blob: 3928e94e60d08fef6bfb2cbc6bd210ab9c8b0047 [file] [log] [blame]
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* $Id$
*/
#include "mem/ruby/buffers/MessageBuffer.hh"
#include "mem/ruby/system/System.hh"
MessageBuffer::MessageBuffer()
{
m_msg_counter = 0;
m_consumer_ptr = NULL;
m_ordering_set = false;
m_strict_fifo = true;
m_size = 0;
m_max_size = -1;
m_last_arrival_time = 0;
m_randomization = true;
m_size_last_time_size_checked = 0;
m_time_last_time_size_checked = 0;
m_time_last_time_enqueue = 0;
m_time_last_time_pop = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
m_not_avail_count = 0;
m_priority_rank = 0;
}
MessageBuffer::MessageBuffer(const Chip* chip_ptr) // The chip_ptr is ignored, but could be used for extra debugging
{
m_msg_counter = 0;
m_consumer_ptr = NULL;
m_ordering_set = false;
m_strict_fifo = true;
m_size = 0;
m_max_size = -1;
m_last_arrival_time = 0;
m_randomization = true;
m_size_last_time_size_checked = 0;
m_time_last_time_size_checked = 0;
m_time_last_time_enqueue = 0;
m_time_last_time_pop = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
m_not_avail_count = 0;
m_priority_rank = 0;
}
int MessageBuffer::getSize()
{
if(m_time_last_time_size_checked == g_eventQueue_ptr->getTime()){
return m_size_last_time_size_checked;
} else {
m_time_last_time_size_checked = g_eventQueue_ptr->getTime();
m_size_last_time_size_checked = m_size;
return m_size;
}
}
bool MessageBuffer::areNSlotsAvailable(int n)
{
// fast path when message buffers have infinite size
if(m_max_size == -1) {
return true;
}
// determine my correct size for the current cycle
// pop operations shouldn't effect the network's visible size until next cycle,
// but enqueue operations effect the visible size immediately
int current_size = max(m_size_at_cycle_start, m_size);
if (m_time_last_time_pop < g_eventQueue_ptr->getTime()) { // no pops this cycle - m_size is correct
current_size = m_size;
} else {
if (m_time_last_time_enqueue < g_eventQueue_ptr->getTime()) { // no enqueues this cycle - m_size_at_cycle_start is correct
current_size = m_size_at_cycle_start;
} else { // both pops and enqueues occured this cycle - add new enqueued msgs to m_size_at_cycle_start
current_size = m_size_at_cycle_start+m_msgs_this_cycle;
}
}
// now compare the new size with our max size
if(current_size+n <= m_max_size){
return true;
} else {
DEBUG_MSG(QUEUE_COMP,MedPrio,n);
DEBUG_MSG(QUEUE_COMP,MedPrio,current_size);
DEBUG_MSG(QUEUE_COMP,MedPrio,m_size);
DEBUG_MSG(QUEUE_COMP,MedPrio,m_max_size);
m_not_avail_count++;
return false;
}
}
const MsgPtr MessageBuffer::getMsgPtrCopy() const
{
assert(isReady());
MsgPtr temp_msg;
temp_msg = *(m_prio_heap.peekMin().m_msgptr.ref());
assert(temp_msg.ref() != NULL);
return temp_msg;
}
const Message* MessageBuffer::peekAtHeadOfQueue() const
{
const Message* msg_ptr;
DEBUG_NEWLINE(QUEUE_COMP,MedPrio);
DEBUG_MSG(QUEUE_COMP,MedPrio,"Peeking at head of queue " + m_name + " time: "
+ int_to_string(g_eventQueue_ptr->getTime()) + ".");
assert(isReady());
msg_ptr = m_prio_heap.peekMin().m_msgptr.ref();
assert(msg_ptr != NULL);
DEBUG_EXPR(QUEUE_COMP,MedPrio,*msg_ptr);
DEBUG_NEWLINE(QUEUE_COMP,MedPrio);
return msg_ptr;
}
// FIXME - move me somewhere else
int random_time()
{
int time = 1;
time += random() & 0x3; // [0...3]
if ((random() & 0x7) == 0) { // 1 in 8 chance
time += 100 + (random() % 0xf); // 100 + [1...15]
}
return time;
}
void MessageBuffer::enqueue(const MsgPtr& message, Time delta)
{
DEBUG_NEWLINE(QUEUE_COMP,HighPrio);
DEBUG_MSG(QUEUE_COMP,HighPrio,"enqueue " + m_name + " time: "
+ int_to_string(g_eventQueue_ptr->getTime()) + ".");
DEBUG_EXPR(QUEUE_COMP,MedPrio,message);
DEBUG_NEWLINE(QUEUE_COMP,HighPrio);
m_msg_counter++;
m_size++;
// record current time incase we have a pop that also adjusts my size
if (m_time_last_time_enqueue < g_eventQueue_ptr->getTime()) {
m_msgs_this_cycle = 0; // first msg this cycle
m_time_last_time_enqueue = g_eventQueue_ptr->getTime();
}
m_msgs_this_cycle++;
// ASSERT(m_max_size == -1 || m_size <= m_max_size + 1);
// the plus one is a kluge because of a SLICC issue
if (!m_ordering_set) {
// WARN_EXPR(*this);
WARN_EXPR(m_name);
ERROR_MSG("Ordering property of this queue has not been set");
}
// Calculate the arrival time of the message, that is, the first
// cycle the message can be dequeued.
