| /* |
| * Copyright (c) 2011-2012, 2016 ARM Limited |
| * Copyright (c) 2013 Advanced Micro Devices, Inc. |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2006 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Kevin Lim |
| */ |
| |
| #ifndef __CPU_THREAD_CONTEXT_HH__ |
| #define __CPU_THREAD_CONTEXT_HH__ |
| |
| #include <iostream> |
| #include <string> |
| |
| #include "arch/registers.hh" |
| #include "arch/types.hh" |
| #include "base/types.hh" |
| #include "config/the_isa.hh" |
| #include "cpu/reg_class.hh" |
| |
| // @todo: Figure out a more architecture independent way to obtain the ITB and |
| // DTB pointers. |
| namespace TheISA |
| { |
| class Decoder; |
| class TLB; |
| } |
| class BaseCPU; |
| class CheckerCPU; |
| class Checkpoint; |
| class EndQuiesceEvent; |
| class SETranslatingPortProxy; |
| class FSTranslatingPortProxy; |
| class PortProxy; |
| class Process; |
| class System; |
| namespace TheISA { |
| namespace Kernel { |
| class Statistics; |
| } |
| } |
| |
| /** |
| * ThreadContext is the external interface to all thread state for |
| * anything outside of the CPU. It provides all accessor methods to |
| * state that might be needed by external objects, ranging from |
| * register values to things such as kernel stats. It is an abstract |
| * base class; the CPU can create its own ThreadContext by either |
| * deriving from it, or using the templated ProxyThreadContext. |
| * |
| * The ThreadContext is slightly different than the ExecContext. The |
| * ThreadContext provides access to an individual thread's state; an |
| * ExecContext provides ISA access to the CPU (meaning it is |
| * implicitly multithreaded on SMT systems). Additionally the |
| * ThreadState is an abstract class that exactly defines the |
| * interface; the ExecContext is a more implicit interface that must |
| * be implemented so that the ISA can access whatever state it needs. |
| */ |
| class ThreadContext |
| { |
| protected: |
| typedef TheISA::MachInst MachInst; |
| typedef TheISA::IntReg IntReg; |
| typedef TheISA::FloatReg FloatReg; |
| typedef TheISA::FloatRegBits FloatRegBits; |
| typedef TheISA::CCReg CCReg; |
| typedef TheISA::MiscReg MiscReg; |
| using VecRegContainer = TheISA::VecRegContainer; |
| using VecElem = TheISA::VecElem; |
| public: |
| |
| enum Status |
| { |
| /// Running. Instructions should be executed only when |
| /// the context is in this state. |
| Active, |
| |
| /// Temporarily inactive. Entered while waiting for |
| /// synchronization, etc. |
| Suspended, |
| |
| /// Permanently shut down. Entered when target executes |
| /// m5exit pseudo-instruction. When all contexts enter |
| /// this state, the simulation will terminate. |
| Halted |
| }; |
| |
| virtual ~ThreadContext() { }; |
| |
| virtual BaseCPU *getCpuPtr() = 0; |
| |
| virtual int cpuId() const = 0; |
| |
| virtual uint32_t socketId() const = 0; |
| |
| virtual int threadId() const = 0; |
| |
| virtual void setThreadId(int id) = 0; |
| |
| virtual int contextId() const = 0; |
| |
| virtual void setContextId(int id) = 0; |
| |
| virtual TheISA::TLB *getITBPtr() = 0; |
| |
| virtual TheISA::TLB *getDTBPtr() = 0; |
| |
| virtual CheckerCPU *getCheckerCpuPtr() = 0; |
| |
| virtual TheISA::Decoder *getDecoderPtr() = 0; |
| |
| virtual System *getSystemPtr() = 0; |
