blob: 563a1b01c5f428102625bb142dbdc75bc5f4199c [file] [log] [blame]
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Topology.cc
*
* Description: See Topology.hh
*
* $Id$
*
* */
#include "mem/ruby/network/simple/Topology.hh"
#include "mem/ruby/common/NetDest.hh"
#include "mem/ruby/network/Network.hh"
#include "mem/protocol/TopologyType.hh"
#include "mem/gems_common/util.hh"
#include "mem/protocol/MachineType.hh"
#include "mem/protocol/Protocol.hh"
#include "mem/ruby/system/System.hh"
#include <string>
static const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
static const int DEFAULT_BW_MULTIPLIER = 1; // Just to be consistent with above :)
// Note: In this file, we use the first 2*m_nodes SwitchIDs to
// represent the input and output endpoint links. These really are
// not 'switches', as they will not have a Switch object allocated for
// them. The first m_nodes SwitchIDs are the links into the network,
// the second m_nodes set of SwitchIDs represent the the output queues
// of the network.
// Helper functions based on chapter 29 of Cormen et al.
static void extend_shortest_path(Matrix& current_dist, Matrix& latencies, Matrix& inter_switches);
static Matrix shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches);
static bool link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final, const Matrix& weights, const Matrix& dist);
static NetDest shortest_path_to_node(SwitchID src, SwitchID next, const Matrix& weights, const Matrix& dist);
Topology::Topology(const string & name)
: m_name(name)
{
m_network_ptr = NULL;
m_nodes = MachineType_base_number(MachineType_NUM);
m_number_of_switches = 0;
}
void Topology::init(const vector<string> & argv)
{
for (size_t i=0; i<argv.size(); i+=2) {
if (argv[i] == "network")
m_network_ptr = RubySystem::getNetwork();
else if (argv[i] == "connections")
m_connections = argv[i+1];
else if (argv[i] == "print_config") {
m_print_config = string_to_bool(argv[i+1]);
}
}
assert(m_network_ptr != NULL);
}
void Topology::makeTopology()
{
/*
if (m_nodes == 1) {
SwitchID id = newSwitchID();
addLink(0, id, m_network_ptr->getOffChipLinkLatency());
addLink(id, 1, m_network_ptr->getOffChipLinkLatency());
return;
}
*/
assert(m_nodes > 1);
Vector< Vector < SwitchID > > nodePairs; // node pairs extracted from the file
Vector<int> latencies; // link latencies for each link extracted
Vector<int> bw_multis; // bw multipliers for each link extracted
Vector<int> weights; // link weights used to enfore e-cube deadlock free routing
Vector< SwitchID > int_network_switches; // internal switches extracted from the file
Vector<bool> endpointConnectionExist; // used to ensure all endpoints are connected to the network
endpointConnectionExist.setSize(m_nodes);
// initialize endpoint check vector
for (int k = 0; k < endpointConnectionExist.size(); k++) {
endpointConnectionExist[k] = false;
}
stringstream networkFile( m_connections );
string line = "";
while (!networkFile.eof()) {
Vector < SwitchID > nodes;
nodes.setSize(2);
int latency = -1; // null latency
int weight = -1; // null weight
int bw_multiplier = DEFAULT_BW_MULTIPLIER; // default multiplier incase the network file doesn't define it
int i = 0; // node pair index
int varsFound = 0; // number of varsFound on the line
int internalNodes = 0; // used to determine if the link is between 2 internal nodes
std::getline(networkFile, line, '\n');
string varStr = string_split(line, ' ');
// parse the current line in the file
while (varStr != "") {
string label = string_split(varStr, ':');
// valid node labels
if (label == "ext_node" || label == "int_node") {
ASSERT(i < 2); // one link between 2 switches per line
varsFound++;
bool isNewIntSwitch = true;
if (label == "ext_node") { // input link to node
MachineType machine = string_to_MachineType(string_split(varStr, ':'));
string nodeStr = string_split(varStr, ':');
