| /* |
| * Copyright (c) 2011-2012, 2016 ARM Limited |
| * Copyright (c) 2013 Advanced Micro Devices, Inc. |
| * All rights reserved |
| * |
| * The license below extends only to copyright in the software and shall |
| * not be construed as granting a license to any other intellectual |
| * property including but not limited to intellectual property relating |
| * to a hardware implementation of the functionality of the software |
| * licensed hereunder. You may use the software subject to the license |
| * terms below provided that you ensure that this notice is replicated |
| * unmodified and in its entirety in all distributions of the software, |
| * modified or unmodified, in source code or in binary form. |
| * |
| * Copyright (c) 2004-2006 The Regents of The University of Michigan |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Authors: Kevin Lim |
| */ |
| |
| #ifndef __CPU_O3_THREAD_CONTEXT_HH__ |
| #define __CPU_O3_THREAD_CONTEXT_HH__ |
| |
| #include "config/the_isa.hh" |
| #include "cpu/o3/isa_specific.hh" |
| #include "cpu/thread_context.hh" |
| |
| class EndQuiesceEvent; |
| namespace Kernel { |
| class Statistics; |
| } |
| |
| /** |
| * Derived ThreadContext class for use with the O3CPU. It |
| * provides the interface for any external objects to access a |
| * single thread's state and some general CPU state. Any time |
| * external objects try to update state through this interface, |
| * the CPU will create an event to squash all in-flight |
| * instructions in order to ensure state is maintained correctly. |
| * It must be defined specifically for the O3CPU because |
| * not all architectural state is located within the O3ThreadState |
| * (such as the commit PC, and registers), and specific actions |
| * must be taken when using this interface (such as squashing all |
| * in-flight instructions when doing a write to this interface). |
| */ |
| template <class Impl> |
| class O3ThreadContext : public ThreadContext |
| { |
| public: |
| typedef typename Impl::O3CPU O3CPU; |
| |
| /** Pointer to the CPU. */ |
| O3CPU *cpu; |
| |
| /** Pointer to the thread state that this TC corrseponds to. */ |
| O3ThreadState<Impl> *thread; |
| |
| /** Returns a pointer to the ITB. */ |
| TheISA::TLB *getITBPtr() { return cpu->itb; } |
| |
| /** Returns a pointer to the DTB. */ |
| TheISA::TLB *getDTBPtr() { return cpu->dtb; } |
| |
| CheckerCPU *getCheckerCpuPtr() { return NULL; } |
| |
| TheISA::Decoder * |
| getDecoderPtr() |
| { |
| return cpu->fetch.decoder[thread->threadId()]; |
| } |
| |
| /** Returns a pointer to this CPU. */ |
| virtual BaseCPU *getCpuPtr() { return cpu; } |
| |
| /** Reads this CPU's ID. */ |
| virtual int cpuId() const { return cpu->cpuId(); } |
| |
| /** Reads this CPU's Socket ID. */ |
| virtual uint32_t socketId() const { return cpu->socketId(); } |
| |
| virtual ContextID contextId() const { return thread->contextId(); } |
| |
| virtual void setContextId(int id) { thread->setContextId(id); } |
| |
| /** Returns this thread's ID number. */ |
| virtual int threadId() const { return thread->threadId(); } |
| virtual void setThreadId(int id) { return thread->setThreadId(id); } |
| |
| /** Returns a pointer to the system. */ |
| virtual System *getSystemPtr() { return cpu->system; } |
| |
| /** Returns a pointer to this thread's kernel statistics. */ |
| virtual TheISA::Kernel::Statistics *getKernelStats() |
| { return thread->kernelStats; } |
| |
| /** Returns a pointer to this thread's process. */ |
| virtual Process *getProcessPtr() { return thread->getProcessPtr(); } |
| |
| virtual void setProcessPtr(Process *p) { thread->setProcessPtr(p); } |
| |
| virtual PortProxy &getPhysProxy() { return thread->getPhysProxy(); } |
| |
| virtual FSTranslatingPortProxy &getVirtProxy(); |
| |
| virtual void initMemProxies(ThreadContext *tc) |
| { thread->initMemProxies(tc); } |
| |
| virtual SETranslatingPortProxy &getMemProxy() |
| { return thread->getMemProxy(); } |
| |
| /** Returns this thread's status. */ |
| virtual Status status() const { return thread->status(); } |
| |
| /** Sets this thread's status. */ |
| virtual void setStatus(Status new_status) |
| { thread->setStatus(new_status); } |
| |
| /** Set the status to Active. */ |
| virtual void activate(); |
| |
| /** Set the status to Suspended. */ |
| virtual void suspend(); |
| |
