blob: 89d61f267d685ffad119a6e2cf59dfffdcaacfc6 [file] [log] [blame]
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* $Id$
*
* Description: see Throttle.hh
*
*/
#include "mem/ruby/network/simple/Throttle.hh"
#include "mem/ruby/buffers/MessageBuffer.hh"
#include "mem/ruby/network/Network.hh"
#include "mem/ruby/system/System.hh"
#include "mem/ruby/slicc_interface/NetworkMessage.hh"
#include "mem/protocol/Protocol.hh"
const int HIGH_RANGE = 256;
const int ADJUST_INTERVAL = 50000;
const int MESSAGE_SIZE_MULTIPLIER = 1000;
//const int BROADCAST_SCALING = 4; // Have a 16p system act like a 64p systems
const int BROADCAST_SCALING = 1;
const int PRIORITY_SWITCH_LIMIT = 128;
static int network_message_to_size(NetworkMessage* net_msg_ptr);
extern std::ostream * debug_cout_ptr;
Throttle::Throttle(int sID, NodeID node, int link_latency, int link_bandwidth_multiplier)
{
init(node, link_latency, link_bandwidth_multiplier);
m_sID = sID;
}
Throttle::Throttle(NodeID node, int link_latency, int link_bandwidth_multiplier)
{
init(node, link_latency, link_bandwidth_multiplier);
m_sID = 0;
}
void Throttle::init(NodeID node, int link_latency, int link_bandwidth_multiplier)
{
m_node = node;
m_vnets = 0;
ASSERT(link_bandwidth_multiplier > 0);
m_link_bandwidth_multiplier = link_bandwidth_multiplier;
m_link_latency = link_latency;
m_bash_counter = HIGH_RANGE;
m_bandwidth_since_sample = 0;
m_last_bandwidth_sample = 0;
m_wakeups_wo_switch = 0;
clearStats();
}
void Throttle::clear()
{
for (int counter = 0; counter < m_vnets; counter++) {
m_in[counter]->clear();
m_out[counter]->clear();
}
}
void Throttle::addLinks(const Vector<MessageBuffer*>& in_vec, const Vector<MessageBuffer*>& out_vec)
{
assert(in_vec.size() == out_vec.size());
for (int i=0; i<in_vec.size(); i++) {
addVirtualNetwork(in_vec[i], out_vec[i]);
}
m_message_counters.setSize(MessageSizeType_NUM);
for (int i=0; i<MessageSizeType_NUM; i++) {
m_message_counters[i].setSize(in_vec.size());
for (int j=0; j<m_message_counters[i].size(); j++) {
m_message_counters[i][j] = 0;
}
}
m_out_link_vec.insertAtBottom(out_vec);
}
void Throttle::addVirtualNetwork(MessageBuffer* in_ptr, MessageBuffer* out_ptr)
{
m_units_remaining.insertAtBottom(0);
m_in.insertAtBottom(in_ptr);
m_out.insertAtBottom(out_ptr);
// Set consumer and description
m_in[m_vnets]->setConsumer(this);
string desc = "[Queue to Throttle " + NodeIDToString(m_sID) + " " + NodeIDToString(m_node) + "]";
m_in[m_vnets]->setDescription(desc);
m_vnets++;
}
void Throttle::wakeup()
{
// Limits the number of message sent to a limited number of bytes/cycle.
assert(getLinkBandwidth() > 0);
int bw_remaining = getLinkBandwidth();
// Give the highest numbered link priority most of the time
m_wakeups_wo_switch++;
int highest_prio_vnet = m_vnets-1;
int lowest_prio_vnet = 0;
int counter = 1;
bool schedule_wakeup = false;
// invert priorities to avoid starvation seen in the component network
if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) {
m_wakeups_wo_switch = 0;
highest_prio_vnet = 0;
lowest_prio_vnet = m_vnets-1;
counter = -1;
}
for (int vnet = highest_prio_vnet; (vnet*counter) >= (counter*lowest_prio_vnet); vnet -= counter) {
assert(m_out[vnet] != NULL);
assert(m_in[vnet] != NULL);
assert(m_units_remaining[vnet] >= 0);
while ((bw_remaining > 0) && ((m_in[vnet]->isReady()) || (m_units_remaining[vnet] > 0)) && m_out[vnet]->areNSlotsAvailable(1)) {
// See if we are done transferring the previous message on this virtual network
if (m_units_remaining[vnet] == 0 && m_in[vnet]->isReady()) {
// Find the size of the message we are moving
MsgPtr msg_ptr = m_in[vnet]->peekMsgPtr();
NetworkMessage* net_msg_ptr = dynamic_cast<NetworkMessage*>(msg_ptr.ref());
m_units_remaining[vnet] += network_message_to_size(net_msg_ptr);
DEBUG_NEWLINE(NETWORK_COMP,HighPrio);
