blob: 3621cc9e3e5509c8c622a14d73d97b684f05221c [file] [log] [blame]
/*
* Copyright (c) 2012 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2009 Advanced Micro Devices, Inc.
* Copyright (c) 2011 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cpu/testers/rubytest/RubyTester.hh"
#include "debug/Config.hh"
#include "debug/Ruby.hh"
#include "mem/protocol/AccessPermission.hh"
#include "mem/ruby/slicc_interface/AbstractController.hh"
#include "mem/ruby/system/RubyPort.hh"
#include "sim/system.hh"
RubyPort::RubyPort(const Params *p)
: MemObject(p), m_version(p->version), m_controller(NULL),
m_mandatory_q_ptr(NULL),
pio_port(csprintf("%s-pio-port", name()), this),
m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0),
drainEvent(NULL), ruby_system(p->ruby_system), system(p->system),
waitingOnSequencer(false), access_phys_mem(p->access_phys_mem)
{
assert(m_version != -1);
// create the slave ports based on the number of connected ports
for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i),
this, ruby_system, access_phys_mem));
}
// create the master ports based on the number of connected ports
for (size_t i = 0; i < p->port_master_connection_count; ++i) {
master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i),
this));
}
}
void
RubyPort::init()
{
assert(m_controller != NULL);
m_mandatory_q_ptr = m_controller->getMandatoryQueue();
}
MasterPort &
RubyPort::getMasterPort(const std::string &if_name, int idx)
{
if (if_name == "pio_port") {
return pio_port;
}
// used by the x86 CPUs to connect the interrupt PIO and interrupt slave
// port
if (if_name != "master") {
// pass it along to our super class
return MemObject::getMasterPort(if_name, idx);
} else {
if (idx >= static_cast<int>(master_ports.size())) {
panic("RubyPort::getMasterPort: unknown index %d\n", idx);
}
return *master_ports[idx];
}
}
SlavePort &
RubyPort::getSlavePort(const std::string &if_name, int idx)
{
// used by the CPUs to connect the caches to the interconnect, and
// for the x86 case also the interrupt master
if (if_name != "slave") {
// pass it along to our super class
return MemObject::getSlavePort(if_name, idx);
} else {
if (idx >= static_cast<int>(slave_ports.size())) {
panic("RubyPort::getSlavePort: unknown index %d\n", idx);
}
return *slave_ports[idx];
}
}
RubyPort::PioPort::PioPort(const std::string &_name,
RubyPort *_port)
: QueuedMasterPort(_name, _port, queue), queue(*_port, *this),
ruby_port(_port)
{
DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name);
}
RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port,
RubySystem *_system, bool _access_phys_mem)
: QueuedSlavePort(_name, _port, queue), queue(*_port, *this),
ruby_port(_port), ruby_system(_system),
_onRetryList(false), access_phys_mem(_access_phys_mem)
{
DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name);
}
Tick
RubyPort::M5Port::recvAtomic(PacketPtr pkt)
{
panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
return 0;
}
bool
RubyPort::PioPort::recvTimingResp(PacketPtr pkt)
{
// In FS mode, ruby memory will receive pio responses from devices
// and it must forward these responses back to the particular CPU.
DPRINTF(RubyPort, "Pio response for address %#x\n", pkt->getAddr());
// First we must retrieve the request port from the sender State
RubyPort::SenderState *senderState =
safe_cast<RubyPort::SenderState *>(pkt->senderState);
M5Port *port = senderState->port;
assert(port != NULL);
// pop the sender state from the packet
pkt->senderState = senderState->saved;
delete senderState;
port->sendTimingResp(pkt);
return true;
}
bool
RubyPort::M5Port::recvTimingReq(PacketPtr pkt)
{
DPRINTF(RubyPort,
"Timing access caught for address %#x\n", pkt->getAddr());
//dsm: based on SimpleTimingPort::recvTimingReq(pkt);
// The received packets should only be M5 requests, which should never
// get nacked. There used to be code to hanldle nacks here, but
// I'm pretty sure it didn't work correctly with the drain code,
// so that would need to be fixed if we ever added it back.
