blob: fcd2b518b71605a6f6c33f67c7f8319782e18150 [file] [log] [blame]
/*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Nathan Binkert
* Steve Reinhardt
* Andrew Schultz
*/
#include "arch/alpha/tlb.hh"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include "arch/alpha/faults.hh"
#include "arch/alpha/pagetable.hh"
#include "arch/generic/debugfaults.hh"
#include "base/inifile.hh"
#include "base/str.hh"
#include "base/trace.hh"
#include "cpu/thread_context.hh"
#include "debug/TLB.hh"
#include "sim/full_system.hh"
using namespace std;
namespace AlphaISA {
///////////////////////////////////////////////////////////////////////
//
// Alpha TLB
//
#ifdef DEBUG
bool uncacheBit39 = false;
bool uncacheBit40 = false;
#endif
#define MODE2MASK(X) (1 << (X))
TLB::TLB(const Params *p)
: BaseTLB(p), table(p->size), nlu(0)
{
flushCache();
}
TLB::~TLB()
{
}
void
TLB::regStats()
{
BaseTLB::regStats();
fetch_hits
.name(name() + ".fetch_hits")
.desc("ITB hits");
fetch_misses
.name(name() + ".fetch_misses")
.desc("ITB misses");
fetch_acv
.name(name() + ".fetch_acv")
.desc("ITB acv");
fetch_accesses
.name(name() + ".fetch_accesses")
.desc("ITB accesses");
fetch_accesses = fetch_hits + fetch_misses;
read_hits
.name(name() + ".read_hits")
.desc("DTB read hits")
;
read_misses
.name(name() + ".read_misses")
.desc("DTB read misses")
;
read_acv
.name(name() + ".read_acv")
.desc("DTB read access violations")
;
read_accesses
.name(name() + ".read_accesses")
.desc("DTB read accesses")
;
write_hits
.name(name() + ".write_hits")
.desc("DTB write hits")
;
write_misses
.name(name() + ".write_misses")
.desc("DTB write misses")
;
write_acv
.name(name() + ".write_acv")
.desc("DTB write access violations")
;
write_accesses
.name(name() + ".write_accesses")
.desc("DTB write accesses")
;
data_hits
.name(name() + ".data_hits")
.desc("DTB hits")
;
data_misses
.name(name() + ".data_misses")
.desc("DTB misses")
;
data_acv
.name(name() + ".data_acv")
.desc("DTB access violations")
;
data_accesses
.name(name() + ".data_accesses")
.desc("DTB accesses")
;
data_hits = read_hits + write_hits;
data_misses = read_misses + write_misses;
data_acv = read_acv + write_acv;
data_accesses = read_accesses + write_accesses;
}
// look up an entry in the TLB
TlbEntry *
TLB::lookup(Addr vpn, uint8_t asn)
{
// assume not found...
TlbEntry *retval = NULL;
if (EntryCache[0]) {
if (vpn == EntryCache[0]->tag &&
(EntryCache[0]->asma || EntryCache[0]->asn == asn))
retval = EntryCache[0];
else if (EntryCache[1]) {
if (vpn == EntryCache[1]->tag &&
(EntryCache[1]->asma || EntryCache[1]->asn == asn))
retval = EntryCache[1];
else if (EntryCache[2] && vpn == EntryCache[2]->tag &&
(EntryCache[2]->asma || EntryCache[2]->asn == asn))
retval = EntryCache[2];
}
}
if (retval == NULL) {
PageTable::const_iterator i = lookupTable.find(vpn);
if (i != lookupTable.end()) {
while (i->first == vpn) {
int index = i->second;
TlbEntry *entry = &table[index];
assert(entry->valid);
if (vpn == entry->tag && (entry->asma || entry->asn == asn)) {
retval = updateCache(entry);
break;
}
++i;
}
}
}
DPRINTF(TLB, "lookup %#x, asn %#x -> %s ppn %#x\n", vpn, (int)asn,
retval ? "hit" : "miss", retval ? retval->ppn : 0);
return retval;
}
Fault
TLB::checkCacheability(RequestPtr &req, bool itb)
{
// in Alpha, cacheability is controlled by upper-level bits of the
// physical address
/*
* We support having the uncacheable bit in either bit 39 or bit
* 40. The Turbolaser platform (and EV5) support having the bit
* in 39, but Tsunami (which Linux assumes uses an EV6) generates
* accesses with the bit in 40. So we must check for both, but we
* have debug flags to catch a weird case where both are used,
* which shouldn't happen.