| /** Set the status to Halted. */ |
| virtual void halt(); |
| |
| /** Dumps the function profiling information. |
| * @todo: Implement. |
| */ |
| virtual void dumpFuncProfile(); |
| |
| /** Takes over execution of a thread from another CPU. */ |
| virtual void takeOverFrom(ThreadContext *old_context); |
| |
| /** Registers statistics associated with this TC. */ |
| virtual void regStats(const std::string &name); |
| |
| /** Reads the last tick that this thread was activated on. */ |
| virtual Tick readLastActivate(); |
| /** Reads the last tick that this thread was suspended on. */ |
| virtual Tick readLastSuspend(); |
| |
| /** Clears the function profiling information. */ |
| virtual void profileClear(); |
| /** Samples the function profiling information. */ |
| virtual void profileSample(); |
| |
| /** Copies the architectural registers from another TC into this TC. */ |
| virtual void copyArchRegs(ThreadContext *tc); |
| |
| /** Resets all architectural registers to 0. */ |
| virtual void clearArchRegs(); |
| |
| /** Reads an integer register. */ |
| virtual uint64_t readReg(int reg_idx) { |
| return readIntRegFlat(flattenRegId(RegId(IntRegClass, |
| reg_idx)).index()); |
| } |
| virtual uint64_t readIntReg(int reg_idx) { |
| return readIntRegFlat(flattenRegId(RegId(IntRegClass, |
| reg_idx)).index()); |
| } |
| |
| virtual FloatReg readFloatReg(int reg_idx) { |
| return readFloatRegFlat(flattenRegId(RegId(FloatRegClass, |
| reg_idx)).index()); |
| } |
| |
| virtual FloatRegBits readFloatRegBits(int reg_idx) { |
| return readFloatRegBitsFlat(flattenRegId(RegId(FloatRegClass, |
| reg_idx)).index()); |
| } |
| |
| virtual const VecRegContainer& readVecReg(const RegId& id) const { |
| return readVecRegFlat(flattenRegId(id).index()); |
| } |
| |
| /** |
| * Read vector register operand for modification, hierarchical indexing. |
| */ |
| virtual VecRegContainer& getWritableVecReg(const RegId& id) { |
| return getWritableVecRegFlat(flattenRegId(id).index()); |
| } |
| |
| /** Vector Register Lane Interfaces. */ |
| /** @{ */ |
| /** Reads source vector 8bit operand. */ |
| virtual ConstVecLane8 |
| readVec8BitLaneReg(const RegId& id) const |
| { |
| return readVecLaneFlat<uint8_t>(flattenRegId(id).index(), |
| id.elemIndex()); |
| } |
| |
| /** Reads source vector 16bit operand. */ |
| virtual ConstVecLane16 |
| readVec16BitLaneReg(const RegId& id) const |
| { |
| return readVecLaneFlat<uint16_t>(flattenRegId(id).index(), |
| id.elemIndex()); |
| } |
| |
| /** Reads source vector 32bit operand. */ |
| virtual ConstVecLane32 |
| readVec32BitLaneReg(const RegId& id) const |
| { |
| return readVecLaneFlat<uint32_t>(flattenRegId(id).index(), |
| id.elemIndex()); |
| } |
| |
| /** Reads source vector 64bit operand. */ |
| virtual ConstVecLane64 |
| readVec64BitLaneReg(const RegId& id) const |
| { |
| return readVecLaneFlat<uint64_t>(flattenRegId(id).index(), |
| id.elemIndex()); |
| } |
| |
| /** Write a lane of the destination vector register. */ |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::Byte>& val) |
| { return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::TwoByte>& val) |
| { return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::FourByte>& val) |
| { return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } |
| virtual void setVecLane(const RegId& reg, |
| const LaneData<LaneSize::EightByte>& val) |
| { return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val); } |
| /** @} */ |
| |
| virtual const VecElem& readVecElem(const RegId& reg) const { |
| return readVecElemFlat(flattenRegId(reg).index(), reg.elemIndex()); |
| } |
| |
| virtual CCReg readCCReg(int reg_idx) { |
| return readCCRegFlat(flattenRegId(RegId(CCRegClass, |
| reg_idx)).index()); |
| } |
| |
| /** Sets an integer register to a value. */ |
| virtual void setIntReg(int reg_idx, uint64_t val) { |
| setIntRegFlat(flattenRegId(RegId(IntRegClass, reg_idx)).index(), val); |
| } |
| |
| virtual void setFloatReg(int reg_idx, FloatReg val) { |
| setFloatRegFlat(flattenRegId(RegId(FloatRegClass, |
| reg_idx)).index(), val); |
| } |
| |
| virtual void setFloatRegBits(int reg_idx, FloatRegBits val) { |
| setFloatRegBitsFlat(flattenRegId(RegId(FloatRegClass, |
| reg_idx)).index(), val); |
| } |
| |
| virtual void setVecReg(const RegId& reg, const VecRegContainer& val) { |
