| /* Copyright (c) 2012 Massachusetts Institute of Technology |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "model/std_cells/ADDF.h" |
| |
| #include <cmath> |
| |
| #include "model/PortInfo.h" |
| #include "model/EventInfo.h" |
| #include "model/TransitionInfo.h" |
| #include "model/std_cells/StdCellLib.h" |
| #include "model/std_cells/CellMacros.h" |
| #include "model/timing_graph/ElectricalNet.h" |
| #include "model/timing_graph/ElectricalDriver.h" |
| #include "model/timing_graph/ElectricalLoad.h" |
| #include "model/timing_graph/ElectricalDelay.h" |
| |
| namespace DSENT |
| { |
| using std::ceil; |
| using std::max; |
| |
| ADDF::ADDF(const String& instance_name_, const TechModel* tech_model_) |
| : StdCell(instance_name_, tech_model_) |
| { |
| initParameters(); |
| initProperties(); |
| } |
| |
| ADDF::~ADDF() |
| {} |
| |
| void ADDF::initProperties() |
| { |
| return; |
| } |
| |
| void ADDF::constructModel() |
| { |
| // All constructModel should do is create Area/NDDPower/Energy Results as |
| // well as instantiate any sub-instances using only the hard parameters |
| |
| createInputPort("A"); |
| createInputPort("B"); |
| createInputPort("CI"); |
| createOutputPort("S"); |
| createOutputPort("CO"); |
| |
| createLoad("A_Cap"); |
| createLoad("B_Cap"); |
| createLoad("CI_Cap"); |
| createDelay("A_to_S_delay"); |
| createDelay("B_to_S_delay"); |
| createDelay("CI_to_S_delay"); |
| createDelay("A_to_CO_delay"); |
| createDelay("B_to_CO_delay"); |
| createDelay("CI_to_CO_delay"); |
| createDriver("S_Ron", true); |
| createDriver("CO_Ron", true); |
| |
| ElectricalLoad* a_cap = getLoad("A_Cap"); |
| ElectricalLoad* b_cap = getLoad("B_Cap"); |
| ElectricalLoad* ci_cap = getLoad("CI_Cap"); |
| ElectricalDelay* a_to_s_delay = getDelay("A_to_S_delay"); |
| ElectricalDelay* b_to_s_delay = getDelay("B_to_S_delay"); |
| ElectricalDelay* ci_to_s_delay = getDelay("CI_to_S_delay"); |
| ElectricalDelay* a_to_co_delay = getDelay("A_to_CO_delay"); |
| ElectricalDelay* b_to_co_delay = getDelay("B_to_CO_delay"); |
| ElectricalDelay* ci_to_co_delay = getDelay("CI_to_CO_delay"); |
| ElectricalDriver* s_ron = getDriver("S_Ron"); |
| ElectricalDriver* co_ron = getDriver("CO_Ron"); |
| |
| getNet("A")->addDownstreamNode(a_cap); |
| getNet("B")->addDownstreamNode(b_cap); |
| getNet("CI")->addDownstreamNode(ci_cap); |
| a_cap->addDownstreamNode(a_to_s_delay); |
| b_cap->addDownstreamNode(b_to_s_delay); |
| ci_cap->addDownstreamNode(ci_to_s_delay); |
| a_cap->addDownstreamNode(a_to_co_delay); |
| b_cap->addDownstreamNode(b_to_co_delay); |
| ci_cap->addDownstreamNode(ci_to_co_delay); |
| |
| a_to_s_delay->addDownstreamNode(s_ron); |
| b_to_s_delay->addDownstreamNode(s_ron); |
| ci_to_s_delay->addDownstreamNode(s_ron); |
| a_to_co_delay->addDownstreamNode(co_ron); |
| b_to_co_delay->addDownstreamNode(co_ron); |
| ci_to_co_delay->addDownstreamNode(co_ron); |
| |
| s_ron->addDownstreamNode(getNet("S")); |
| co_ron->addDownstreamNode(getNet("CO")); |
| |
| // Create Area result |
| // Create NDD Power result |
| createElectricalAtomicResults(); |
| // Create ADDF Event Energy Result |
| createElectricalEventAtomicResult("ADDF"); |
| |
| getEventInfo("Idle")->setStaticTransitionInfos(); |
| |
| return; |
| } |
| |
| void ADDF::updateModel() |
| { |
| // Get parameters |
| double drive_strength = getDrivingStrength(); |
| Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); |
| |
| // Standard cell cache string |
| String cell_name = "ADDF_X" + (String) drive_strength; |
| |
| // Get timing parameters |
| getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A")); |
| getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B")); |
| getLoad("CI_Cap")->setLoadCap(cache->get(cell_name + "->Cap->CI")); |
| |
| getDelay("A_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_S")); |
| getDelay("B_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_S")); |
| getDelay("CI_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->CI_to_S")); |
| getDelay("A_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_CO")); |
| getDelay("B_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_CO")); |
| getDelay("CI_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->CI_to_CO")); |
| |