// printf ("delta %i \n", delta);
assert(delta>0);
Time current_time = g_eventQueue_ptr->getTime();
Time arrival_time = 0;
if (!RubySystem::getRandomization() || (m_randomization == false)) {
// No randomization
arrival_time = current_time + delta;
} else {
// Randomization - ignore delta
if (m_strict_fifo) {
if (m_last_arrival_time < current_time) {
m_last_arrival_time = current_time;
}
arrival_time = m_last_arrival_time + random_time();
} else {
arrival_time = current_time + random_time();
}
}
// Check the arrival time
assert(arrival_time > current_time);
if (m_strict_fifo) {
if (arrival_time >= m_last_arrival_time) {
} else {
WARN_EXPR(*this);
WARN_EXPR(m_name);
WARN_EXPR(current_time);
WARN_EXPR(delta);
WARN_EXPR(arrival_time);
WARN_EXPR(m_last_arrival_time);
ERROR_MSG("FIFO ordering violated");
}
}
m_last_arrival_time = arrival_time;
// compute the delay cycles and set enqueue time
Message* msg_ptr = NULL;
msg_ptr = message.mod_ref();
assert(msg_ptr != NULL);
assert(g_eventQueue_ptr->getTime() >= msg_ptr->getLastEnqueueTime()); // ensure we aren't dequeued early
msg_ptr->setDelayedCycles((g_eventQueue_ptr->getTime() - msg_ptr->getLastEnqueueTime())+msg_ptr->getDelayedCycles());
msg_ptr->setLastEnqueueTime(arrival_time);
// Insert the message into the priority heap
MessageBufferNode thisNode(arrival_time, m_msg_counter, message);
m_prio_heap.insert(thisNode);
DEBUG_NEWLINE(QUEUE_COMP,HighPrio);
DEBUG_MSG(QUEUE_COMP,HighPrio,"enqueue " + m_name
+ " with arrival_time " + int_to_string(arrival_time)
+ " cur_time: " + int_to_string(g_eventQueue_ptr->getTime()) + ".");
DEBUG_EXPR(QUEUE_COMP,MedPrio,message);
DEBUG_NEWLINE(QUEUE_COMP,HighPrio);
// Schedule the wakeup
if (m_consumer_ptr != NULL) {
g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, arrival_time);
} else {
WARN_EXPR(*this);
WARN_EXPR(m_name);
ERROR_MSG("No consumer");
}
}
int MessageBuffer::dequeue_getDelayCycles(MsgPtr& message)
{
int delay_cycles = -1; // null value
dequeue(message);
// get the delay cycles
delay_cycles = setAndReturnDelayCycles(message);
assert(delay_cycles >= 0);
return delay_cycles;
}
void MessageBuffer::dequeue(MsgPtr& message)
{
DEBUG_MSG(QUEUE_COMP,MedPrio,"dequeue from " + m_name);
message = m_prio_heap.peekMin().m_msgptr;
pop();
DEBUG_EXPR(QUEUE_COMP,MedPrio,message);
}
int MessageBuffer::dequeue_getDelayCycles()
{
int delay_cycles = -1; // null value
// get MsgPtr of the message about to be dequeued
MsgPtr message = m_prio_heap.peekMin().m_msgptr;
// get the delay cycles
delay_cycles = setAndReturnDelayCycles(message);
dequeue();
assert(delay_cycles >= 0);
return delay_cycles;
}
void MessageBuffer::pop()
{
DEBUG_MSG(QUEUE_COMP,MedPrio,"pop from " + m_name);
assert(isReady());
m_prio_heap.extractMin();
// record previous size and time so the current buffer size isn't adjusted until next cycle
if (m_time_last_time_pop < g_eventQueue_ptr->getTime()) {
m_size_at_cycle_start = m_size;
m_time_last_time_pop = g_eventQueue_ptr->getTime();
}
m_size--;
}
void MessageBuffer::clear()
{
while(m_prio_heap.size() > 0){
m_prio_heap.extractMin();
}
ASSERT(m_prio_heap.size() == 0);
m_msg_counter = 0;
m_size = 0;
m_time_last_time_enqueue = 0;
m_time_last_time_pop = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
}
void MessageBuffer::recycle()
{
DEBUG_MSG(QUEUE_COMP,MedPrio,"recycling " + m_name);
assert(isReady());
MessageBufferNode node = m_prio_heap.extractMin();
node.m_time = g_eventQueue_ptr->getTime() + m_recycle_latency;
m_prio_heap.insert(node);
g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, g_eventQueue_ptr->getTime() + m_recycle_latency);
}
int MessageBuffer::setAndReturnDelayCycles(MsgPtr& message)
{
int delay_cycles = -1; // null value
// get the delay cycles of the message at the top of the queue
Message* msg_ptr = message.ref();
// this function should only be called on dequeue
// ensure the msg hasn't been enqueued
assert(msg_ptr->getLastEnqueueTime() <= g_eventQueue_ptr->getTime());
msg_ptr->setDelayedCycles((g_eventQueue_ptr->getTime() - msg_ptr->getLastEnqueueTime())+msg_ptr->getDelayedCycles());
delay_cycles = msg_ptr->getDelayedCycles();
assert(delay_cycles >= 0);
return delay_cycles;
}
void MessageBuffer::print(ostream& out) const
{
out << "[MessageBuffer: ";
if (m_consumer_ptr != NULL) {
out << " consumer-yes ";
}
out << m_prio_heap << "] " << m_name << endl;
}
void MessageBuffer::printStats(ostream& out)
{
out << "MessageBuffer: " << m_name << " stats - msgs:" << m_msg_counter << " full:" << m_not_avail_count << endl;
}