| /* |
| * Copyright (c) 2011-2014, 2016 ARM Limited |
| * Copyright (c) 2013 Advanced Micro Devices, Inc. |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2002-2005 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Steve Reinhardt |
| * Dave Greene |
| * Nathan Binkert |
| * Andrew Bardsley |
| */ |
| |
| /** |
| * @file |
| * |
| * ExecContext bears the exec_context interface for Minor. |
| */ |
| |
| #ifndef __CPU_MINOR_EXEC_CONTEXT_HH__ |
| #define __CPU_MINOR_EXEC_CONTEXT_HH__ |
| |
| #include "cpu/exec_context.hh" |
| #include "cpu/minor/execute.hh" |
| #include "cpu/minor/pipeline.hh" |
| #include "cpu/base.hh" |
| #include "cpu/simple_thread.hh" |
| #include "mem/request.hh" |
| #include "debug/MinorExecute.hh" |
| |
| namespace Minor |
| { |
| |
| /* Forward declaration of Execute */ |
| class Execute; |
| |
| /** ExecContext bears the exec_context interface for Minor. This nicely |
| * separates that interface from other classes such as Pipeline, MinorCPU |
| * and DynMinorInst and makes it easier to see what state is accessed by it. |
| */ |
| class ExecContext : public ::ExecContext |
| { |
| public: |
| MinorCPU &cpu; |
| |
| /** ThreadState object, provides all the architectural state. */ |
| SimpleThread &thread; |
| |
| /** The execute stage so we can peek at its contents. */ |
| Execute &execute; |
| |
| /** Instruction for the benefit of memory operations and for PC */ |
| MinorDynInstPtr inst; |
| |
| ExecContext ( |
| MinorCPU &cpu_, |
| SimpleThread &thread_, Execute &execute_, |
| MinorDynInstPtr inst_) : |
| cpu(cpu_), |
| thread(thread_), |
| execute(execute_), |
| inst(inst_) |
| { |
| DPRINTF(MinorExecute, "ExecContext setting PC: %s\n", inst->pc); |
| pcState(inst->pc); |
| setPredicate(true); |
| thread.setIntReg(TheISA::ZeroReg, 0); |
| #if THE_ISA == ALPHA_ISA |
| thread.setFloatReg(TheISA::ZeroReg, 0.0); |
| #endif |
| } |
| |
| Fault |
| initiateMemRead(Addr addr, unsigned int size, |
| Request::Flags flags) override |
| { |
| execute.getLSQ().pushRequest(inst, true /* load */, nullptr, |
| size, addr, flags, NULL); |
| return NoFault; |
| } |
| |
| Fault |
| writeMem(uint8_t *data, unsigned int size, Addr addr, |
| Request::Flags flags, uint64_t *res) override |
| { |
| execute.getLSQ().pushRequest(inst, false /* store */, data, |
| size, addr, flags, res); |
| return NoFault; |
| } |
| |
| IntReg |
| readIntRegOperand(const StaticInst *si, int idx) override |
| { |
| const RegId& reg = si->srcRegIdx(idx); |
| assert(reg.isIntReg()); |
| return thread.readIntReg(reg.index()); |
| } |
| |
| TheISA::FloatReg |
| readFloatRegOperand(const StaticInst *si, int idx) override |
| { |
| const RegId& reg = si->srcRegIdx(idx); |
| assert(reg.isFloatReg()); |
| return thread.readFloatReg(reg.index()); |
| } |
| |
| TheISA::FloatRegBits |
| readFloatRegOperandBits(const StaticInst *si, int idx) override |
| { |
| const RegId& reg = si->srcRegIdx(idx); |
| assert(reg.isFloatReg()); |
| return thread.readFloatRegBits(reg.index()); |
| } |
| |
| const TheISA::VecRegContainer& |
| readVecRegOperand(const StaticInst *si, int idx) const override |
| { |
| const RegId& reg = si->srcRegIdx(idx); |
| assert(reg.isVecReg()); |
| return thread.readVecReg(reg); |
| } |
| |
| TheISA::VecRegContainer& |
| getWritableVecRegOperand(const StaticInst *si, int idx) override |
| { |
| const RegId& reg = si->destRegIdx(idx); |
| assert(reg.isVecReg()); |
| return thread.getWritableVecReg(reg); |
| } |
| |
| TheISA::VecElem |
| readVecElemOperand(const StaticInst *si, int idx) const override |
| { |
| const RegId& reg = si->srcRegIdx(idx); |
| assert(reg.isVecReg()); |
| return thread.readVecElem(reg); |
| } |
| |
| void |
| setIntRegOperand(const StaticInst *si, int idx, IntReg val) override |
| { |
| const RegId& reg = si->destRegIdx(idx); |
| assert(reg.isIntReg()); |
| thread.setIntReg(reg.index(), val); |
| } |
| |
| void |
| setFloatRegOperand(const StaticInst *si, int idx, |
| TheISA::FloatReg val) override |
| { |