| getDriver("S_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->S")); |
| getDriver("CO_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->CO")); |
| |
| // Set the cell area |
| getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active")); |
| getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Metal1Wire")); |
| |
| return; |
| } |
| |
| void ADDF::evaluateModel() |
| { |
| return; |
| } |
| |
| void ADDF::useModel() |
| { |
| // Get parameters |
| double drive_strength = getDrivingStrength(); |
| Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); |
| |
| // Standard cell cache string |
| String cell_name = "ADDF_X" + (String) drive_strength; |
| |
| // Propagate the transition info and get the 0->1 transition count |
| propagateTransitionInfo(); |
| double P_A = getInputPort("A")->getTransitionInfo().getProbability1(); |
| double P_B = getInputPort("B")->getTransitionInfo().getProbability1(); |
| double P_CI = getInputPort("CI")->getTransitionInfo().getProbability1(); |
| double A_num_trans_01 = getInputPort("A")->getTransitionInfo().getNumberTransitions01(); |
| double B_num_trans_01 = getInputPort("B")->getTransitionInfo().getNumberTransitions01(); |
| double CI_num_trans_01 = getInputPort("CI")->getTransitionInfo().getNumberTransitions01(); |
| double P_num_trans_01 = m_trans_P_.getNumberTransitions01(); |
| double G_num_trans_01 = m_trans_G_.getNumberTransitions01(); |
| double CP_num_trans_01 = m_trans_CP_.getNumberTransitions01(); |
| double S_num_trans_01 = getOutputPort("S")->getTransitionInfo().getNumberTransitions01(); |
| double CO_num_trans_01 = getOutputPort("CO")->getTransitionInfo().getNumberTransitions01(); |
| |
| // Calculate leakage |
| double leakage = 0; |
| leakage += cache->get(cell_name + "->Leakage->!A!B!CI") * (1 - P_A) * (1 - P_B) * (1 - P_CI); |
| leakage += cache->get(cell_name + "->Leakage->!A!BCI") * (1 - P_A) * (1 - P_B) * P_CI; |
| leakage += cache->get(cell_name + "->Leakage->!AB!CI") * (1 - P_A) * P_B * (1 - P_CI); |
| leakage += cache->get(cell_name + "->Leakage->!ABCI") * (1 - P_A) * P_B * P_CI; |
| leakage += cache->get(cell_name + "->Leakage->A!B!CI") * P_A * (1 - P_B) * (1 - P_CI); |
| leakage += cache->get(cell_name + "->Leakage->A!BCI") * P_A * (1 - P_B) * P_CI; |
| leakage += cache->get(cell_name + "->Leakage->AB!CI") * P_A * P_B * (1 - P_CI); |
| leakage += cache->get(cell_name + "->Leakage->ABCI") * P_A * P_B * P_CI; |
| getNddPowerResult("Leakage")->setValue(leakage); |
| |
| // Get VDD |
| double vdd = getTechModel()->get("Vdd"); |
| |
| // Get capacitances |
| double a_b_cap = cache->get(cell_name + "->Cap->A_b"); |
| double b_b_cap = cache->get(cell_name + "->Cap->B_b"); |
| double ci_b_cap = cache->get(cell_name + "->Cap->CI_b"); |
| double p_cap = cache->get(cell_name + "->Cap->P"); |
| double p_b_cap = cache->get(cell_name + "->Cap->P_b"); |
| double s_cap = cache->get(cell_name + "->Cap->S"); |
| double cp_cap = cache->get(cell_name + "->Cap->CP"); |
| double g_cap = cache->get(cell_name + "->Cap->G"); |
| double co_cap = cache->get(cell_name + "->Cap->CO"); |
| double s_load_cap = getNet("S")->getTotalDownstreamCap(); |
| double co_load_cap = getNet("CO")->getTotalDownstreamCap(); |
| |
| // Calculate ADDF Event energy |
| double addf_event_energy = 0.0; |
| addf_event_energy += a_b_cap * A_num_trans_01; |
| addf_event_energy += b_b_cap * B_num_trans_01; |
| addf_event_energy += ci_b_cap * CI_num_trans_01; |
| addf_event_energy += (p_cap + p_b_cap) * P_num_trans_01; |
| addf_event_energy += (s_cap + s_load_cap) * S_num_trans_01; |
| addf_event_energy += cp_cap * CP_num_trans_01; |
| addf_event_energy += g_cap * G_num_trans_01; |
| addf_event_energy += (co_cap + co_load_cap) * CO_num_trans_01; |
| addf_event_energy *= vdd * vdd; |
| getEventResult("ADDF")->setValue(addf_event_energy); |
| |
| return; |
| } |
| |
| void ADDF::propagateTransitionInfo() |
| { |
| const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo(); |
| const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo(); |
| const TransitionInfo& trans_CI = getInputPort("CI")->getTransitionInfo(); |
| |
| double max_freq_mult = max(max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()), trans_CI.getFrequencyMultiplier()); |