DEBUG_MSG(NETWORK_COMP,HighPrio,"throttle: " + int_to_string(m_node)
+ " my bw " + int_to_string(getLinkBandwidth())
+ " bw spent enqueueing net msg " + int_to_string(m_units_remaining[vnet])
+ " time: " + int_to_string(g_eventQueue_ptr->getTime()) + ".");
// Move the message
m_out[vnet]->enqueue(m_in[vnet]->peekMsgPtr(), m_link_latency);
m_in[vnet]->pop();
// Count the message
m_message_counters[net_msg_ptr->getMessageSize()][vnet]++;
DEBUG_MSG(NETWORK_COMP,LowPrio,*m_out[vnet]);
DEBUG_NEWLINE(NETWORK_COMP,HighPrio);
}
// Calculate the amount of bandwidth we spent on this message
int diff = m_units_remaining[vnet] - bw_remaining;
m_units_remaining[vnet] = max(0, diff);
bw_remaining = max(0, -diff);
}
if ((bw_remaining > 0) && ((m_in[vnet]->isReady()) || (m_units_remaining[vnet] > 0)) && !m_out[vnet]->areNSlotsAvailable(1)) {
DEBUG_MSG(NETWORK_COMP,LowPrio,vnet);
schedule_wakeup = true; // schedule me to wakeup again because I'm waiting for my output queue to become available
}
}
// We should only wake up when we use the bandwidth
// assert(bw_remaining != getLinkBandwidth()); // This is only mostly true
// Record that we used some or all of the link bandwidth this cycle
double ratio = 1.0-(double(bw_remaining)/double(getLinkBandwidth()));
// If ratio = 0, we used no bandwidth, if ratio = 1, we used all
linkUtilized(ratio);
// Sample the link bandwidth utilization over a number of cycles
int bw_used = getLinkBandwidth()-bw_remaining;
m_bandwidth_since_sample += bw_used;
// FIXME - comment out the bash specific code for faster performance
// Start Bash code
// Update the predictor
Time current_time = g_eventQueue_ptr->getTime();
while ((current_time - m_last_bandwidth_sample) > ADJUST_INTERVAL) {
// Used less bandwidth
m_bash_counter--;
// Make sure we don't overflow
m_bash_counter = min(HIGH_RANGE, m_bash_counter);
m_bash_counter = max(0, m_bash_counter);
// Reset samples
m_last_bandwidth_sample += ADJUST_INTERVAL;
m_bandwidth_since_sample = 0;
}
// End Bash code
if ((bw_remaining > 0) && !schedule_wakeup) {
// We have extra bandwidth and our output buffer was available, so we must not have anything else to do until another message arrives.
DEBUG_MSG(NETWORK_COMP,LowPrio,*this);
DEBUG_MSG(NETWORK_COMP,LowPrio,"not scheduled again");
} else {
DEBUG_MSG(NETWORK_COMP,LowPrio,*this);
DEBUG_MSG(NETWORK_COMP,LowPrio,"scheduled again");
// We are out of bandwidth for this cycle, so wakeup next cycle and continue
g_eventQueue_ptr->scheduleEvent(this, 1);
}
}
bool Throttle::broadcastBandwidthAvailable(int rand) const
{
bool result = !(m_bash_counter > ((HIGH_RANGE/4) + (rand % (HIGH_RANGE/2))));
return result;
}
void Throttle::printStats(ostream& out) const
{
out << "utilized_percent: " << getUtilization() << endl;
}
void Throttle::clearStats()
{
m_ruby_start = g_eventQueue_ptr->getTime();
m_links_utilized = 0.0;
for (int i=0; i<m_message_counters.size(); i++) {
for (int j=0; j<m_message_counters[i].size(); j++) {
m_message_counters[i][j] = 0;
}
}
}
void Throttle::printConfig(ostream& out) const
{
}
double Throttle::getUtilization() const
{
return (100.0 * double(m_links_utilized)) / (double(g_eventQueue_ptr->getTime()-m_ruby_start));
}
void Throttle::print(ostream& out) const
{
out << "[Throttle: " << m_sID << " " << m_node << " bw: " << getLinkBandwidth() << "]";
}
// Helper function
static
int network_message_to_size(NetworkMessage* net_msg_ptr)
{
assert(net_msg_ptr != NULL);
// Artificially increase the size of broadcast messages
if (BROADCAST_SCALING > 1) {
if (net_msg_ptr->getDestination().isBroadcast()) {
return (RubySystem::getNetwork()->MessageSizeType_to_int(net_msg_ptr->getMessageSize()) * MESSAGE_SIZE_MULTIPLIER * BROADCAST_SCALING);
}
}
return (RubySystem::getNetwork()->MessageSizeType_to_int(net_msg_ptr->getMessageSize()) * MESSAGE_SIZE_MULTIPLIER);
}