nodes[i] = MachineType_base_number(machine)
+ atoi(nodeStr.c_str());
// in nodes should be numbered 0 to m_nodes-1
ASSERT(nodes[i] >= 0 && nodes[i] < m_nodes);
isNewIntSwitch = false;
endpointConnectionExist[nodes[i]] = true;
}
if (label == "int_node") { // interior node
nodes[i] = atoi((string_split(varStr, ':')).c_str())+m_nodes*2;
// in nodes should be numbered >= m_nodes*2
ASSERT(nodes[i] >= m_nodes*2);
for (int k = 0; k < int_network_switches.size(); k++) {
if (int_network_switches[k] == nodes[i]) {
isNewIntSwitch = false;
}
}
if (isNewIntSwitch) { // if internal switch
m_number_of_switches++;
int_network_switches.insertAtBottom(nodes[i]);
}
internalNodes++;
}
i++;
} else if (label == "link_latency") {
latency = atoi((string_split(varStr, ':')).c_str());
varsFound++;
} else if (label == "bw_multiplier") { // not necessary, defaults to DEFAULT_BW_MULTIPLIER
bw_multiplier = atoi((string_split(varStr, ':')).c_str());
} else if (label == "link_weight") { // not necessary, defaults to link_latency
weight = atoi((string_split(varStr, ':')).c_str());
} else {
cerr << "Error: Unexpected Identifier: " << label << endl;
exit(1);
}
varStr = string_split(line, ' ');
}
if (varsFound == 3) { // all three necessary link variables where found so add the link
nodePairs.insertAtBottom(nodes);
latencies.insertAtBottom(latency);
if (weight != -1) {
weights.insertAtBottom(weight);
} else {
weights.insertAtBottom(latency);
}
bw_multis.insertAtBottom(bw_multiplier);
Vector < SwitchID > otherDirectionNodes;
otherDirectionNodes.setSize(2);
otherDirectionNodes[0] = nodes[1];
if (internalNodes == 2) { // this is an internal link
otherDirectionNodes[1] = nodes[0];
} else {
otherDirectionNodes[1] = nodes[0]+m_nodes;
}
nodePairs.insertAtBottom(otherDirectionNodes);
latencies.insertAtBottom(latency);
if (weight != -1) {
weights.insertAtBottom(weight);
} else {
weights.insertAtBottom(latency);
}
bw_multis.insertAtBottom(bw_multiplier);
} else {
if (varsFound != 0) { // if this is not a valid link, then no vars should have been found
cerr << "Error in line: " << line << endl;
exit(1);
}
}
} // end of file
// makes sure all enpoints are connected in the soon to be created network
for (int k = 0; k < endpointConnectionExist.size(); k++) {
if (endpointConnectionExist[k] == false) {
cerr << "Error: Unconnected Endpoint: " << k << endl;
exit(1);
}
}
ASSERT(nodePairs.size() == latencies.size() && latencies.size() == bw_multis.size() && latencies.size() == weights.size())
for (int k = 0; k < nodePairs.size(); k++) {
ASSERT(nodePairs[k].size() == 2);
addLink(nodePairs[k][0], nodePairs[k][1], latencies[k], bw_multis[k], weights[k]);
}
// initialize component latencies record
m_component_latencies.setSize(0);
m_component_inter_switches.setSize(0);
}
void Topology::createLinks(bool isReconfiguration)
{
// Find maximum switchID
SwitchID max_switch_id = 0;
for (int i=0; i<m_links_src_vector.size(); i++) {
max_switch_id = max(max_switch_id, m_links_src_vector[i]);
max_switch_id = max(max_switch_id, m_links_dest_vector[i]);
}
// Initialize weight vector
Matrix topology_weights;
Matrix topology_latency;
Matrix topology_bw_multis;
int num_switches = max_switch_id+1;
topology_weights.setSize(num_switches);
topology_latency.setSize(num_switches);
topology_bw_multis.setSize(num_switches);
m_component_latencies.setSize(num_switches); // FIXME setting the size of a member variable here is a HACK!
m_component_inter_switches.setSize(num_switches); // FIXME setting the size of a member variable here is a HACK!
for(int i=0; i<topology_weights.size(); i++) {
topology_weights[i].setSize(num_switches);
topology_latency[i].setSize(num_switches);
topology_bw_multis[i].setSize(num_switches);
m_component_latencies[i].setSize(num_switches);
m_component_inter_switches[i].setSize(num_switches); // FIXME setting the size of a member variable here is a HACK!