if (pkt->memInhibitAsserted()) {
warn("memInhibitAsserted???");
// snooper will supply based on copy of packet
// still target's responsibility to delete packet
delete pkt;
return true;
}
// Save the port in the sender state object to be used later to
// route the response
pkt->senderState = new SenderState(this, pkt->senderState);
// Check for pio requests and directly send them to the dedicated
// pio port.
if (!isPhysMemAddress(pkt->getAddr())) {
assert(ruby_port->pio_port.isConnected());
DPRINTF(RubyPort,
"Request for address 0x%#x is assumed to be a pio request\n",
pkt->getAddr());
return ruby_port->pio_port.sendNextCycle(pkt);
}
assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
RubySystem::getBlockSizeBytes());
// Submit the ruby request
RequestStatus requestStatus = ruby_port->makeRequest(pkt);
// If the request successfully issued then we should return true.
// Otherwise, we need to delete the senderStatus we just created and return
// false.
if (requestStatus == RequestStatus_Issued) {
DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
return true;
}
//
// Unless one is using the ruby tester, record the stalled M5 port for
// later retry when the sequencer becomes free.
//
if (!ruby_port->m_usingRubyTester) {
ruby_port->addToRetryList(this);
}
DPRINTF(RubyPort,
"Request for address %#x did not issue because %s\n",
pkt->getAddr(), RequestStatus_to_string(requestStatus));
SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
pkt->senderState = senderState->saved;
delete senderState;
return false;
}
bool
RubyPort::M5Port::doFunctionalRead(PacketPtr pkt)
{
Address address(pkt->getAddr());
Address line_address(address);
line_address.makeLineAddress();
AccessPermission access_perm = AccessPermission_NotPresent;
int num_controllers = ruby_system->m_abs_cntrl_vec.size();
DPRINTF(RubyPort, "Functional Read request for %s\n",address);
unsigned int num_ro = 0;
unsigned int num_rw = 0;
unsigned int num_busy = 0;
unsigned int num_backing_store = 0;
unsigned int num_invalid = 0;
// In this loop we count the number of controllers that have the given
// address in read only, read write and busy states.
for (int i = 0; i < num_controllers; ++i) {
access_perm = ruby_system->m_abs_cntrl_vec[i]->
getAccessPermission(line_address);
if (access_perm == AccessPermission_Read_Only)
num_ro++;
else if (access_perm == AccessPermission_Read_Write)
num_rw++;
else if (access_perm == AccessPermission_Busy)
num_busy++;
else if (access_perm == AccessPermission_Backing_Store)
// See RubySlicc_Exports.sm for details, but Backing_Store is meant
// to represent blocks in memory *for Broadcast/Snooping protocols*,
// where memory has no idea whether it has an exclusive copy of data
// or not.
num_backing_store++;
else if (access_perm == AccessPermission_Invalid ||
access_perm == AccessPermission_NotPresent)
num_invalid++;
}
assert(num_rw <= 1);
uint8* data = pkt->getPtr<uint8_t>(true);
unsigned int size_in_bytes = pkt->getSize();
unsigned startByte = address.getAddress() - line_address.getAddress();
// This if case is meant to capture what happens in a Broadcast/Snoop
// protocol where the block does not exist in the cache hierarchy. You
// only want to read from the Backing_Store memory if there is no copy in
// the cache hierarchy, otherwise you want to try to read the RO or RW
// copies existing in the cache hierarchy (covered by the else statement).
