blob: fc5416cbfb2a7355a0f94f76e97bd01b88e04b24 [file] [log] [blame]
# Copyright (c) 2012 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2004-2006 The Regents of The University of Michigan
# Copyright (c) 2010-20013 Advanced Micro Devices, Inc.
# Copyright (c) 2013 Mark D. Hill and David A. Wood
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Steve Reinhardt
# Nathan Binkert
# Andreas Hansson
import sys
from types import FunctionType, MethodType, ModuleType
import m5
from m5.util import *
# Have to import params up top since Param is referenced on initial
# load (when SimObject class references Param to create a class
# variable, the 'name' param)...
from m5.params import *
# There are a few things we need that aren't in params.__all__ since
# normal users don't need them
from m5.params import ParamDesc, VectorParamDesc, \
isNullPointer, SimObjectVector, Port
from m5.proxy import *
from m5.proxy import isproxy
#####################################################################
#
# M5 Python Configuration Utility
#
# The basic idea is to write simple Python programs that build Python
# objects corresponding to M5 SimObjects for the desired simulation
# configuration. For now, the Python emits a .ini file that can be
# parsed by M5. In the future, some tighter integration between M5
# and the Python interpreter may allow bypassing the .ini file.
#
# Each SimObject class in M5 is represented by a Python class with the
# same name. The Python inheritance tree mirrors the M5 C++ tree
# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
# SimObjects inherit from a single SimObject base class). To specify
# an instance of an M5 SimObject in a configuration, the user simply
# instantiates the corresponding Python object. The parameters for
# that SimObject are given by assigning to attributes of the Python
# object, either using keyword assignment in the constructor or in
# separate assignment statements. For example:
#
# cache = BaseCache(size='64KB')
# cache.hit_latency = 3
# cache.assoc = 8
#
# The magic lies in the mapping of the Python attributes for SimObject
# classes to the actual SimObject parameter specifications. This
# allows parameter validity checking in the Python code. Continuing
# the example above, the statements "cache.blurfl=3" or
# "cache.assoc='hello'" would both result in runtime errors in Python,
# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
# parameter requires an integer, respectively. This magic is done
# primarily by overriding the special __setattr__ method that controls
# assignment to object attributes.
#
# Once a set of Python objects have been instantiated in a hierarchy,
# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
# will generate a .ini file.
#
#####################################################################
# list of all SimObject classes
allClasses = {}
# dict to look up SimObjects based on path
instanceDict = {}
# Did any of the SimObjects lack a header file?
noCxxHeader = False
def public_value(key, value):
return key.startswith('_') or \
isinstance(value, (FunctionType, MethodType, ModuleType,
classmethod, type))
# The metaclass for SimObject. This class controls how new classes
# that derive from SimObject are instantiated, and provides inherited
# class behavior (just like a class controls how instances of that
# class are instantiated, and provides inherited instance behavior).
class MetaSimObject(type):
# Attributes that can be set only at initialization time
init_keywords = { 'abstract' : bool,
'cxx_class' : str,
'cxx_type' : str,
'cxx_header' : str,
'type' : str,
'cxx_bases' : list }
# Attributes that can be set any time
keywords = { 'check' : FunctionType }
# __new__ is called before __init__, and is where the statements
# in the body of the class definition get loaded into the class's
# __dict__. We intercept this to filter out parameter & port assignments
# and only allow "private" attributes to be passed to the base
# __new__ (starting with underscore).
def __new__(mcls, name, bases, dict):
assert name not in allClasses, "SimObject %s already present" % name
# Copy "private" attributes, functions, and classes to the
# official dict. Everything else goes in _init_dict to be
# filtered in __init__.
cls_dict = {}
value_dict = {}
for key,val in dict.items():
if public_value(key, val):
cls_dict[key] = val
else:
# must be a param/port setting
value_dict[key] = val
if 'abstract' not in value_dict:
value_dict['abstract'] = False
if 'cxx_bases' not in value_dict:
value_dict['cxx_bases'] = []
cls_dict['_value_dict'] = value_dict
cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
if 'type' in value_dict:
allClasses[name] = cls
return cls
# subclass initialization
def __init__(cls, name, bases, dict):