| setVecRegFlat(flattenRegId(reg).index(), val); |
| } |
| |
| virtual void setVecElem(const RegId& reg, const VecElem& val) { |
| setVecElemFlat(flattenRegId(reg).index(), reg.elemIndex(), val); |
| } |
| |
| virtual void setCCReg(int reg_idx, CCReg val) { |
| setCCRegFlat(flattenRegId(RegId(CCRegClass, reg_idx)).index(), val); |
| } |
| |
| /** Reads this thread's PC state. */ |
| virtual TheISA::PCState pcState() |
| { return cpu->pcState(thread->threadId()); } |
| |
| /** Sets this thread's PC state. */ |
| virtual void pcState(const TheISA::PCState &val); |
| |
| virtual void pcStateNoRecord(const TheISA::PCState &val); |
| |
| /** Reads this thread's PC. */ |
| virtual Addr instAddr() |
| { return cpu->instAddr(thread->threadId()); } |
| |
| /** Reads this thread's next PC. */ |
| virtual Addr nextInstAddr() |
| { return cpu->nextInstAddr(thread->threadId()); } |
| |
| /** Reads this thread's next PC. */ |
| virtual MicroPC microPC() |
| { return cpu->microPC(thread->threadId()); } |
| |
| /** Reads a miscellaneous register. */ |
| virtual MiscReg readMiscRegNoEffect(int misc_reg) const |
| { return cpu->readMiscRegNoEffect(misc_reg, thread->threadId()); } |
| |
| /** Reads a misc. register, including any side-effects the |
| * read might have as defined by the architecture. */ |
| virtual MiscReg readMiscReg(int misc_reg) |
| { return cpu->readMiscReg(misc_reg, thread->threadId()); } |
| |
| /** Sets a misc. register. */ |
| virtual void setMiscRegNoEffect(int misc_reg, const MiscReg &val); |
| |
| /** Sets a misc. register, including any side-effects the |
| * write might have as defined by the architecture. */ |
| virtual void setMiscReg(int misc_reg, const MiscReg &val); |
| |
| virtual RegId flattenRegId(const RegId& regId) const; |
| |
| /** Returns the number of consecutive store conditional failures. */ |
| // @todo: Figure out where these store cond failures should go. |
| virtual unsigned readStCondFailures() |
| { return thread->storeCondFailures; } |
| |
| /** Sets the number of consecutive store conditional failures. */ |
| virtual void setStCondFailures(unsigned sc_failures) |
| { thread->storeCondFailures = sc_failures; } |
| |
| /** Executes a syscall in SE mode. */ |
| virtual void syscall(int64_t callnum, Fault *fault) |
| { return cpu->syscall(callnum, thread->threadId(), fault); } |
| |
| /** Reads the funcExeInst counter. */ |
| virtual Counter readFuncExeInst() { return thread->funcExeInst; } |
| |
| /** Returns pointer to the quiesce event. */ |
| virtual EndQuiesceEvent *getQuiesceEvent() |
| { |
| return this->thread->quiesceEvent; |
| } |
| /** check if the cpu is currently in state update mode and squash if not. |
| * This function will return true if a trap is pending or if a fault or |
| * similar is currently writing to the thread context and doesn't want |
| * reset all the state (see noSquashFromTC). |
| */ |
| inline void conditionalSquash() |
| { |
| if (!thread->trapPending && !thread->noSquashFromTC) |
| cpu->squashFromTC(thread->threadId()); |
| } |
| |
| virtual uint64_t readIntRegFlat(int idx); |
| virtual void setIntRegFlat(int idx, uint64_t val); |
| |
| virtual FloatReg readFloatRegFlat(int idx); |
| virtual void setFloatRegFlat(int idx, FloatReg val); |
| |
| virtual FloatRegBits readFloatRegBitsFlat(int idx); |
| virtual void setFloatRegBitsFlat(int idx, FloatRegBits val); |
| |
| virtual const VecRegContainer& readVecRegFlat(int idx) const; |
| /** Read vector register operand for modification, flat indexing. */ |
| virtual VecRegContainer& getWritableVecRegFlat(int idx); |
| virtual void setVecRegFlat(int idx, const VecRegContainer& val); |
| |
| template <typename VecElem> |
| VecLaneT<VecElem, true> readVecLaneFlat(int idx, int lId) const |
| { |
| return cpu->template readArchVecLane<VecElem>(idx, lId, |
| thread->threadId()); |
| } |
| |
| template <typename LD> |
| void setVecLaneFlat(int idx, int lId, const LD& val) |
| { |
| cpu->template setArchVecLane(idx, lId, thread->threadId(), val); |
| } |
| |
| virtual const VecElem& readVecElemFlat(const RegIndex& idx, |
| const ElemIndex& elemIndex) const; |
| virtual void setVecElemFlat(const RegIndex& idx, const ElemIndex& elemIdx, |
| const VecElem& val); |
| |
| virtual CCReg readCCRegFlat(int idx); |
| virtual void setCCRegFlat(int idx, CCReg val); |
| }; |
| |
| #endif |