// The reason is because the Backing_Store memory could easily be stale, if
// there are copies floating around the cache hierarchy, so you want to read
// it only if it's not in the cache hierarchy at all.
if (num_invalid == (num_controllers - 1) &&
num_backing_store == 1)
{
DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n");
for (int i = 0; i < num_controllers; ++i) {
access_perm = ruby_system->m_abs_cntrl_vec[i]
->getAccessPermission(line_address);
if (access_perm == AccessPermission_Backing_Store) {
DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
->getDataBlock(line_address);
DPRINTF(RubyPort, "reading from %s block %s\n",
ruby_system->m_abs_cntrl_vec[i]->name(), block);
for (unsigned i = 0; i < size_in_bytes; ++i) {
data[i] = block.getByte(i + startByte);
}
return true;
}
}
} else {
// In Broadcast/Snoop protocols, this covers if you know the block
// exists somewhere in the caching hierarchy, then you want to read any
// valid RO or RW block. In directory protocols, same thing, you want
// to read any valid readable copy of the block.
DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
num_busy, num_ro, num_rw);
// In this loop, we try to figure which controller has a read only or
// a read write copy of the given address. Any valid copy would suffice
// for a functional read.
for(int i = 0;i < num_controllers;++i) {
access_perm = ruby_system->m_abs_cntrl_vec[i]
->getAccessPermission(line_address);
if(access_perm == AccessPermission_Read_Only ||
access_perm == AccessPermission_Read_Write)
{
DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
->getDataBlock(line_address);
DPRINTF(RubyPort, "reading from %s block %s\n",
ruby_system->m_abs_cntrl_vec[i]->name(), block);
for (unsigned i = 0; i < size_in_bytes; ++i) {
data[i] = block.getByte(i + startByte);
}
return true;
}
}
}
return false;
}
bool
RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt)
{
Address addr(pkt->getAddr());
Address line_addr = line_address(addr);
AccessPermission access_perm = AccessPermission_NotPresent;
int num_controllers = ruby_system->m_abs_cntrl_vec.size();
DPRINTF(RubyPort, "Functional Write request for %s\n",addr);
unsigned int num_ro = 0;
unsigned int num_rw = 0;
unsigned int num_busy = 0;
unsigned int num_backing_store = 0;
unsigned int num_invalid = 0;
// In this loop we count the number of controllers that have the given
// address in read only, read write and busy states.
for(int i = 0;i < num_controllers;++i) {
access_perm = ruby_system->m_abs_cntrl_vec[i]->
getAccessPermission(line_addr);
if (access_perm == AccessPermission_Read_Only)
num_ro++;
else if (access_perm == AccessPermission_Read_Write)
num_rw++;
else if (access_perm == AccessPermission_Busy)
num_busy++;
else if (access_perm == AccessPermission_Backing_Store)
// See RubySlicc_Exports.sm for details, but Backing_Store is meant
// to represent blocks in memory *for Broadcast/Snooping protocols*,
// where memory has no idea whether it has an exclusive copy of data
// or not.
num_backing_store++;
else if (access_perm == AccessPermission_Invalid ||
access_perm == AccessPermission_NotPresent)
num_invalid++;
}
// If the number of read write copies is more than 1, then there is bug in
// coherence protocol. Otherwise, if all copies are in stable states, i.e.
// num_busy == 0, we update all the copies. If there is at least one copy
// in busy state, then we check if there is read write copy. If yes, then
// also we let the access go through. Or, if there is no copy in the cache
// hierarchy at all, we still want to do the write to the memory
// (Backing_Store) instead of failing.
DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
num_busy, num_ro, num_rw);
assert(num_rw <= 1);
uint8* data = pkt->getPtr<uint8_t>(true);
unsigned int size_in_bytes = pkt->getSize();
unsigned startByte = addr.getAddress() - line_addr.getAddress();
if ((num_busy == 0 && num_ro > 0) || num_rw == 1 ||
(num_invalid == (num_controllers - 1) && num_backing_store == 1))
{
for(int i = 0; i < num_controllers;++i) {
access_perm = ruby_system->m_abs_cntrl_vec[i]->
getAccessPermission(line_addr);
if(access_perm == AccessPermission_Read_Only ||
access_perm == AccessPermission_Read_Write||
access_perm == AccessPermission_Maybe_Stale ||
access_perm == AccessPermission_Backing_Store)
{
DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
->getDataBlock(line_addr);
DPRINTF(RubyPort, "%s\n",block);
for (unsigned i = 0; i < size_in_bytes; ++i) {
block.setByte(i + startByte, data[i]);
}
DPRINTF(RubyPort, "%s\n",block);
}
}
return true;
}
return false;
}
void
RubyPort::M5Port::recvFunctional(PacketPtr pkt)
{
DPRINTF(RubyPort, "Functional access caught for address %#x\n",
pkt->getAddr());
// Check for pio requests and directly send them to the dedicated
// pio port.