# calls type.__init__()... I think that's a no-op, but leave
# it here just in case it's not.
super(MetaSimObject, cls).__init__(name, bases, dict)
# initialize required attributes
# class-only attributes
cls._params = multidict() # param descriptions
cls._ports = multidict() # port descriptions
# class or instance attributes
cls._values = multidict() # param values
cls._children = multidict() # SimObject children
cls._port_refs = multidict() # port ref objects
cls._instantiated = False # really instantiated, cloned, or subclassed
# We don't support multiple inheritance of sim objects. If you want
# to, you must fix multidict to deal with it properly. Non sim-objects
# are ok, though
bTotal = 0
for c in bases:
if isinstance(c, MetaSimObject):
bTotal += 1
if bTotal > 1:
raise TypeError, "SimObjects do not support multiple inheritance"
base = bases[0]
# Set up general inheritance via multidicts. A subclass will
# inherit all its settings from the base class. The only time
# the following is not true is when we define the SimObject
# class itself (in which case the multidicts have no parent).
if isinstance(base, MetaSimObject):
cls._base = base
cls._params.parent = base._params
cls._ports.parent = base._ports
cls._values.parent = base._values
cls._children.parent = base._children
cls._port_refs.parent = base._port_refs
# mark base as having been subclassed
base._instantiated = True
else:
cls._base = None
# default keyword values
if 'type' in cls._value_dict:
if 'cxx_class' not in cls._value_dict:
cls._value_dict['cxx_class'] = cls._value_dict['type']
cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
if 'cxx_header' not in cls._value_dict:
global noCxxHeader
noCxxHeader = True
warn("No header file specified for SimObject: %s", name)
# Export methods are automatically inherited via C++, so we
# don't want the method declarations to get inherited on the
# python side (and thus end up getting repeated in the wrapped
# versions of derived classes). The code below basicallly
# suppresses inheritance by substituting in the base (null)
# versions of these methods unless a different version is
# explicitly supplied.
for method_name in ('export_methods', 'export_method_cxx_predecls',
'export_method_swig_predecls'):
if method_name not in cls.__dict__:
base_method = getattr(MetaSimObject, method_name)
m = MethodType(base_method, cls, MetaSimObject)
setattr(cls, method_name, m)
# Now process the _value_dict items. They could be defining
# new (or overriding existing) parameters or ports, setting
# class keywords (e.g., 'abstract'), or setting parameter
# values or port bindings. The first 3 can only be set when
# the class is defined, so we handle them here. The others
# can be set later too, so just emulate that by calling
# setattr().
for key,val in cls._value_dict.items():
# param descriptions
if isinstance(val, ParamDesc):
cls._new_param(key, val)
# port objects
elif isinstance(val, Port):
cls._new_port(key, val)
# init-time-only keywords
elif cls.init_keywords.has_key(key):
cls._set_keyword(key, val, cls.init_keywords[key])
# default: use normal path (ends up in __setattr__)
else:
setattr(cls, key, val)
def _set_keyword(cls, keyword, val, kwtype):
if not isinstance(val, kwtype):
raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
(keyword, type(val), kwtype)
if isinstance(val, FunctionType):
val = classmethod(val)
type.__setattr__(cls, keyword, val)
def _new_param(cls, name, pdesc):
# each param desc should be uniquely assigned to one variable
assert(not hasattr(pdesc, 'name'))
pdesc.name = name
cls._params[name] = pdesc
if hasattr(pdesc, 'default'):
cls._set_param(name, pdesc.default, pdesc)
def _set_param(cls, name, value, param):
assert(param.name == name)
try:
value = param.convert(value)
except Exception, e:
msg = "%s\nError setting param %s.%s to %s\n" % \
(e, cls.__name__, name, value)
e.args = (msg, )
raise
cls._values[name] = value
# if param value is a SimObject, make it a child too, so that
# it gets cloned properly when the class is instantiated
if isSimObjectOrVector(value) and not value.has_parent():
cls._add_cls_child(name, value)
def _add_cls_child(cls, name, child):
