blob: e00854f072f4f2e2777893def0b3213eeb55fdaf [file] [log] [blame]
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/std_cells/AND2.h"
#include <cmath>
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/std_cells/StdCellLib.h"
#include "model/std_cells/CellMacros.h"
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalLoad.h"
#include "model/timing_graph/ElectricalDelay.h"
namespace DSENT
{
using std::max;
AND2::AND2(const String& instance_name_, const TechModel* tech_model_)
: StdCell(instance_name_, tech_model_)
{
initProperties();
}
AND2::~AND2()
{}
void AND2::initProperties()
{
return;
}
void AND2::constructModel()
{
// All constructModel should do is create Area/NDDPower/Energy Results as
// well as instantiate any sub-instances using only the hard parameters
createInputPort("A");
createInputPort("B");
createOutputPort("Y");
createLoad("A_Cap");
createLoad("B_Cap");
createDelay("A_to_Y_delay");
createDelay("B_to_Y_delay");
createDriver("Y_Ron", true);
ElectricalLoad* a_cap = getLoad("A_Cap");
ElectricalLoad* b_cap = getLoad("B_Cap");
ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
ElectricalDriver* y_ron = getDriver("Y_Ron");
getNet("A")->addDownstreamNode(a_cap);
getNet("B")->addDownstreamNode(b_cap);
a_cap->addDownstreamNode(a_to_y_delay);
b_cap->addDownstreamNode(b_to_y_delay);
a_to_y_delay->addDownstreamNode(y_ron);
b_to_y_delay->addDownstreamNode(y_ron);
y_ron->addDownstreamNode(getNet("Y"));
// Create Area result
// Create NDD Power result
createElectricalAtomicResults();
getEventInfo("Idle")->setStaticTransitionInfos();
// Create AND Event Energy Result
createElectricalEventAtomicResult("AND2");
return;
}
void AND2::updateModel()
{
// All updateModel should do is calculate numbers for the Area/NDDPower/Energy
// Results as anything else that needs to be done using either soft or hard parameters
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Standard cell cache string
String cell_name = "AND2_X" + (String) drive_strength;
// Get timing parameters
getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));
getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
// Set the cell area
getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
return;
}
void AND2::evaluateModel()
{
return;
}
void AND2::useModel()
{
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Standard cell cache string
String cell_name = "AND2_X" + (String) drive_strength;
// Propagate the transition info and get the 0->1 transtion count
propagateTransitionInfo();
double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
// Calculate leakage
double leakage = 0;
leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B);
leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B;
leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B);
leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B;
getNddPowerResult("Leakage")->setValue(leakage);
// Get VDD
double vdd = getTechModel()->get("Vdd");
// Get capacitances
double y_b_cap = cache->get(cell_name + "->Cap->Y_b");
double y_cap = cache->get(cell_name + "->Cap->Y");
double y_load_cap = getNet("Y")->getTotalDownstreamCap();
// Calculate AND2Event energy
double energy_per_trans_01 = (y_b_cap + y_cap + y_load_cap) * vdd * vdd;
getEventResult("AND2")->setValue(energy_per_trans_01 * Y_num_trans_01);
return;
}
void AND2::propagateTransitionInfo()
{
// Get input signal transition info
const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier());
const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
double A_prob_10 = A_prob_01;
double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
double B_prob_10 = B_prob_01;
double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
// Set output transition info
double Y_prob_00 = A_prob_00 +
A_prob_01 * (B_prob_00 + B_prob_10) +
A_prob_10 * (B_prob_00 + B_prob_01) +
A_prob_11 * B_prob_00;
double Y_prob_01 = A_prob_01 * (B_prob_01 + B_prob_11) +
A_prob_11 * B_prob_01;
double Y_prob_11 = A_prob_11 * B_prob_11;
// Check that probabilities add up to 1.0 with some finite tolerance
ASSERT(LibUtil::Math::isEqual(Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11, 1.0), "[Error] " + getInstanceName() +
"Output transition probabilities must add up to 1 (" + (String) Y_prob_00 + ", " +
(String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");
// Turn probability of transitions per cycle into number of transitions per time unit
TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
getOutputPort("Y")->setTransitionInfo(trans_Y);
return;
}
void AND2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
{
// Standard cell cache string
String cell_name = "AND2_X" + (String) drive_strength_;
Log::printLine("=== " + cell_name + " ===");
// Get parameters
double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
Map<double>* cache = cell_lib_->getStdCellCache();
// Now actually build the full standard cell model
// Create the two input ports
createInputPort("A");
createInputPort("B");
createOutputPort("Y");
createNet("Y_b");
// Adds macros
CellMacros::addNand2(this, "NAND2", false, true, true, "A", "B", "Y_b");
CellMacros::addInverter(this, "INV", false, true, "Y_b", "Y");
CellMacros::updateNand2(this, "NAND2", drive_strength_ * 0.5);
CellMacros::updateInverter(this, "INV", drive_strength_ * 1.0);
// Cache area result
double area = 0.0;
area += gate_pitch * getTotalHeight() * 1;
area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND2_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV_GatePitches").toDouble();
cache->set(cell_name + "->ActiveArea", area);
Log::printLine(cell_name + "->ActiveArea=" + (String) area);
// --------------------------------------------------------------------
// Leakage Model Calculation
// --------------------------------------------------------------------
double leakage_00 = getGenProperties()->get("NAND2_LeakagePower_00").toDouble() +
getGenProperties()->get("INV_LeakagePower_0").toDouble();
double leakage_01 = getGenProperties()->get("NAND2_LeakagePower_01").toDouble() +
getGenProperties()->get("INV_LeakagePower_0").toDouble();
double leakage_10 = getGenProperties()->get("NAND2_LeakagePower_10").toDouble() +
getGenProperties()->get("INV_LeakagePower_0").toDouble();
double leakage_11 = getGenProperties()->get("NAND2_LeakagePower_11").toDouble() +
getGenProperties()->get("INV_LeakagePower_1").toDouble();
cache->set(cell_name + "->Leakage->!A!B", leakage_00);
cache->set(cell_name + "->Leakage->!AB", leakage_01);
cache->set(cell_name + "->Leakage->A!B", leakage_10);
cache->set(cell_name + "->Leakage->AB", leakage_11);
Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00);
Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01);
Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10);
Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11);
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// Get Node Capacitances
// --------------------------------------------------------------------
double a_cap = getNet("A")->getTotalDownstreamCap();
double b_cap = getNet("B")->getTotalDownstreamCap();
double y_b_cap = getNet("Y_b")->getTotalDownstreamCap();
double y_cap = getNet("Y")->getTotalDownstreamCap();
cache->set(cell_name + "->Cap->A", a_cap);
cache->set(cell_name + "->Cap->B", b_cap);
cache->set(cell_name + "->Cap->Y_b", y_b_cap);
cache->set(cell_name + "->Cap->Y", y_cap);
Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
Log::printLine(cell_name + "->Cap->Y=" + (String) y_b_cap);
Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap);
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// Build Internal Delay Model
// --------------------------------------------------------------------
double y_ron = getDriver("INV_RonZN")->getOutputRes();
double a_to_y_delay = getDriver("NAND2_RonZN")->calculateDelay() +
getDriver("INV_RonZN")->calculateDelay();
double b_to_y_delay = getDriver("NAND2_RonZN")->calculateDelay() +
getDriver("INV_RonZN")->calculateDelay();
cache->set(cell_name + "->DriveRes->Y", y_ron);
cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
// --------------------------------------------------------------------
return;
}
} // namespace DSENT