if (!isPhysMemAddress(pkt->getAddr())) {
assert(ruby_port->pio_port.isConnected());
DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n",
pkt->getAddr());
panic("RubyPort::PioPort::recvFunctional() not implemented!\n");
}
assert(pkt->getAddr() + pkt->getSize() <=
line_address(Address(pkt->getAddr())).getAddress() +
RubySystem::getBlockSizeBytes());
bool accessSucceeded = false;
bool needsResponse = pkt->needsResponse();
// Do the functional access on ruby memory
if (pkt->isRead()) {
accessSucceeded = doFunctionalRead(pkt);
} else if (pkt->isWrite()) {
accessSucceeded = doFunctionalWrite(pkt);
} else {
panic("RubyPort: unsupported functional command %s\n",
pkt->cmdString());
}
// Unless the requester explicitly said otherwise, generate an error if
// the functional request failed
if (!accessSucceeded && !pkt->suppressFuncError()) {
fatal("Ruby functional %s failed for address %#x\n",
pkt->isWrite() ? "write" : "read", pkt->getAddr());
}
if (access_phys_mem) {
// The attached physmem contains the official version of data.
// The following command performs the real functional access.
// This line should be removed once Ruby supplies the official version
// of data.
ruby_port->system->getPhysMem().functionalAccess(pkt);
}
// turn packet around to go back to requester if response expected
if (needsResponse) {
pkt->setFunctionalResponseStatus(accessSucceeded);
// @todo There should not be a reverse call since the response is
// communicated through the packet pointer
// DPRINTF(RubyPort, "Sending packet back over port\n");
// sendFunctional(pkt);
}
DPRINTF(RubyPort, "Functional access %s!\n",
accessSucceeded ? "successful":"failed");
}
void
RubyPort::ruby_hit_callback(PacketPtr pkt)
{
// Retrieve the request port from the sender State
RubyPort::SenderState *senderState =
safe_cast<RubyPort::SenderState *>(pkt->senderState);
M5Port *port = senderState->port;
assert(port != NULL);
// pop the sender state from the packet
pkt->senderState = senderState->saved;
delete senderState;
port->hitCallback(pkt);
//
// If we had to stall the M5Ports, wake them up because the sequencer
// likely has free resources now.
//
if (waitingOnSequencer) {
//
// Record the current list of ports to retry on a temporary list before
// calling sendRetry on those ports. sendRetry will cause an
// immediate retry, which may result in the ports being put back on the
// list. Therefore we want to clear the retryList before calling
// sendRetry.
//
std::list<M5Port*> curRetryList(retryList);
retryList.clear();
waitingOnSequencer = false;
for (std::list<M5Port*>::iterator i = curRetryList.begin();
i != curRetryList.end(); ++i) {
DPRINTF(RubyPort,
"Sequencer may now be free. SendRetry to port %s\n",
(*i)->name());
(*i)->onRetryList(false);
(*i)->sendRetry();
}
}
testDrainComplete();
}
void
RubyPort::testDrainComplete()
{
//If we weren't able to drain before, we might be able to now.
if (drainEvent != NULL) {
unsigned int drainCount = getDrainCount(drainEvent);
DPRINTF(Config, "Drain count: %u\n", drainCount);
if (drainCount == 0) {
drainEvent->process();
// Clear the drain event once we're done with it.
drainEvent = NULL;
}
}
}
unsigned int
RubyPort::getDrainCount(Event *de)
{
int count = 0;
//
// If the sequencer is not empty, then requests need to drain.