| const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult); |
| const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult); |
| const TransitionInfo& scaled_trans_CI = trans_CI.scaleFrequencyMultiplier(max_freq_mult); |
| |
| double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult; |
| double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult; |
| double A_prob_10 = A_prob_01; |
| double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult; |
| double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult; |
| double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult; |
| double B_prob_10 = B_prob_01; |
| double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult; |
| double CI_prob_00 = scaled_trans_CI.getNumberTransitions00() / max_freq_mult; |
| double CI_prob_01 = scaled_trans_CI.getNumberTransitions01() / max_freq_mult; |
| double CI_prob_10 = CI_prob_01; |
| double CI_prob_11 = scaled_trans_CI.getNumberTransitions11() / max_freq_mult; |
| |
| // Set P transition info |
| double P_prob_00 = A_prob_00 * B_prob_00 + |
| A_prob_01 * B_prob_01 + |
| A_prob_10 * B_prob_10 + |
| A_prob_11 * B_prob_11; |
| double P_prob_01 = A_prob_00 * B_prob_01 + |
| A_prob_01 * B_prob_00 + |
| A_prob_10 * B_prob_11 + |
| A_prob_11 * B_prob_10; |
| double P_prob_10 = P_prob_01; |
| double P_prob_11 = A_prob_00 * B_prob_11 + |
| A_prob_01 * B_prob_10 + |
| A_prob_10 * B_prob_01 + |
| A_prob_11 * B_prob_00; |
| |
| // Set G transition info |
| double G_prob_00 = A_prob_11 * B_prob_11; |
| double G_prob_01 = A_prob_11 * B_prob_10 + |
| A_prob_10 * (B_prob_11 + B_prob_10); |
| double G_prob_10 = G_prob_01; |
| double G_prob_11 = A_prob_00 + |
| A_prob_01 * (B_prob_00 + B_prob_10) + |
| A_prob_10 * (B_prob_00 + B_prob_01) + |
| A_prob_11 * B_prob_00; |
| |
| // Set CP transition info |
| double CP_prob_00 = P_prob_11 * CI_prob_11; |
| double CP_prob_01 = P_prob_11 * CI_prob_10 + |
| P_prob_10 * (CI_prob_11 + CI_prob_10); |
| double CP_prob_10 = CP_prob_01; |
| double CP_prob_11 = P_prob_00 + |
| P_prob_01 * (CI_prob_00 + CI_prob_10) + |
| P_prob_10 * (CI_prob_00 + CI_prob_01) + |
| P_prob_11 * CI_prob_00; |
| |
| // Set S transition info |
| double S_prob_00 = P_prob_00 * CI_prob_00 + |
| P_prob_01 * CI_prob_01 + |
| P_prob_10 * CI_prob_10 + |
| P_prob_11 * CI_prob_11; |
| double S_prob_01 = P_prob_00 * CI_prob_01 + |
| P_prob_01 * CI_prob_00 + |
| P_prob_10 * CI_prob_11 + |
| P_prob_11 * CI_prob_10; |
| double S_prob_11 = P_prob_00 * CI_prob_11 + |
| P_prob_01 * CI_prob_10 + |
| P_prob_10 * CI_prob_01 + |
| P_prob_11 * CI_prob_00; |
| |
| // Set CO transition info |
| double CO_prob_00 = G_prob_11 * CP_prob_11; |
| double CO_prob_01 = G_prob_11 * CP_prob_10 + |
| G_prob_10 * (CP_prob_11 + CP_prob_10); |
| double CO_prob_11 = G_prob_00 + |
| G_prob_01 * (CP_prob_00 + CP_prob_10) + |
| G_prob_10 * (CP_prob_00 + CP_prob_01) + |
| G_prob_11 * CP_prob_00; |
| |
| m_trans_P_ = TransitionInfo(P_prob_00 * max_freq_mult, P_prob_01 * max_freq_mult, P_prob_11 * max_freq_mult); |
| m_trans_G_ = TransitionInfo(G_prob_00 * max_freq_mult, G_prob_01 * max_freq_mult, G_prob_11 * max_freq_mult); |
| m_trans_CP_ = TransitionInfo(CP_prob_00 * max_freq_mult, CP_prob_01 * max_freq_mult, CP_prob_11 * max_freq_mult); |
| |
| // Check that probabilities add up to 1.0 with some finite tolerance |
| ASSERT(LibUtil::Math::isEqual((S_prob_00 + S_prob_01 + S_prob_01 + S_prob_11), 1.0), |
| "[Error] " + getInstanceName() + "Output S transition probabilities must add up to 1 (" + |
| (String) S_prob_00 + ", " + (String) S_prob_01 + ", " + (String) S_prob_11 + ")!"); |
| |
| // Check that probabilities add up to 1.0 with some finite tolerance |
| ASSERT(LibUtil::Math::isEqual((CO_prob_00 + CO_prob_01 + CO_prob_01 + CO_prob_11), 1.0), |
| "[Error] " + getInstanceName() + "Output S transition probabilities must add up to 1 (" + |
| (String) CO_prob_00 + ", " + (String) CO_prob_01 + ", " + (String) CO_prob_11 + ")!"); |
| |
| // Turn probability of transitions per cycle into number of transitions per time unit |
| TransitionInfo trans_S(S_prob_00 * max_freq_mult, S_prob_01 * max_freq_mult, S_prob_11 * max_freq_mult); |
| getOutputPort("S")->setTransitionInfo(trans_S); |