for(int j=0; j<topology_weights[i].size(); j++) {
topology_weights[i][j] = INFINITE_LATENCY;
topology_latency[i][j] = -1; // initialize to an invalid value
topology_bw_multis[i][j] = -1; // initialize to an invalid value
m_component_latencies[i][j] = -1; // initialize to an invalid value
m_component_inter_switches[i][j] = 0; // initially assume direct connections / no intermediate switches between components
}
}
// Set identity weights to zero
for(int i=0; i<topology_weights.size(); i++) {
topology_weights[i][i] = 0;
}
// Fill in the topology weights and bandwidth multipliers
for (int i=0; i<m_links_src_vector.size(); i++) {
topology_weights[m_links_src_vector[i]][m_links_dest_vector[i]] = m_links_weight_vector[i];
topology_latency[m_links_src_vector[i]][m_links_dest_vector[i]] = m_links_latency_vector[i];
m_component_latencies[m_links_src_vector[i]][m_links_dest_vector[i]] = m_links_latency_vector[i]; // initialize to latency vector
topology_bw_multis[m_links_src_vector[i]][m_links_dest_vector[i]] = m_bw_multiplier_vector[i];
}
// Walk topology and hookup the links
Matrix dist = shortest_path(topology_weights, m_component_latencies, m_component_inter_switches);
for(int i=0; i<topology_weights.size(); i++) {
for(int j=0; j<topology_weights[i].size(); j++) {
int weight = topology_weights[i][j];
int bw_multiplier = topology_bw_multis[i][j];
int latency = topology_latency[i][j];
if (weight > 0 && weight != INFINITE_LATENCY) {
NetDest destination_set = shortest_path_to_node(i, j, topology_weights, dist);
assert(latency != -1);
makeLink(i, j, destination_set, latency, weight, bw_multiplier, isReconfiguration);
}
}
}
}
SwitchID Topology::newSwitchID()
{
m_number_of_switches++;
return m_number_of_switches-1+m_nodes+m_nodes;
}
void Topology::addLink(SwitchID src, SwitchID dest, int link_latency)
{
addLink(src, dest, link_latency, DEFAULT_BW_MULTIPLIER, link_latency);
}
void Topology::addLink(SwitchID src, SwitchID dest, int link_latency, int bw_multiplier)
{
addLink(src, dest, link_latency, bw_multiplier, link_latency);
}
void Topology::addLink(SwitchID src, SwitchID dest, int link_latency, int bw_multiplier, int link_weight)
{
ASSERT(src <= m_number_of_switches+m_nodes+m_nodes);
ASSERT(dest <= m_number_of_switches+m_nodes+m_nodes);
m_links_src_vector.insertAtBottom(src);
m_links_dest_vector.insertAtBottom(dest);
m_links_latency_vector.insertAtBottom(link_latency);
m_links_weight_vector.insertAtBottom(link_weight);
m_bw_multiplier_vector.insertAtBottom(bw_multiplier);
}
void Topology::makeLink(SwitchID src, SwitchID dest, const NetDest& routing_table_entry, int link_latency, int link_weight, int bw_multiplier, bool isReconfiguration)
{
// Make sure we're not trying to connect two end-point nodes directly together
assert((src >= 2*m_nodes) || (dest >= 2*m_nodes));
if (src < m_nodes) {
m_network_ptr->makeInLink(src, dest-(2*m_nodes), routing_table_entry, link_latency, bw_multiplier, isReconfiguration);
} else if (dest < 2*m_nodes) {
assert(dest >= m_nodes);
NodeID node = dest-m_nodes;
m_network_ptr->makeOutLink(src-(2*m_nodes), node, routing_table_entry, link_latency, link_weight, bw_multiplier, isReconfiguration);
} else {
assert((src >= 2*m_nodes) && (dest >= 2*m_nodes));
m_network_ptr->makeInternalLink(src-(2*m_nodes), dest-(2*m_nodes), routing_table_entry, link_latency, link_weight, bw_multiplier, isReconfiguration);
}
}
void Topology::printConfig(ostream& out) const
{
if (m_print_config == false) return;
assert(m_component_latencies.size() > 0);
out << "--- Begin Topology Print ---" << endl;
out << endl;