*/
if (req->getPaddr() & PAddrUncachedBit43) {
// IPR memory space not implemented
if (PAddrIprSpace(req->getPaddr())) {
return std::make_shared<UnimpFault>(
"IPR memory space not implemented!");
} else {
// mark request as uncacheable
req->setFlags(Request::UNCACHEABLE | Request::STRICT_ORDER);
// Clear bits 42:35 of the physical address (10-2 in
// Tsunami manual)
req->setPaddr(req->getPaddr() & PAddrUncachedMask);
}
// We shouldn't be able to read from an uncachable address in Alpha as
// we don't have a ROM and we don't want to try to fetch from a device
// register as we destroy any data that is clear-on-read.
if (req->isUncacheable() && itb)
return std::make_shared<UnimpFault>(
"CPU trying to fetch from uncached I/O");
}
return NoFault;
}
// insert a new TLB entry
void
TLB::insert(Addr addr, TlbEntry &entry)
{
flushCache();
VAddr vaddr = addr;
if (table[nlu].valid) {
Addr oldvpn = table[nlu].tag;
PageTable::iterator i = lookupTable.find(oldvpn);
if (i == lookupTable.end())
panic("TLB entry not found in lookupTable");
int index;
while ((index = i->second) != nlu) {
if (table[index].tag != oldvpn)
panic("TLB entry not found in lookupTable");
++i;
}
DPRINTF(TLB, "remove @%d: %#x -> %#x\n", nlu, oldvpn, table[nlu].ppn);
lookupTable.erase(i);
}
DPRINTF(TLB, "insert @%d: %#x -> %#x\n", nlu, vaddr.vpn(), entry.ppn);
table[nlu] = entry;
table[nlu].tag = vaddr.vpn();
table[nlu].valid = true;
lookupTable.insert(make_pair(vaddr.vpn(), nlu));
nextnlu();
}
void
TLB::flushAll()
{
DPRINTF(TLB, "flushAll\n");
std::fill(table.begin(), table.end(), TlbEntry());
flushCache();
lookupTable.clear();
nlu = 0;
}
void
TLB::flushProcesses()
{
flushCache();
PageTable::iterator i = lookupTable.begin();
PageTable::iterator end = lookupTable.end();
while (i != end) {
int index = i->second;
TlbEntry *entry = &table[index];
assert(entry->valid);
// we can't increment i after we erase it, so save a copy and
// increment it to get the next entry now
PageTable::iterator cur = i;
++i;
if (!entry->asma) {
DPRINTF(TLB, "flush @%d: %#x -> %#x\n", index,
entry->tag, entry->ppn);
entry->valid = false;
lookupTable.erase(cur);
}
}
}
void
TLB::flushAddr(Addr addr, uint8_t asn)
{
flushCache();
VAddr vaddr = addr;
PageTable::iterator i = lookupTable.find(vaddr.vpn());
if (i == lookupTable.end())
return;
while (i != lookupTable.end() && i->first == vaddr.vpn()) {
int index = i->second;
TlbEntry *entry = &table[index];
assert(entry->valid);
if (vaddr.vpn() == entry->tag && (entry->asma || entry->asn == asn)) {
DPRINTF(TLB, "flushaddr @%d: %#x -> %#x\n", index, vaddr.vpn(),
entry->ppn);
// invalidate this entry
entry->valid = false;
lookupTable.erase(i++);
} else {
++i;
}
}
}
void
TLB::serialize(CheckpointOut &cp) const
{
const unsigned size(table.size());
SERIALIZE_SCALAR(size);
SERIALIZE_SCALAR(nlu);
for (int i = 0; i < size; i++)