| |
| virtual TheISA::Kernel::Statistics *getKernelStats() = 0; |
| |
| virtual PortProxy &getPhysProxy() = 0; |
| |
| virtual FSTranslatingPortProxy &getVirtProxy() = 0; |
| |
| /** |
| * Initialise the physical and virtual port proxies and tie them to |
| * the data port of the CPU. |
| * |
| * tc ThreadContext for the virtual-to-physical translation |
| */ |
| virtual void initMemProxies(ThreadContext *tc) = 0; |
| |
| virtual SETranslatingPortProxy &getMemProxy() = 0; |
| |
| virtual Process *getProcessPtr() = 0; |
| |
| virtual void setProcessPtr(Process *p) = 0; |
| |
| virtual Status status() const = 0; |
| |
| virtual void setStatus(Status new_status) = 0; |
| |
| /// Set the status to Active. |
| virtual void activate() = 0; |
| |
| /// Set the status to Suspended. |
| virtual void suspend() = 0; |
| |
| /// Set the status to Halted. |
| virtual void halt() = 0; |
| |
| /// Quiesce thread context |
| void quiesce(); |
| |
| /// Quiesce, suspend, and schedule activate at resume |
| void quiesceTick(Tick resume); |
| |
| virtual void dumpFuncProfile() = 0; |
| |
| virtual void takeOverFrom(ThreadContext *old_context) = 0; |
| |
| virtual void regStats(const std::string &name) = 0; |
| |
| virtual EndQuiesceEvent *getQuiesceEvent() = 0; |
| |
| // Not necessarily the best location for these... |
| // Having an extra function just to read these is obnoxious |
| virtual Tick readLastActivate() = 0; |
| virtual Tick readLastSuspend() = 0; |
| |
| virtual void profileClear() = 0; |
| virtual void profileSample() = 0; |
| |
| virtual void copyArchRegs(ThreadContext *tc) = 0; |
| |
| virtual void clearArchRegs() = 0; |
| |
| // |
| // New accessors for new decoder. |
| // |
| virtual uint64_t readIntReg(int reg_idx) = 0; |
| |
| virtual FloatReg readFloatReg(int reg_idx) = 0; |
| |
| virtual FloatRegBits readFloatRegBits(int reg_idx) = 0; |
| |
| virtual const VecRegContainer& readVecReg(const RegId& reg) const = 0; |
| virtual VecRegContainer& getWritableVecReg(const RegId& reg) = 0; |
| |
| /** Vector Register Lane Interfaces. */ |
| /** @{ */ |
| /** Reads source vector 8bit operand. */ |
| virtual ConstVecLane8 |
| readVec8BitLaneReg(const RegId& reg) const = 0; |
| |
| /** Reads source vector 16bit operand. */ |
| virtual ConstVecLane16 |
| readVec16BitLaneReg(const RegId& reg) const = 0; |
| |
| /** Reads source vector 32bit operand. */ |
| virtual ConstVecLane32 |
| readVec32BitLaneReg(const RegId& reg) const = 0; |
| |
| /** Reads source vector 64bit operand. */ |
| virtual ConstVecLane64 |
| readVec64BitLaneReg(const RegId& reg) const = 0; |
| |
| /** Write a lane of the destination vector register. */ |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::Byte>& val) = 0; |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::TwoByte>& val) = 0; |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::FourByte>& val) = 0; |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::EightByte>& val) = 0; |
| /** @} */ |
| |
| virtual const VecElem& readVecElem(const RegId& reg) const = 0; |
| |
| virtual CCReg readCCReg(int reg_idx) = 0; |
| |
| virtual void setIntReg(int reg_idx, uint64_t val) = 0; |
| |
| virtual void setFloatReg(int reg_idx, FloatReg val) = 0; |
| |
| virtual void setFloatRegBits(int reg_idx, FloatRegBits val) = 0; |