| TransitionInfo trans_CO(CO_prob_00 * max_freq_mult, CO_prob_01 * max_freq_mult, CO_prob_11 * max_freq_mult); |
| getOutputPort("CO")->setTransitionInfo(trans_CO); |
| return; |
| } |
| |
| // Creates the standard cell, characterizes and abstracts away the details |
| void ADDF::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) |
| { |
| // Get parameters |
| double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); |
| Map<double>* cache = cell_lib_->getStdCellCache(); |
| |
| // Standard cell cache string |
| String cell_name = "ADDF_X" + (String) drive_strength_; |
| |
| Log::printLine("=== " + cell_name + " ==="); |
| |
| // Now actually build the full standard cell model |
| createInputPort("A"); |
| createInputPort("B"); |
| createInputPort("CI"); |
| createOutputPort("S"); |
| createOutputPort("CO"); |
| |
| createNet("A_b"); |
| createNet("B_b"); |
| createNet("CI_b"); |
| createNet("P"); |
| createNet("P_b"); |
| createNet("G"); //actually G_b since it is NAND'ed |
| createNet("CP"); //actually (CP)_b since it is NAND'ed |
| |
| // Adds macros |
| CellMacros::addInverter(this, "INV1", false, true, "A", "A_b"); |
| CellMacros::addInverter(this, "INV2", false, true, "B", "B_b"); |
| CellMacros::addInverter(this, "INV3", false, true, "CI", "CI_b"); |
| CellMacros::addInverter(this, "INV4", false, true, "P", "P_b"); |
| CellMacros::addTristate(this, "INVZ1", false, true, true, true, "B", "A", "A_b", "P"); |
| CellMacros::addTristate(this, "INVZ2", false, true, true, true, "B_b", "A_b", "A", "P"); |
| CellMacros::addTristate(this, "INVZ3", true, true, true, true, "P", "CI", "CI_b", "S"); |
| CellMacros::addTristate(this, "INVZ4", true, true, true, true, "P_b", "CI_b", "CI", "S"); |
| CellMacros::addNand2(this, "NAND1", false, true, true, "CI", "P", "CP"); |
| CellMacros::addNand2(this, "NAND2", false, true, true, "A", "B", "G"); |
| CellMacros::addNand2(this, "NAND3", true, true, true, "CP", "G", "CO"); |
| |
| // I have no idea how to size each of the parts haha |
| CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.250); |
| CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.250); |
| CellMacros::updateInverter(this, "INV3", drive_strength_ * 0.250); |
| CellMacros::updateInverter(this, "INV4", drive_strength_ * 0.500); |
| CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.250); |
| CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.250); |
| CellMacros::updateTristate(this, "INVZ3", drive_strength_ * 0.500); |
| CellMacros::updateTristate(this, "INVZ4", drive_strength_ * 0.500); |
| CellMacros::updateNand2(this, "NAND1", drive_strength_ * 0.500); |
| CellMacros::updateNand2(this, "NAND2", drive_strength_ * 0.500); |
| CellMacros::updateNand2(this, "NAND3", drive_strength_ * 1.000); |
| |
| // Cache area result |
| double area = 0.0; |
| area += gate_pitch * getTotalHeight() * 1; |
| area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble(); |
| area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble(); |
| area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV3_GatePitches").toDouble(); |
| area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV4_GatePitches").toDouble(); |
| area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble(); |
| area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble(); |
| area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ3_GatePitches").toDouble(); |
| area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ4_GatePitches").toDouble(); |
| area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND1_GatePitches").toDouble(); |
| area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND2_GatePitches").toDouble(); |
| area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND3_GatePitches").toDouble(); |
| cache->set(cell_name + "->Area->Active", area); |
| cache->set(cell_name + "->Area->Metal1Wire", area); |
| Log::printLine(cell_name + "->Area->Active=" + (String) area); |
| Log::printLine(cell_name + "->Area->Metal1Wire=" + (String) area); |
| |
| // -------------------------------------------------------------------- |
| // Leakage Model Calculation |
| // -------------------------------------------------------------------- |
| // Cache leakage power results (for every single signal combination) |
| double leakage_000 = 0; //!A, !B, !CI |