| const RegId& reg = si->destRegIdx(idx); |
| assert(reg.isFloatReg()); |
| thread.setFloatReg(reg.index(), val); |
| } |
| |
| void |
| setFloatRegOperandBits(const StaticInst *si, int idx, |
| TheISA::FloatRegBits val) override |
| { |
| const RegId& reg = si->destRegIdx(idx); |
| assert(reg.isFloatReg()); |
| thread.setFloatRegBits(reg.index(), val); |
| } |
| |
| void |
| setVecRegOperand(const StaticInst *si, int idx, |
| const TheISA::VecRegContainer& val) override |
| { |
| const RegId& reg = si->destRegIdx(idx); |
| assert(reg.isVecReg()); |
| thread.setVecReg(reg, val); |
| } |
| |
| /** Vector Register Lane Interfaces. */ |
| /** @{ */ |
| /** Reads source vector 8bit operand. */ |
| ConstVecLane8 |
| readVec8BitLaneOperand(const StaticInst *si, int idx) const |
| override |
| { |
| const RegId& reg = si->srcRegIdx(idx); |
| assert(reg.isVecReg()); |
| return thread.readVec8BitLaneReg(reg); |
| } |
| |
| /** Reads source vector 16bit operand. */ |
| ConstVecLane16 |
| readVec16BitLaneOperand(const StaticInst *si, int idx) const |
| override |
| { |
| const RegId& reg = si->srcRegIdx(idx); |
| assert(reg.isVecReg()); |
| return thread.readVec16BitLaneReg(reg); |
| } |
| |
| /** Reads source vector 32bit operand. */ |
| ConstVecLane32 |
| readVec32BitLaneOperand(const StaticInst *si, int idx) const |
| override |
| { |
| const RegId& reg = si->srcRegIdx(idx); |
| assert(reg.isVecReg()); |
| return thread.readVec32BitLaneReg(reg); |
| } |
| |
| /** Reads source vector 64bit operand. */ |
| ConstVecLane64 |
| readVec64BitLaneOperand(const StaticInst *si, int idx) const |
| override |
| { |
| const RegId& reg = si->srcRegIdx(idx); |
| assert(reg.isVecReg()); |
| return thread.readVec64BitLaneReg(reg); |
| } |
| |
| /** Write a lane of the destination vector operand. */ |
| template <typename LD> |
| void |
| setVecLaneOperandT(const StaticInst *si, int idx, |
| const LD& val) |
| { |
| const RegId& reg = si->destRegIdx(idx); |
| assert(reg.isVecReg()); |
| return thread.setVecLane(reg, val); |
| } |
| virtual void |
| setVecLaneOperand(const StaticInst *si, int idx, |
| const LaneData<LaneSize::Byte>& val) override |
| { |
| setVecLaneOperandT(si, idx, val); |
| } |
| virtual void |
| setVecLaneOperand(const StaticInst *si, int idx, |
| const LaneData<LaneSize::TwoByte>& val) override |
| { |
| setVecLaneOperandT(si, idx, val); |
| } |
| virtual void |
| setVecLaneOperand(const StaticInst *si, int idx, |
| const LaneData<LaneSize::FourByte>& val) override |
| { |
| setVecLaneOperandT(si, idx, val); |
| } |
| virtual void |
| setVecLaneOperand(const StaticInst *si, int idx, |
| const LaneData<LaneSize::EightByte>& val) override |
| { |
| setVecLaneOperandT(si, idx, val); |
| } |
| /** @} */ |
| |
| void |
| setVecElemOperand(const StaticInst *si, int idx, |
| const TheISA::VecElem val) override |
| { |
| const RegId& reg = si->destRegIdx(idx); |
| assert(reg.isVecReg()); |
| thread.setVecElem(reg, val); |
| } |
| |
| bool |
| readPredicate() override |
| { |
| return thread.readPredicate(); |
| } |
| |
| void |
| setPredicate(bool val) override |
| { |
| thread.setPredicate(val); |
| } |
| |
| TheISA::PCState |
| pcState() const override |
| { |
| return thread.pcState(); |
| } |
| |
| void |
| pcState(const TheISA::PCState &val) override |
| { |
| thread.pcState(val); |
| } |
| |
| TheISA::MiscReg |
| readMiscRegNoEffect(int misc_reg) const |
| { |
| return thread.readMiscRegNoEffect(misc_reg); |
| } |
| |
| TheISA::MiscReg |
| readMiscReg(int misc_reg) override |
| { |
| return thread.readMiscReg(misc_reg); |
| } |
| |
| void |
| setMiscReg(int misc_reg, const TheISA::MiscReg &val) override |
| { |
| thread.setMiscReg(misc_reg, val); |
| } |
| |
| TheISA::MiscReg |
| readMiscRegOperand(const StaticInst *si, int idx) override |
| { |
| const RegId& reg = si->srcRegIdx(idx); |
| assert(reg.isMiscReg()); |
| return thread.readMiscReg(reg.index()); |
| } |
| |
| void |
| setMiscRegOperand(const StaticInst *si, int idx, |