| |
| virtual void setVecReg(const RegId& reg, const VecRegContainer& val) = 0; |
| |
| virtual void setVecElem(const RegId& reg, const VecElem& val) = 0; |
| |
| virtual void setCCReg(int reg_idx, CCReg val) = 0; |
| |
| virtual TheISA::PCState pcState() = 0; |
| |
| virtual void pcState(const TheISA::PCState &val) = 0; |
| |
| void |
| setNPC(Addr val) |
| { |
| TheISA::PCState pc_state = pcState(); |
| pc_state.setNPC(val); |
| pcState(pc_state); |
| } |
| |
| virtual void pcStateNoRecord(const TheISA::PCState &val) = 0; |
| |
| virtual Addr instAddr() = 0; |
| |
| virtual Addr nextInstAddr() = 0; |
| |
| virtual MicroPC microPC() = 0; |
| |
| virtual MiscReg readMiscRegNoEffect(int misc_reg) const = 0; |
| |
| virtual MiscReg readMiscReg(int misc_reg) = 0; |
| |
| virtual void setMiscRegNoEffect(int misc_reg, const MiscReg &val) = 0; |
| |
| virtual void setMiscReg(int misc_reg, const MiscReg &val) = 0; |
| |
| virtual RegId flattenRegId(const RegId& regId) const = 0; |
| |
| virtual uint64_t |
| readRegOtherThread(const RegId& misc_reg, ThreadID tid) |
| { |
| return 0; |
| } |
| |
| virtual void |
| setRegOtherThread(const RegId& misc_reg, const MiscReg &val, ThreadID tid) |
| { |
| } |
| |
| // Also not necessarily the best location for these two. Hopefully will go |
| // away once we decide upon where st cond failures goes. |
| virtual unsigned readStCondFailures() = 0; |
| |
| virtual void setStCondFailures(unsigned sc_failures) = 0; |
| |
| // Same with st cond failures. |
| virtual Counter readFuncExeInst() = 0; |
| |
| virtual void syscall(int64_t callnum, Fault *fault) = 0; |
| |
| // This function exits the thread context in the CPU and returns |
| // 1 if the CPU has no more active threads (meaning it's OK to exit); |
| // Used in syscall-emulation mode when a thread calls the exit syscall. |
| virtual int exit() { return 1; }; |
| |
| /** function to compare two thread contexts (for debugging) */ |
| static void compare(ThreadContext *one, ThreadContext *two); |
| |
| /** @{ */ |
| /** |
| * Flat register interfaces |
| * |
| * Some architectures have different registers visible in |
| * different modes. Such architectures "flatten" a register (see |
| * flattenRegId()) to map it into the |
| * gem5 register file. This interface provides a flat interface to |
| * the underlying register file, which allows for example |
| * serialization code to access all registers. |
| */ |
| |
| virtual uint64_t readIntRegFlat(int idx) = 0; |
| virtual void setIntRegFlat(int idx, uint64_t val) = 0; |
| |
| virtual FloatReg readFloatRegFlat(int idx) = 0; |
| virtual void setFloatRegFlat(int idx, FloatReg val) = 0; |
| |
| virtual FloatRegBits readFloatRegBitsFlat(int idx) = 0; |
| virtual void setFloatRegBitsFlat(int idx, FloatRegBits val) = 0; |
| |
| virtual const VecRegContainer& readVecRegFlat(int idx) const = 0; |
| virtual VecRegContainer& getWritableVecRegFlat(int idx) = 0; |
| virtual void setVecRegFlat(int idx, const VecRegContainer& val) = 0; |
| |
| virtual const VecElem& readVecElemFlat(const RegIndex& idx, |
| const ElemIndex& elemIdx) const = 0; |
| virtual void setVecElemFlat(const RegIndex& idx, const ElemIndex& elemIdx, |
| const VecElem& val) = 0; |
| |
| virtual CCReg readCCRegFlat(int idx) = 0; |
| virtual void setCCRegFlat(int idx, CCReg val) = 0; |