| double leakage_001 = 0; //!A, !B, CI |
| double leakage_010 = 0; //!A, B, !CI |
| double leakage_011 = 0; //!A, B, CI |
| double leakage_100 = 0; //A, !B, !CI |
| double leakage_101 = 0; //A, !B, CI |
| double leakage_110 = 0; //A, B, !CI |
| double leakage_111 = 0; //A, B, CI |
| |
| //This is so painful... |
| leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); |
| leakage_000 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); |
| leakage_000 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); |
| leakage_000 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); |
| leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble(); |
| leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); |
| leakage_000 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble(); |
| leakage_000 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble(); |
| leakage_000 += getGenProperties()->get("NAND1_LeakagePower_00").toDouble(); |
| leakage_000 += getGenProperties()->get("NAND2_LeakagePower_00").toDouble(); |
| leakage_000 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble(); |
| |
| leakage_001 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); |
| leakage_001 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); |
| leakage_001 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); |
| leakage_001 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); |
| leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble(); |
| leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); |
| leakage_001 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble(); |
| leakage_001 += getGenProperties()->get("INVZ4_LeakagePower_011_1").toDouble(); |
| leakage_001 += getGenProperties()->get("NAND1_LeakagePower_10").toDouble(); |
| leakage_001 += getGenProperties()->get("NAND2_LeakagePower_00").toDouble(); |
| leakage_001 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble(); |
| |
| leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); |
| leakage_010 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); |
| leakage_010 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); |
| leakage_010 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); |
| leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble(); |
| leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); |
| leakage_010 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble(); |
| leakage_010 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble(); |
| leakage_010 += getGenProperties()->get("NAND1_LeakagePower_01").toDouble(); |
| leakage_010 += getGenProperties()->get("NAND2_LeakagePower_01").toDouble(); |
| leakage_010 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble(); |
| |
| leakage_011 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); |
| leakage_011 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); |
| leakage_011 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); |
| leakage_011 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); |
| leakage_011 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble(); |
| leakage_011 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); |
| leakage_011 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble(); |
| leakage_011 += getGenProperties()->get("INVZ4_LeakagePower_010_0").toDouble(); |
| leakage_011 += getGenProperties()->get("NAND1_LeakagePower_11").toDouble(); |
| leakage_011 += getGenProperties()->get("NAND2_LeakagePower_01").toDouble(); |
| leakage_011 += getGenProperties()->get("NAND3_LeakagePower_01").toDouble(); |
| |
| leakage_100 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); |
| leakage_100 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); |
| leakage_100 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); |
| leakage_100 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); |
| leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble(); |
| leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble(); |
| leakage_100 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble(); |
| leakage_100 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble(); |
| leakage_100 += getGenProperties()->get("NAND1_LeakagePower_01").toDouble(); |
