} else {
if (issueDmas) {
dmaOutstanding = true;
}
}
}
MemTest::MemTest(const Params *p)
: MemObject(p),
tickEvent(this),
cachePort("test", this),
funcPort("functional", this),
funcProxy(funcPort),
retryPkt(NULL),
// mainMem(main_mem),
// checkMem(check_mem),
size(p->memory_size),
percentReads(p->percent_reads),
percentFunctional(p->percent_functional),
percentUncacheable(p->percent_uncacheable),
issueDmas(p->issue_dmas),
masterId(p->sys->getMasterId(name())),
progressInterval(p->progress_interval),
nextProgressMessage(p->progress_interval),
percentSourceUnaligned(p->percent_source_unaligned),
percentDestUnaligned(p->percent_dest_unaligned),
maxLoads(p->max_loads),
atomic(p->atomic),
suppress_func_warnings(p->suppress_func_warnings)
{
id = TESTER_ALLOCATOR++;
// Needs to be masked off once we know the block size.
traceBlockAddr = p->trace_addr;
baseAddr1 = 0x100000;
baseAddr2 = 0x400000;
uncacheAddr = 0x800000;
// set up counters
noResponseCycles = 0;
numReads = 0;
numWrites = 0;
schedule(tickEvent, 0);
accessRetry = false;
dmaOutstanding = false;
}
BaseMasterPort &
MemTest::getMasterPort(const std::string &if_name, PortID idx)
{
if (if_name == "functional")
return funcPort;
else if (if_name == "test")
return cachePort;
else
return MemObject::getMasterPort(if_name, idx);
}
void
MemTest::init()
{
// By the time init() is called, the ports should be hooked up.
blockSize = cachePort.peerBlockSize();
blockAddrMask = blockSize - 1;
traceBlockAddr = blockAddr(traceBlockAddr);
// initial memory contents for both physical memory and functional
// memory should be 0; no need to initialize them.
}
void
MemTest::completeRequest(PacketPtr pkt)
{
Request *req = pkt->req;
if (issueDmas) {
dmaOutstanding = false;
}
DPRINTF(MemTest, "completing %s at address %x (blk %x) %s\n",
pkt->isWrite() ? "write" : "read",
req->getPaddr(), blockAddr(req->getPaddr()),
pkt->isError() ? "error" : "success");
MemTestSenderState *state =
dynamic_cast<MemTestSenderState *>(pkt->senderState);
uint8_t *data = state->data;
uint8_t *pkt_data = pkt->getPtr<uint8_t>();
//Remove the address from the list of outstanding
std::set<unsigned>::iterator removeAddr =
outstandingAddrs.find(req->getPaddr());
assert(removeAddr != outstandingAddrs.end());
outstandingAddrs.erase(removeAddr);
if (pkt->isError()) {
if (!suppress_func_warnings) {
warn("Functional %s access failed at %#x\n",
pkt->isWrite() ? "write" : "read", req->getPaddr());
}
} else {
if (pkt->isRead()) {
if (memcmp(pkt_data, data, pkt->getSize()) != 0) {
panic("%s: read of %x (blk %x) @ cycle %d "
"returns %x, expected %x\n", name(),
req->getPaddr(), blockAddr(req->getPaddr()), curTick(),
*pkt_data, *data);
}
numReads++;
numReadsStat++;
if (numReads == (uint64_t)nextProgressMessage) {
ccprintf(cerr, "%s: completed %d read, %d write accesses @%d\n",
name(), numReads, numWrites, curTick());
nextProgressMessage += progressInterval;
}
if (maxLoads != 0 && numReads >= maxLoads)
exitSimLoop("maximum number of loads reached");
} else {
assert(pkt->isWrite());
funcProxy.writeBlob(req->getPaddr(), pkt_data, req->getSize());
numWrites++;
numWritesStat++;
}
}
noResponseCycles = 0;
delete state;
delete [] data;
delete pkt->req;
delete pkt;
}
void
MemTest::regStats()
{
using namespace Stats;
numReadsStat
.name(name() + ".num_reads")
.desc("number of read accesses completed")
;
numWritesStat
.name(name() + ".num_writes")
.desc("number of write accesses completed")
;
numCopiesStat
.name(name() + ".num_copies")