| /** @} */ |
| |
| }; |
| |
| /** |
| * ProxyThreadContext class that provides a way to implement a |
| * ThreadContext without having to derive from it. ThreadContext is an |
| * abstract class, so anything that derives from it and uses its |
| * interface will pay the overhead of virtual function calls. This |
| * class is created to enable a user-defined Thread object to be used |
| * wherever ThreadContexts are used, without paying the overhead of |
| * virtual function calls when it is used by itself. See |
| * simple_thread.hh for an example of this. |
| */ |
| template <class TC> |
| class ProxyThreadContext : public ThreadContext |
| { |
| public: |
| ProxyThreadContext(TC *actual_tc) |
| { actualTC = actual_tc; } |
| |
| private: |
| TC *actualTC; |
| |
| public: |
| |
| BaseCPU *getCpuPtr() { return actualTC->getCpuPtr(); } |
| |
| int cpuId() const { return actualTC->cpuId(); } |
| |
| uint32_t socketId() const { return actualTC->socketId(); } |
| |
| int threadId() const { return actualTC->threadId(); } |
| |
| void setThreadId(int id) { actualTC->setThreadId(id); } |
| |
| int contextId() const { return actualTC->contextId(); } |
| |
| void setContextId(int id) { actualTC->setContextId(id); } |
| |
| TheISA::TLB *getITBPtr() { return actualTC->getITBPtr(); } |
| |
| TheISA::TLB *getDTBPtr() { return actualTC->getDTBPtr(); } |
| |
| CheckerCPU *getCheckerCpuPtr() { return actualTC->getCheckerCpuPtr(); } |
| |
| TheISA::Decoder *getDecoderPtr() { return actualTC->getDecoderPtr(); } |
| |
| System *getSystemPtr() { return actualTC->getSystemPtr(); } |
| |
| TheISA::Kernel::Statistics *getKernelStats() |
| { return actualTC->getKernelStats(); } |
| |
| PortProxy &getPhysProxy() { return actualTC->getPhysProxy(); } |
| |
| FSTranslatingPortProxy &getVirtProxy() { return actualTC->getVirtProxy(); } |
| |
| void initMemProxies(ThreadContext *tc) { actualTC->initMemProxies(tc); } |
| |
| SETranslatingPortProxy &getMemProxy() { return actualTC->getMemProxy(); } |
| |
| Process *getProcessPtr() { return actualTC->getProcessPtr(); } |
| |
| void setProcessPtr(Process *p) { actualTC->setProcessPtr(p); } |
| |
| Status status() const { return actualTC->status(); } |
| |
| void setStatus(Status new_status) { actualTC->setStatus(new_status); } |
| |
| /// Set the status to Active. |
| void activate() { actualTC->activate(); } |
| |
| /// Set the status to Suspended. |
| void suspend() { actualTC->suspend(); } |
| |
| /// Set the status to Halted. |
| void halt() { actualTC->halt(); } |
| |
| /// Quiesce thread context |
| void quiesce() { actualTC->quiesce(); } |
| |
| /// Quiesce, suspend, and schedule activate at resume |
| void quiesceTick(Tick resume) { actualTC->quiesceTick(resume); } |
| |
| void dumpFuncProfile() { actualTC->dumpFuncProfile(); } |
| |
| void takeOverFrom(ThreadContext *oldContext) |
| { actualTC->takeOverFrom(oldContext); } |
| |
| void regStats(const std::string &name) { actualTC->regStats(name); } |
| |
| EndQuiesceEvent *getQuiesceEvent() { return actualTC->getQuiesceEvent(); } |
| |
| Tick readLastActivate() { return actualTC->readLastActivate(); } |
| Tick readLastSuspend() { return actualTC->readLastSuspend(); } |
| |
| void profileClear() { return actualTC->profileClear(); } |