| leakage_100 += getGenProperties()->get("NAND2_LeakagePower_10").toDouble(); |
| leakage_100 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble(); |
| |
| leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); |
| leakage_101 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); |
| leakage_101 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); |
| leakage_101 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); |
| leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble(); |
| leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble(); |
| leakage_101 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble(); |
| leakage_101 += getGenProperties()->get("INVZ4_LeakagePower_010_0").toDouble(); |
| leakage_101 += getGenProperties()->get("NAND1_LeakagePower_11").toDouble(); |
| leakage_101 += getGenProperties()->get("NAND2_LeakagePower_10").toDouble(); |
| leakage_101 += getGenProperties()->get("NAND3_LeakagePower_01").toDouble(); |
| |
| leakage_110 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); |
| leakage_110 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); |
| leakage_110 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); |
| leakage_110 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); |
| leakage_110 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble(); |
| leakage_110 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble(); |
| leakage_110 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble(); |
| leakage_110 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble(); |
| leakage_110 += getGenProperties()->get("NAND1_LeakagePower_00").toDouble(); |
| leakage_110 += getGenProperties()->get("NAND2_LeakagePower_11").toDouble(); |
| leakage_110 += getGenProperties()->get("NAND3_LeakagePower_10").toDouble(); |
| |
| leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); |
| leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); |
| leakage_111 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); |
| leakage_111 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); |
| leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble(); |
| leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble(); |
| leakage_111 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble(); |
| leakage_111 += getGenProperties()->get("INVZ4_LeakagePower_011_1").toDouble(); |
| leakage_111 += getGenProperties()->get("NAND1_LeakagePower_10").toDouble(); |
| leakage_111 += getGenProperties()->get("NAND2_LeakagePower_11").toDouble(); |
| leakage_111 += getGenProperties()->get("NAND3_LeakagePower_10").toDouble(); |
| |
| cache->set(cell_name + "->Leakage->!A!B!CI", leakage_000); |
| cache->set(cell_name + "->Leakage->!A!BCI", leakage_001); |
| cache->set(cell_name + "->Leakage->!AB!CI", leakage_010); |
| cache->set(cell_name + "->Leakage->!ABCI", leakage_011); |
| cache->set(cell_name + "->Leakage->A!B!CI", leakage_100); |
| cache->set(cell_name + "->Leakage->A!BCI", leakage_101); |
| cache->set(cell_name + "->Leakage->AB!CI", leakage_110); |
| cache->set(cell_name + "->Leakage->ABCI", leakage_111); |
| Log::printLine(cell_name + "->Leakage->!A!B!CI=" + (String) leakage_000); |
| Log::printLine(cell_name + "->Leakage->!A!BCI=" + (String) leakage_001); |
| Log::printLine(cell_name + "->Leakage->!AB!CI=" + (String) leakage_010); |
| Log::printLine(cell_name + "->Leakage->!ABCI=" + (String) leakage_011); |
| Log::printLine(cell_name + "->Leakage->A!B!CI=" + (String) leakage_100); |
| Log::printLine(cell_name + "->Leakage->A!BCI=" + (String) leakage_101); |
| Log::printLine(cell_name + "->Leakage->AB!CI=" + (String) leakage_110); |
| Log::printLine(cell_name + "->Leakage->ABCI=" + (String) leakage_111); |
| // -------------------------------------------------------------------- |
| |
| /* |
| // Cache event energy results |
| double event_a_flip = 0.0; |
| event_a_flip += getGenProperties()->get("INV1_A_Flip").toDouble() + getGenProperties()->get("INV1_ZN_Flip").toDouble(); |
| event_a_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble(); |
| event_a_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble(); |
| event_a_flip += getGenProperties()->get("NAND2_A1_Flip").toDouble(); |
| cache->set(cell_name + "->Event_A_Flip", event_a_flip); |
| Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip); |
| |
| double event_b_flip = 0.0; |
| event_b_flip += getGenProperties()->get("INV2_A_Flip").toDouble() + getGenProperties()->get("INV2_ZN_Flip").toDouble(); |
| event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble(); |
| event_b_flip += getGenProperties()->get("INVZ2_A_Flip").toDouble(); |
| event_b_flip += getGenProperties()->get("NAND2_A1_Flip").toDouble(); |
| cache->set(cell_name + "->Event_B_Flip", event_b_flip); |
| Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip); |
| |
| double event_ci_flip = 0.0; |
| event_ci_flip += getGenProperties()->get("INV3_A_Flip").toDouble() + getGenProperties()->get("INV3_ZN_Flip").toDouble(); |
| event_ci_flip += getGenProperties()->get("INVZ3_OE_Flip").toDouble() + getGenProperties()->get("INVZ3_OEN_Flip").toDouble(); |
| event_ci_flip += getGenProperties()->get("INVZ4_OE_Flip").toDouble() + getGenProperties()->get("INVZ4_OEN_Flip").toDouble(); |
| event_ci_flip += getGenProperties()->get("NAND1_A1_Flip").toDouble(); |
| cache->set(cell_name + "->Event_CI_Flip", event_ci_flip); |
| Log::printLine(cell_name + "->Event_CI_Flip=" + (String) event_ci_flip); |
| |
| double event_p_flip = 0.0; |
| event_p_flip += getGenProperties()->get("INV4_A_Flip").toDouble() + getGenProperties()->get("INV4_ZN_Flip").toDouble(); |
| event_p_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble(); |
| event_p_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble(); |
| event_p_flip += getGenProperties()->get("NAND1_A2_Flip").toDouble(); |
| cache->set(cell_name + "->Event_P_Flip", event_p_flip); |
| Log::printLine(cell_name + "->Event_P_Flip=" + (String) event_p_flip); |
| |
| double event_s_flip = 0.0; |
| event_s_flip += getGenProperties()->get("INVZ3_ZN_Flip").toDouble(); |
| event_s_flip += getGenProperties()->get("INVZ4_ZN_Flip").toDouble(); |
| cache->set(cell_name + "->Event_S_Flip", event_s_flip); |
| Log::printLine(cell_name + "->Event_S_Flip=" + (String) event_s_flip); |
| |
| double event_cp_flip = 0.0; |
| event_cp_flip += getGenProperties()->get("NAND1_ZN_Flip").toDouble(); |
| event_cp_flip += getGenProperties()->get("NAND3_A2_Flip").toDouble(); |
| cache->set(cell_name + "->Event_CP_Flip", event_cp_flip); |
| Log::printLine(cell_name + "->Event_CP_Flip=" + (String) event_cp_flip); |
| |
| double event_g_flip = 0.0; |
| event_g_flip += getGenProperties()->get("NAND2_ZN_Flip").toDouble(); |
| event_g_flip += getGenProperties()->get("NAND3_A2_Flip").toDouble(); |
| cache->set(cell_name + "->Event_G_Flip", event_g_flip); |
| Log::printLine(cell_name + "->Event_G_Flip=" + (String) event_g_flip); |
| |
| double event_co_flip = 0.0; |
| event_co_flip += getGenProperties()->get("NAND3_ZN_Flip").toDouble(); |
| cache->set(cell_name + "->Event_CO_Flip", event_co_flip); |
| Log::printLine(cell_name + "->Event_CO_Flip=" + (String) event_co_flip); |
| */ |
| // -------------------------------------------------------------------- |
| // Get Node Capacitances |
| // -------------------------------------------------------------------- |
| double a_cap = getNet("A")->getTotalDownstreamCap(); |
| double b_cap = getNet("B")->getTotalDownstreamCap(); |
| double ci_cap = getNet("CI")->getTotalDownstreamCap(); |
| double a_b_cap = getNet("A_b")->getTotalDownstreamCap(); |
| double b_b_cap = getNet("B_b")->getTotalDownstreamCap(); |
| double ci_b_cap = getNet("CI_b")->getTotalDownstreamCap(); |
| double p_cap = getNet("P")->getTotalDownstreamCap(); |
| double p_b_cap = getNet("P_b")->getTotalDownstreamCap(); |
| double s_cap = getNet("S")->getTotalDownstreamCap(); |
| double cp_cap = getNet("CP")->getTotalDownstreamCap(); |
| double g_cap = getNet("G")->getTotalDownstreamCap(); |
| double co_cap = getNet("CO")->getTotalDownstreamCap(); |
| |
| cache->set(cell_name + "->Cap->A", a_cap); |
| cache->set(cell_name + "->Cap->B", b_cap); |
| cache->set(cell_name + "->Cap->CI", ci_cap); |
| cache->set(cell_name + "->Cap->A_b", a_b_cap); |
| cache->set(cell_name + "->Cap->B_b", b_b_cap); |
| cache->set(cell_name + "->Cap->CI_b", ci_b_cap); |
| cache->set(cell_name + "->Cap->P", p_cap); |
| cache->set(cell_name + "->Cap->P_b", p_b_cap); |
| cache->set(cell_name + "->Cap->S", s_cap); |
| cache->set(cell_name + "->Cap->CP", cp_cap); |