.desc("number of copy accesses completed")
;
}
void
MemTest::tick()
{
if (!tickEvent.scheduled())
schedule(tickEvent, clockEdge(Cycles(1)));
if (++noResponseCycles >= 500000) {
if (issueDmas) {
cerr << "DMA tester ";
}
cerr << name() << ": deadlocked at cycle " << curTick() << endl;
fatal("");
}
if (accessRetry || (issueDmas && dmaOutstanding)) {
DPRINTF(MemTest, "MemTester waiting on accessRetry or DMA response\n");
return;
}
//make new request
unsigned cmd = random() % 100;
unsigned offset = random() % size;
unsigned base = random() % 2;
uint64_t data = random();
unsigned access_size = random() % 4;
bool uncacheable = (random() % 100) < percentUncacheable;
unsigned dma_access_size = random() % 4;
//If we aren't doing copies, use id as offset, and do a false sharing
//mem tester
//We can eliminate the lower bits of the offset, and then use the id
//to offset within the blks
offset = blockAddr(offset);
offset += id;
access_size = 0;
dma_access_size = 0;
Request::Flags flags;
Addr paddr;
if (uncacheable) {
flags.set(Request::UNCACHEABLE);
paddr = uncacheAddr + offset;
} else {
paddr = ((base) ? baseAddr1 : baseAddr2) + offset;
}
// For now we only allow one outstanding request per address
// per tester This means we assume CPU does write forwarding
// to reads that alias something in the cpu store buffer.
if (outstandingAddrs.find(paddr) != outstandingAddrs.end()) {
return;
}
bool do_functional = (random() % 100 < percentFunctional) && !uncacheable;
Request *req = new Request();
uint8_t *result = new uint8_t[8];
if (issueDmas) {
paddr &= ~((1 << dma_access_size) - 1);
req->setPhys(paddr, 1 << dma_access_size, flags, masterId);
req->setThreadContext(id,0);
} else {
paddr &= ~((1 << access_size) - 1);
req->setPhys(paddr, 1 << access_size, flags, masterId);
req->setThreadContext(id,0);
}
assert(req->getSize() == 1);
if (cmd < percentReads) {
// read
outstandingAddrs.insert(paddr);
// ***** NOTE FOR RON: I'm not sure how to access checkMem. - Kevin
funcProxy.readBlob(req->getPaddr(), result, req->getSize());
DPRINTF(MemTest,
"id %d initiating %sread at addr %x (blk %x) expecting %x\n",
id, do_functional ? "functional " : "", req->getPaddr(),
blockAddr(req->getPaddr()), *result);
PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
pkt->dataDynamicArray(new uint8_t[req->getSize()]);
MemTestSenderState *state = new MemTestSenderState(result);
pkt->senderState = state;
if (do_functional) {
assert(pkt->needsResponse());
pkt->setSuppressFuncError();
cachePort.sendFunctional(pkt);
completeRequest(pkt);
} else {
sendPkt(pkt);
}
} else {
// write
outstandingAddrs.insert(paddr);
DPRINTF(MemTest, "initiating %swrite at addr %x (blk %x) value %x\n",
do_functional ? "functional " : "", req->getPaddr(),
blockAddr(req->getPaddr()), data & 0xff);
PacketPtr pkt = new Packet(req, MemCmd::WriteReq);
uint8_t *pkt_data = new uint8_t[req->getSize()];
pkt->dataDynamicArray(pkt_data);
memcpy(pkt_data, &data, req->getSize());
MemTestSenderState *state = new MemTestSenderState(result);
pkt->senderState = state;
if (do_functional) {
pkt->setSuppressFuncError();
cachePort.sendFunctional(pkt);
completeRequest(pkt);
} else {
sendPkt(pkt);
}
}
}
void
MemTest::doRetry()
{
if (cachePort.sendTimingReq(retryPkt)) {
DPRINTF(MemTest, "accessRetry setting to false\n");
accessRetry = false;
retryPkt = NULL;
}
}
void
MemTest::printAddr(Addr a)
{
cachePort.printAddr(a);
}
MemTest *
MemTestParams::create()
{
return new MemTest(this);
}