| void profileSample() { return actualTC->profileSample(); } |
| |
| // @todo: Do I need this? |
| void copyArchRegs(ThreadContext *tc) { actualTC->copyArchRegs(tc); } |
| |
| void clearArchRegs() { actualTC->clearArchRegs(); } |
| |
| // |
| // New accessors for new decoder. |
| // |
| uint64_t readIntReg(int reg_idx) |
| { return actualTC->readIntReg(reg_idx); } |
| |
| FloatReg readFloatReg(int reg_idx) |
| { return actualTC->readFloatReg(reg_idx); } |
| |
| FloatRegBits readFloatRegBits(int reg_idx) |
| { return actualTC->readFloatRegBits(reg_idx); } |
| |
| const VecRegContainer& readVecReg(const RegId& reg) const |
| { return actualTC->readVecReg(reg); } |
| |
| VecRegContainer& getWritableVecReg(const RegId& reg) |
| { return actualTC->getWritableVecReg(reg); } |
| |
| /** Vector Register Lane Interfaces. */ |
| /** @{ */ |
| /** Reads source vector 8bit operand. */ |
| ConstVecLane8 |
| readVec8BitLaneReg(const RegId& reg) const |
| { return actualTC->readVec8BitLaneReg(reg); } |
| |
| /** Reads source vector 16bit operand. */ |
| ConstVecLane16 |
| readVec16BitLaneReg(const RegId& reg) const |
| { return actualTC->readVec16BitLaneReg(reg); } |
| |
| /** Reads source vector 32bit operand. */ |
| ConstVecLane32 |
| readVec32BitLaneReg(const RegId& reg) const |
| { return actualTC->readVec32BitLaneReg(reg); } |
| |
| /** Reads source vector 64bit operand. */ |
| ConstVecLane64 |
| readVec64BitLaneReg(const RegId& reg) const |
| { return actualTC->readVec64BitLaneReg(reg); } |
| |
| /** Write a lane of the destination vector register. */ |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::Byte>& val) |
| { return actualTC->setVecLane(reg, val); } |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::TwoByte>& val) |
| { return actualTC->setVecLane(reg, val); } |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::FourByte>& val) |
| { return actualTC->setVecLane(reg, val); } |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::EightByte>& val) |
| { return actualTC->setVecLane(reg, val); } |
| /** @} */ |
| |
| const VecElem& readVecElem(const RegId& reg) const |
| { return actualTC->readVecElem(reg); } |
| |
| CCReg readCCReg(int reg_idx) |
| { return actualTC->readCCReg(reg_idx); } |
| |
| void setIntReg(int reg_idx, uint64_t val) |
| { actualTC->setIntReg(reg_idx, val); } |
| |
| void setFloatReg(int reg_idx, FloatReg val) |
| { actualTC->setFloatReg(reg_idx, val); } |
| |
| void setFloatRegBits(int reg_idx, FloatRegBits val) |
| { actualTC->setFloatRegBits(reg_idx, val); } |
| |
| void setVecReg(const RegId& reg, const VecRegContainer& val) |
| { actualTC->setVecReg(reg, val); } |
| |
| void setVecElem(const RegId& reg, const VecElem& val) |
| { actualTC->setVecElem(reg, val); } |
| |
| void setCCReg(int reg_idx, CCReg val) |
| { actualTC->setCCReg(reg_idx, val); } |
| |
| TheISA::PCState pcState() { return actualTC->pcState(); } |
| |
| void pcState(const TheISA::PCState &val) { actualTC->pcState(val); } |
| |
| void pcStateNoRecord(const TheISA::PCState &val) { actualTC->pcState(val); } |
| |
| Addr instAddr() { return actualTC->instAddr(); } |
| Addr nextInstAddr() { return actualTC->nextInstAddr(); } |
| MicroPC microPC() { return actualTC->microPC(); } |
| |
| bool readPredicate() { return actualTC->readPredicate(); } |
| |
| void setPredicate(bool val) |