table[i].serializeSection(cp, csprintf("Entry%d", i));
}
void
TLB::unserialize(CheckpointIn &cp)
{
unsigned size(0);
UNSERIALIZE_SCALAR(size);
UNSERIALIZE_SCALAR(nlu);
table.resize(size);
for (int i = 0; i < size; i++) {
table[i].unserializeSection(cp, csprintf("Entry%d", i));
if (table[i].valid) {
lookupTable.insert(make_pair(table[i].tag, i));
}
}
}
Fault
TLB::translateInst(RequestPtr req, ThreadContext *tc)
{
//If this is a pal pc, then set PHYSICAL
if (FullSystem && PcPAL(req->getPC()))
req->setFlags(Request::PHYSICAL);
if (PcPAL(req->getPC())) {
// strip off PAL PC marker (lsb is 1)
req->setPaddr((req->getVaddr() & ~3) & PAddrImplMask);
fetch_hits++;
return NoFault;
}
if (req->getFlags() & Request::PHYSICAL) {
req->setPaddr(req->getVaddr());
} else {
// verify that this is a good virtual address
if (!validVirtualAddress(req->getVaddr())) {
fetch_acv++;
return std::make_shared<ItbAcvFault>(req->getVaddr());
}
// VA<42:41> == 2, VA<39:13> maps directly to PA<39:13> for EV5
// VA<47:41> == 0x7e, VA<40:13> maps directly to PA<40:13> for EV6
if (VAddrSpaceEV6(req->getVaddr()) == 0x7e) {
// only valid in kernel mode
if (ICM_CM(tc->readMiscRegNoEffect(IPR_ICM)) !=
mode_kernel) {
fetch_acv++;
return std::make_shared<ItbAcvFault>(req->getVaddr());
}
req->setPaddr(req->getVaddr() & PAddrImplMask);
// sign extend the physical address properly
if (req->getPaddr() & PAddrUncachedBit40)
req->setPaddr(req->getPaddr() | ULL(0xf0000000000));
else
req->setPaddr(req->getPaddr() & ULL(0xffffffffff));
} else {
// not a physical address: need to look up pte
int asn = DTB_ASN_ASN(tc->readMiscRegNoEffect(IPR_DTB_ASN));
TlbEntry *entry = lookup(VAddr(req->getVaddr()).vpn(),
asn);
if (!entry) {
fetch_misses++;
return std::make_shared<ItbPageFault>(req->getVaddr());
}
req->setPaddr((entry->ppn << PageShift) +
(VAddr(req->getVaddr()).offset()
& ~3));
// check permissions for this access
if (!(entry->xre &
(1 << ICM_CM(tc->readMiscRegNoEffect(IPR_ICM))))) {
// instruction access fault
fetch_acv++;
return std::make_shared<ItbAcvFault>(req->getVaddr());
}
fetch_hits++;
}
}
// check that the physical address is ok (catch bad physical addresses)
if (req->getPaddr() & ~PAddrImplMask) {
return std::make_shared<MachineCheckFault>();
}
return checkCacheability(req, true);
}
Fault
TLB::translateData(RequestPtr req, ThreadContext *tc, bool write)
{
mode_type mode =
(mode_type)DTB_CM_CM(tc->readMiscRegNoEffect(IPR_DTB_CM));
/**
* Check for alignment faults
*/
if (req->getVaddr() & (req->getSize() - 1)) {
DPRINTF(TLB, "Alignment Fault on %#x, size = %d\n", req->getVaddr(),
req->getSize());
uint64_t flags = write ? MM_STAT_WR_MASK : 0;
return std::make_shared<DtbAlignmentFault>(req->getVaddr(),
req->getFlags(),
flags);
}
if (PcPAL(req->getPC())) {
mode = (req->getFlags() & AlphaRequestFlags::ALTMODE) ?