| const TheISA::MiscReg &val) override |
| { |
| const RegId& reg = si->destRegIdx(idx); |
| assert(reg.isMiscReg()); |
| return thread.setMiscReg(reg.index(), val); |
| } |
| |
| Fault |
| hwrei() override |
| { |
| #if THE_ISA == ALPHA_ISA |
| return thread.hwrei(); |
| #else |
| return NoFault; |
| #endif |
| } |
| |
| bool |
| simPalCheck(int palFunc) override |
| { |
| #if THE_ISA == ALPHA_ISA |
| return thread.simPalCheck(palFunc); |
| #else |
| return false; |
| #endif |
| } |
| |
| void |
| syscall(int64_t callnum, Fault *fault) override |
| { |
| if (FullSystem) |
| panic("Syscall emulation isn't available in FS mode.\n"); |
| |
| thread.syscall(callnum, fault); |
| } |
| |
| ThreadContext *tcBase() override { return thread.getTC(); } |
| |
| /* @todo, should make stCondFailures persistent somewhere */ |
| unsigned int readStCondFailures() const override { return 0; } |
| void setStCondFailures(unsigned int st_cond_failures) override {} |
| |
| ContextID contextId() { return thread.contextId(); } |
| /* ISA-specific (or at least currently ISA singleton) functions */ |
| |
| /* X86: TLB twiddling */ |
| void |
| demapPage(Addr vaddr, uint64_t asn) override |
| { |
| thread.getITBPtr()->demapPage(vaddr, asn); |
| thread.getDTBPtr()->demapPage(vaddr, asn); |
| } |
| |
| TheISA::CCReg |
| readCCRegOperand(const StaticInst *si, int idx) override |
| { |
| const RegId& reg = si->srcRegIdx(idx); |
| assert(reg.isCCReg()); |
| return thread.readCCReg(reg.index()); |
| } |
| |
| void |
| setCCRegOperand(const StaticInst *si, int idx, TheISA::CCReg val) override |
| { |
| const RegId& reg = si->destRegIdx(idx); |
| assert(reg.isCCReg()); |
| thread.setCCReg(reg.index(), val); |
| } |
| |
| void |
| demapInstPage(Addr vaddr, uint64_t asn) |
| { |
| thread.getITBPtr()->demapPage(vaddr, asn); |
| } |
| |
| void |
| demapDataPage(Addr vaddr, uint64_t asn) |
| { |
| thread.getDTBPtr()->demapPage(vaddr, asn); |
| } |
| |
| /* ALPHA/POWER: Effective address storage */ |
| void setEA(Addr ea) override |
| { |
| inst->ea = ea; |
| } |
| |
| BaseCPU *getCpuPtr() { return &cpu; } |
| |
| /* POWER: Effective address storage */ |
| Addr getEA() const override |
| { |
| return inst->ea; |
| } |
| |
| /* MIPS: other thread register reading/writing */ |
| uint64_t |
| readRegOtherThread(const RegId& reg, ThreadID tid = InvalidThreadID) |
| { |
| SimpleThread *other_thread = (tid == InvalidThreadID |
| ? &thread : cpu.threads[tid]); |
| |
| switch (reg.classValue()) { |
| case IntRegClass: |
| return other_thread->readIntReg(reg.index()); |
| break; |
| case FloatRegClass: |
| return other_thread->readFloatRegBits(reg.index()); |
| break; |
| case MiscRegClass: |
| return other_thread->readMiscReg(reg.index()); |
| default: |
| panic("Unexpected reg class! (%s)", |
| reg.className()); |
| return 0; |
| } |
| } |
| |
| void |
| setRegOtherThread(const RegId& reg, const TheISA::MiscReg &val, |
| ThreadID tid = InvalidThreadID) |
| { |
| SimpleThread *other_thread = (tid == InvalidThreadID |
| ? &thread : cpu.threads[tid]); |
| |
| switch (reg.classValue()) { |
| case IntRegClass: |
| return other_thread->setIntReg(reg.index(), val); |
| break; |
| case FloatRegClass: |
| return other_thread->setFloatRegBits(reg.index(), val); |
| break; |
| case MiscRegClass: |
| return other_thread->setMiscReg(reg.index(), val); |
| default: |
| panic("Unexpected reg class! (%s)", |
| reg.className()); |
| } |
| } |
| |
| public: |
| // monitor/mwait funtions |
| void armMonitor(Addr address) override |
| { getCpuPtr()->armMonitor(inst->id.threadId, address); } |
| |
| bool mwait(PacketPtr pkt) override |
| { return getCpuPtr()->mwait(inst->id.threadId, pkt); } |
| |
| void mwaitAtomic(ThreadContext *tc) override |
| { return getCpuPtr()->mwaitAtomic(inst->id.threadId, tc, thread.dtb); } |
| |
| AddressMonitor *getAddrMonitor() override |
| { return getCpuPtr()->getCpuAddrMonitor(inst->id.threadId); } |
| }; |
| |
| } |
| |
| #endif /* __CPU_MINOR_EXEC_CONTEXT_HH__ */ |