| { actualTC->setPredicate(val); } |
| |
| MiscReg readMiscRegNoEffect(int misc_reg) const |
| { return actualTC->readMiscRegNoEffect(misc_reg); } |
| |
| MiscReg readMiscReg(int misc_reg) |
| { return actualTC->readMiscReg(misc_reg); } |
| |
| void setMiscRegNoEffect(int misc_reg, const MiscReg &val) |
| { return actualTC->setMiscRegNoEffect(misc_reg, val); } |
| |
| void setMiscReg(int misc_reg, const MiscReg &val) |
| { return actualTC->setMiscReg(misc_reg, val); } |
| |
| RegId flattenRegId(const RegId& regId) const |
| { return actualTC->flattenRegId(regId); } |
| |
| unsigned readStCondFailures() |
| { return actualTC->readStCondFailures(); } |
| |
| void setStCondFailures(unsigned sc_failures) |
| { actualTC->setStCondFailures(sc_failures); } |
| |
| void syscall(int64_t callnum, Fault *fault) |
| { actualTC->syscall(callnum, fault); } |
| |
| Counter readFuncExeInst() { return actualTC->readFuncExeInst(); } |
| |
| uint64_t readIntRegFlat(int idx) |
| { return actualTC->readIntRegFlat(idx); } |
| |
| void setIntRegFlat(int idx, uint64_t val) |
| { actualTC->setIntRegFlat(idx, val); } |
| |
| FloatReg readFloatRegFlat(int idx) |
| { return actualTC->readFloatRegFlat(idx); } |
| |
| void setFloatRegFlat(int idx, FloatReg val) |
| { actualTC->setFloatRegFlat(idx, val); } |
| |
| FloatRegBits readFloatRegBitsFlat(int idx) |
| { return actualTC->readFloatRegBitsFlat(idx); } |
| |
| void setFloatRegBitsFlat(int idx, FloatRegBits val) |
| { actualTC->setFloatRegBitsFlat(idx, val); } |
| |
| const VecRegContainer& readVecRegFlat(int id) const |
| { return actualTC->readVecRegFlat(id); } |
| |
| VecRegContainer& getWritableVecRegFlat(int id) |
| { return actualTC->getWritableVecRegFlat(id); } |
| |
| void setVecRegFlat(int idx, const VecRegContainer& val) |
| { actualTC->setVecRegFlat(idx, val); } |
| |
| const VecElem& readVecElemFlat(const RegIndex& id, |
| const ElemIndex& elemIndex) const |
| { return actualTC->readVecElemFlat(id, elemIndex); } |
| |
| void setVecElemFlat(const RegIndex& id, const ElemIndex& elemIndex, |
| const VecElem& val) |
| { actualTC->setVecElemFlat(id, elemIndex, val); } |
| |
| CCReg readCCRegFlat(int idx) |
| { return actualTC->readCCRegFlat(idx); } |
| |
| void setCCRegFlat(int idx, CCReg val) |
| { actualTC->setCCRegFlat(idx, val); } |
| }; |
| |
| /** @{ */ |
| /** |
| * Thread context serialization helpers |
| * |
| * These helper functions provide a way to the data in a |
| * ThreadContext. They are provided as separate helper function since |
| * implementing them as members of the ThreadContext interface would |
| * be confusing when the ThreadContext is exported via a proxy. |
| */ |
| |
| void serialize(ThreadContext &tc, CheckpointOut &cp); |
| void unserialize(ThreadContext &tc, CheckpointIn &cp); |
| |
| /** @} */ |
| |
| |
| /** |
| * Copy state between thread contexts in preparation for CPU handover. |
| * |
| * @note This method modifies the old thread contexts as well as the |
| * new thread context. The old thread context will have its quiesce |
| * event descheduled if it is scheduled and its status set to halted. |
| * |
| * @param new_tc Destination ThreadContext. |
| * @param old_tc Source ThreadContext. |
| */ |
| void takeOverFrom(ThreadContext &new_tc, ThreadContext &old_tc); |
| |
| #endif |