(mode_type)ALT_MODE_AM(
tc->readMiscRegNoEffect(IPR_ALT_MODE))
: mode_kernel;
}
if (req->getFlags() & Request::PHYSICAL) {
req->setPaddr(req->getVaddr());
} else {
// verify that this is a good virtual address
if (!validVirtualAddress(req->getVaddr())) {
if (write) { write_acv++; } else { read_acv++; }
uint64_t flags = (write ? MM_STAT_WR_MASK : 0) |
MM_STAT_BAD_VA_MASK |
MM_STAT_ACV_MASK;
return std::make_shared<DtbPageFault>(req->getVaddr(),
req->getFlags(),
flags);
}
// Check for "superpage" mapping
if (VAddrSpaceEV6(req->getVaddr()) == 0x7e) {
// only valid in kernel mode
if (DTB_CM_CM(tc->readMiscRegNoEffect(IPR_DTB_CM)) !=
mode_kernel) {
if (write) { write_acv++; } else { read_acv++; }
uint64_t flags = ((write ? MM_STAT_WR_MASK : 0) |
MM_STAT_ACV_MASK);
return std::make_shared<DtbAcvFault>(req->getVaddr(),
req->getFlags(),
flags);
}
req->setPaddr(req->getVaddr() & PAddrImplMask);
// sign extend the physical address properly
if (req->getPaddr() & PAddrUncachedBit40)
req->setPaddr(req->getPaddr() | ULL(0xf0000000000));
else
req->setPaddr(req->getPaddr() & ULL(0xffffffffff));
} else {
if (write)
write_accesses++;
else
read_accesses++;
int asn = DTB_ASN_ASN(tc->readMiscRegNoEffect(IPR_DTB_ASN));
// not a physical address: need to look up pte
TlbEntry *entry = lookup(VAddr(req->getVaddr()).vpn(), asn);
if (!entry) {
// page fault
if (write) { write_misses++; } else { read_misses++; }
uint64_t flags = (write ? MM_STAT_WR_MASK : 0) |
MM_STAT_DTB_MISS_MASK;
return (req->getFlags() & AlphaRequestFlags::VPTE) ?
(Fault)(std::make_shared<PDtbMissFault>(req->getVaddr(),
req->getFlags(),
flags)) :
(Fault)(std::make_shared<NDtbMissFault>(req->getVaddr(),
req->getFlags(),
flags));
}
req->setPaddr((entry->ppn << PageShift) +
VAddr(req->getVaddr()).offset());
if (write) {
if (!(entry->xwe & MODE2MASK(mode))) {
// declare the instruction access fault
write_acv++;
uint64_t flags = MM_STAT_WR_MASK |
MM_STAT_ACV_MASK |
(entry->fonw ? MM_STAT_FONW_MASK : 0);
return std::make_shared<DtbPageFault>(req->getVaddr(),
req->getFlags(),
flags);
}
if (entry->fonw) {
write_acv++;
uint64_t flags = MM_STAT_WR_MASK | MM_STAT_FONW_MASK;
return std::make_shared<DtbPageFault>(req->getVaddr(),
req->getFlags(),
flags);
}
} else {
if (!(entry->xre & MODE2MASK(mode))) {
read_acv++;
uint64_t flags = MM_STAT_ACV_MASK |
(entry->fonr ? MM_STAT_FONR_MASK : 0);
return std::make_shared<DtbAcvFault>(req->getVaddr(),
req->getFlags(),
flags);
}
if (entry->fonr) {
read_acv++;
uint64_t flags = MM_STAT_FONR_MASK;
return std::make_shared<DtbPageFault>(req->getVaddr(),
req->getFlags(),
flags);
}
}
}
if (write)
write_hits++;
else
read_hits++;
}
// check that the physical address is ok (catch bad physical addresses)
if (req->getPaddr() & ~PAddrImplMask) {
return std::make_shared<MachineCheckFault>();
}
return checkCacheability(req);
}
TlbEntry &
TLB::index(bool advance)
{
TlbEntry *entry = &table[nlu];
if (advance)
nextnlu();
return *entry;
}
Fault
TLB::translateAtomic(RequestPtr req, ThreadContext *tc, Mode mode)
{
if (mode == Execute)
return translateInst(req, tc);
else
return translateData(req, tc, mode == Write);
}
void
TLB::translateTiming(RequestPtr req, ThreadContext *tc,
Translation *translation, Mode mode)
{
assert(translation);
translation->finish(translateAtomic(req, tc, mode), req, tc, mode);
}
Fault
TLB::translateFunctional(RequestPtr req, ThreadContext *tc, Mode mode)
{
panic("Not implemented\n");
return NoFault;
}
Fault
TLB::finalizePhysical(RequestPtr req, ThreadContext *tc, Mode mode) const
{
return NoFault;
}
} // namespace AlphaISA
AlphaISA::TLB *
AlphaTLBParams::create()
{
return new AlphaISA::TLB(this);
}