| cache->set(cell_name + "->Cap->G", g_cap); |
| cache->set(cell_name + "->Cap->CO", co_cap); |
| |
| Log::printLine(cell_name + "->Cap->A=" + (String) a_cap); |
| Log::printLine(cell_name + "->Cap->B=" + (String) b_cap); |
| Log::printLine(cell_name + "->Cap->CI=" + (String) ci_cap); |
| Log::printLine(cell_name + "->Cap->A_b=" + (String) a_b_cap); |
| Log::printLine(cell_name + "->Cap->B_b=" + (String) b_b_cap); |
| Log::printLine(cell_name + "->Cap->CI_b=" + (String) ci_b_cap); |
| Log::printLine(cell_name + "->Cap->P=" + (String) p_cap); |
| Log::printLine(cell_name + "->Cap->P_b=" + (String) p_b_cap); |
| Log::printLine(cell_name + "->Cap->S=" + (String) s_cap); |
| Log::printLine(cell_name + "->Cap->CP=" + (String) cp_cap); |
| Log::printLine(cell_name + "->Cap->G=" + (String) g_cap); |
| Log::printLine(cell_name + "->Cap->CO=" + (String) co_cap); |
| // -------------------------------------------------------------------- |
| |
| // -------------------------------------------------------------------- |
| // Build Internal Delay Model |
| // -------------------------------------------------------------------- |
| // Build abstracted timing model |
| double s_ron = (getDriver("INVZ3_RonZN")->getOutputRes() + getDriver("INVZ4_RonZN")->getOutputRes()) / 2; |
| double co_ron = getDriver("NAND3_RonZN")->getOutputRes(); |
| |
| double a_to_s_delay = 0.0; |
| a_to_s_delay += getDriver("INV1_RonZN")->calculateDelay(); |
| a_to_s_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay()); |
| a_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INV4_RonZN")->calculateDelay() + getDriver("INVZ4_RonZN")->calculateDelay()); |
| |
| double b_to_s_delay = 0.0; |
| b_to_s_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay()); |
| b_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INV4_RonZN")->calculateDelay() + getDriver("INVZ4_RonZN")->calculateDelay()); |
| |
| double ci_to_s_delay = 0.0; |
| ci_to_s_delay += getDriver("INV3_RonZN")->calculateDelay(); |
| ci_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INVZ4_RonZN")->calculateDelay()); |
| |
| double a_to_co_delay = 0.0; |
| a_to_co_delay += max(getDriver("NAND2_RonZN")->calculateDelay(), //Generate path |
| getDriver("INV1_RonZN")->calculateDelay() + //Carry propagate path |
| max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay()) + |
| getDriver("NAND1_RonZN")->calculateDelay()); |
| a_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay(); |
| |
| double b_to_co_delay = 0.0; |
| b_to_co_delay += max(getDriver("NAND2_RonZN")->calculateDelay(), //Generate path |
| max(getDriver("INVZ1_RonZN")->calculateDelay(), //Carry propagate path |
| getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay()) + |
| getDriver("NAND1_RonZN")->calculateDelay()); |
| b_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay(); |
| |
| double ci_to_co_delay = 0.0; |
| ci_to_co_delay += getDriver("NAND1_RonZN")->calculateDelay(); |
| ci_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay(); |
| |
| cache->set(cell_name + "->DriveRes->S", s_ron); |
| cache->set(cell_name + "->DriveRes->CO", co_ron); |
| |
| cache->set(cell_name + "->Delay->A_to_S", a_to_s_delay); |
| cache->set(cell_name + "->Delay->B_to_S", b_to_s_delay); |
| cache->set(cell_name + "->Delay->CI_to_S", ci_to_s_delay); |
| cache->set(cell_name + "->Delay->A_to_CO", a_to_co_delay); |
| cache->set(cell_name + "->Delay->B_to_CO", b_to_co_delay); |
| cache->set(cell_name + "->Delay->CI_to_CO", ci_to_co_delay); |
| |
| Log::printLine(cell_name + "->DriveRes->S=" + (String) s_ron); |
| Log::printLine(cell_name + "->DriveRes->CO=" + (String) co_ron); |
| Log::printLine(cell_name + "->Delay->A_to_S=" + (String) a_to_s_delay); |
| Log::printLine(cell_name + "->Delay->B_to_S=" + (String) b_to_s_delay); |
| Log::printLine(cell_name + "->Delay->CI_to_S=" + (String) ci_to_s_delay); |
| Log::printLine(cell_name + "->Delay->A_to_CO=" + (String) a_to_co_delay); |
| Log::printLine(cell_name + "->Delay->B_to_CO=" + (String) b_to_co_delay); |
| Log::printLine(cell_name + "->Delay->CI_to_CO=" + (String) ci_to_co_delay); |
| // -------------------------------------------------------------------- |
| |
| return; |
| |
| } |
| |
| } // namespace DSENT |
| |