// The outstandingCount is the number of requests outstanding and thus the
// number of times M5's timing port will process the drain event.
//
count += outstandingCount();
DPRINTF(Config, "outstanding count %d\n", outstandingCount());
// To simplify the draining process, the sequencer's deadlock detection
// event should have been descheduled.
assert(isDeadlockEventScheduled() == false);
if (pio_port.isConnected()) {
count += pio_port.drain(de);
DPRINTF(Config, "count after pio check %d\n", count);
}
for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
count += (*p)->drain(de);
DPRINTF(Config, "count after slave port check %d\n", count);
}
for (std::vector<PioPort*>::iterator p = master_ports.begin();
p != master_ports.end(); ++p) {
count += (*p)->drain(de);
DPRINTF(Config, "count after master port check %d\n", count);
}
DPRINTF(Config, "final count %d\n", count);
return count;
}
unsigned int
RubyPort::drain(Event *de)
{
if (isDeadlockEventScheduled()) {
descheduleDeadlockEvent();
}
int count = getDrainCount(de);
// Set status
if (count != 0) {
drainEvent = de;
changeState(SimObject::Draining);
return count;
}
changeState(SimObject::Drained);
return 0;
}
void
RubyPort::M5Port::hitCallback(PacketPtr pkt)
{
bool needsResponse = pkt->needsResponse();
//
// Unless specified at configuraiton, all responses except failed SC
// and Flush operations access M5 physical memory.
//
bool accessPhysMem = access_phys_mem;
if (pkt->isLLSC()) {
if (pkt->isWrite()) {
if (pkt->req->getExtraData() != 0) {
//
// Successful SC packets convert to normal writes
//
pkt->convertScToWrite();
} else {
//
// Failed SC packets don't access physical memory and thus
// the RubyPort itself must convert it to a response.
//
accessPhysMem = false;
}
} else {
//
// All LL packets convert to normal loads so that M5 PhysMem does
// not lock the blocks.
//
pkt->convertLlToRead();
}
}
//
// Flush requests don't access physical memory
//
if (pkt->isFlush()) {
accessPhysMem = false;
}
DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
if (accessPhysMem) {
ruby_port->system->getPhysMem().access(pkt);
} else if (needsResponse) {
pkt->makeResponse();
}
// turn packet around to go back to requester if response expected
if (needsResponse) {
DPRINTF(RubyPort, "Sending packet back over port\n");
sendNextCycle(pkt);
} else {
delete pkt;
}
DPRINTF(RubyPort, "Hit callback done!\n");
}
bool
RubyPort::M5Port::sendNextCycle(PacketPtr pkt, bool send_as_snoop)
{
//minimum latency, must be > 0
queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()),
send_as_snoop);
return true;
}
bool
RubyPort::PioPort::sendNextCycle(PacketPtr pkt)
{
//minimum latency, must be > 0
queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
return true;
}
AddrRangeList
RubyPort::M5Port::getAddrRanges()
{
// at the moment the assumption is that the master does not care
AddrRangeList ranges;
return ranges;
}
bool
RubyPort::M5Port::isPhysMemAddress(Addr addr)
{
return ruby_port->system->isMemAddr(addr);
}
unsigned
RubyPort::M5Port::deviceBlockSize() const
{
return (unsigned) RubySystem::getBlockSizeBytes();
}
void
RubyPort::ruby_eviction_callback(const Address& address)
{
DPRINTF(RubyPort, "Sending invalidations.\n");
// should this really be using funcMasterId?
Request req(address.getAddress(), 0, 0, Request::funcMasterId);
for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
if ((*p)->getMasterPort().isSnooping()) {
Packet *pkt = new Packet(&req, MemCmd::InvalidationReq);
// send as a snoop request
(*p)->sendTimingSnoopReq(pkt);
}
}
}