out << "Topology print ONLY indicates the _NETWORK_ latency between two machines" << endl;
out << "It does NOT include the latency within the machines" << endl;
out << endl;
for (int m=0; m<MachineType_NUM; m++) {
for (int i=0; i<MachineType_base_count((MachineType)m); i++) {
MachineID cur_mach = {(MachineType)m, i};
out << cur_mach << " Network Latencies" << endl;
for (int n=0; n<MachineType_NUM; n++) {
for (int j=0; j<MachineType_base_count((MachineType)n); j++) {
MachineID dest_mach = {(MachineType)n, j};
if (cur_mach != dest_mach) {
int link_latency = m_component_latencies[MachineType_base_number((MachineType)m)+i][MachineType_base_number(MachineType_NUM)+MachineType_base_number((MachineType)n)+j];
int intermediate_switches = m_component_inter_switches[MachineType_base_number((MachineType)m)+i][MachineType_base_number(MachineType_NUM)+MachineType_base_number((MachineType)n)+j];
out << " " << cur_mach << " -> " << dest_mach << " net_lat: "
<< link_latency+intermediate_switches << endl; // NOTE switches are assumed to have single cycle latency
}
}
}
out << endl;
}
}
out << "--- End Topology Print ---" << endl;
}
/**************************************************************************/
// The following all-pairs shortest path algorithm is based on the
// discussion from Cormen et al., Chapter 26.1.
static void extend_shortest_path(Matrix& current_dist, Matrix& latencies, Matrix& inter_switches)
{
bool change = true;
int nodes = current_dist.size();
while (change) {
change = false;
for (int i=0; i<nodes; i++) {
for (int j=0; j<nodes; j++) {
int minimum = current_dist[i][j];
int previous_minimum = minimum;
int intermediate_switch = -1;
for (int k=0; k<nodes; k++) {
minimum = min(minimum, current_dist[i][k] + current_dist[k][j]);
if (previous_minimum != minimum) {
intermediate_switch = k;
inter_switches[i][j] = inter_switches[i][k] + inter_switches[k][j] + 1;
}
previous_minimum = minimum;
}
if (current_dist[i][j] != minimum) {
change = true;
current_dist[i][j] = minimum;
assert(intermediate_switch >= 0);
assert(intermediate_switch < latencies[i].size());
latencies[i][j] = latencies[i][intermediate_switch] + latencies[intermediate_switch][j];
}
}
}
}
}
static Matrix shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches)
{
Matrix dist = weights;
extend_shortest_path(dist, latencies, inter_switches);
return dist;
}
static bool link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final,
const Matrix& weights, const Matrix& dist)
{
return (weights[src][next] + dist[next][final] == dist[src][final]);
}
static NetDest shortest_path_to_node(SwitchID src, SwitchID next,
const Matrix& weights, const Matrix& dist)
{
NetDest result;
int d = 0;
int machines;
int max_machines;
machines = MachineType_NUM;
max_machines = MachineType_base_number(MachineType_NUM);
for (int m=0; m<machines; m++) {
for (int i=0; i<MachineType_base_count((MachineType)m); i++) {
// we use "d+max_machines" below since the "destination" switches for the machines are numbered
// [MachineType_base_number(MachineType_NUM)...2*MachineType_base_number(MachineType_NUM)-1]
// for the component network
if (link_is_shortest_path_to_node(src, next,
d+max_machines,
weights, dist)) {
MachineID mach = {(MachineType)m, i};
result.add(mach);
}
d++;
}
}
DEBUG_MSG(NETWORK_COMP, MedPrio, "returning shortest path");
DEBUG_EXPR(NETWORK_COMP, MedPrio, (src-(2*max_machines)));
DEBUG_EXPR(NETWORK_COMP, MedPrio, (next-(2*max_machines)));
DEBUG_EXPR(NETWORK_COMP, MedPrio, src);
DEBUG_EXPR(NETWORK_COMP, MedPrio, next);
DEBUG_EXPR(NETWORK_COMP, MedPrio, result);
DEBUG_NEWLINE(NETWORK_COMP, MedPrio);
return result;
}