# It's a little funky to have a class as a parent, but these
# objects should never be instantiated (only cloned, which
# clears the parent pointer), and this makes it clear that the
# object is not an orphan and can provide better error
# messages.
child.set_parent(cls, name)
cls._children[name] = child
def _new_port(cls, name, port):
# each port should be uniquely assigned to one variable
assert(not hasattr(port, 'name'))
port.name = name
cls._ports[name] = port
# same as _get_port_ref, effectively, but for classes
def _cls_get_port_ref(cls, attr):
# Return reference that can be assigned to another port
# via __setattr__. There is only ever one reference
# object per port, but we create them lazily here.
ref = cls._port_refs.get(attr)
if not ref:
ref = cls._ports[attr].makeRef(cls)
cls._port_refs[attr] = ref
return ref
# Set attribute (called on foo.attr = value when foo is an
# instance of class cls).
def __setattr__(cls, attr, value):
# normal processing for private attributes
if public_value(attr, value):
type.__setattr__(cls, attr, value)
return
if cls.keywords.has_key(attr):
cls._set_keyword(attr, value, cls.keywords[attr])
return
if cls._ports.has_key(attr):
cls._cls_get_port_ref(attr).connect(value)
return
if isSimObjectOrSequence(value) and cls._instantiated:
raise RuntimeError, \
"cannot set SimObject parameter '%s' after\n" \
" class %s has been instantiated or subclassed" \
% (attr, cls.__name__)
# check for param
param = cls._params.get(attr)
if param:
cls._set_param(attr, value, param)
return
if isSimObjectOrSequence(value):
# If RHS is a SimObject, it's an implicit child assignment.
cls._add_cls_child(attr, coerceSimObjectOrVector(value))
return
# no valid assignment... raise exception
raise AttributeError, \
"Class %s has no parameter \'%s\'" % (cls.__name__, attr)
def __getattr__(cls, attr):
if attr == 'cxx_class_path':
return cls.cxx_class.split('::')
if attr == 'cxx_class_name':
return cls.cxx_class_path[-1]
if attr == 'cxx_namespaces':
return cls.cxx_class_path[:-1]
if cls._values.has_key(attr):
return cls._values[attr]
if cls._children.has_key(attr):
return cls._children[attr]
raise AttributeError, \
"object '%s' has no attribute '%s'" % (cls.__name__, attr)
def __str__(cls):
return cls.__name__
# See ParamValue.cxx_predecls for description.
def cxx_predecls(cls, code):
code('#include "params/$cls.hh"')
# See ParamValue.swig_predecls for description.
def swig_predecls(cls, code):
code('%import "python/m5/internal/param_$cls.i"')
# Hook for exporting additional C++ methods to Python via SWIG.
# Default is none, override using @classmethod in class definition.
def export_methods(cls, code):
pass
# Generate the code needed as a prerequisite for the C++ methods
# exported via export_methods() to be compiled in the _wrap.cc
# file. Typically generates one or more #include statements. If
# any methods are exported, typically at least the C++ header
# declaring the relevant SimObject class must be included.
def export_method_cxx_predecls(cls, code):
pass
# Generate the code needed as a prerequisite for the C++ methods
# exported via export_methods() to be processed by SWIG.
# Typically generates one or more %include or %import statements.
# If any methods are exported, typically at least the C++ header
# declaring the relevant SimObject class must be included.
def export_method_swig_predecls(cls, code):
pass
# Generate the declaration for this object for wrapping with SWIG.
# Generates code that goes into a SWIG .i file. Called from
# src/SConscript.
def swig_decl(cls, code):
class_path = cls.cxx_class.split('::')
classname = class_path[-1]
namespaces = class_path[:-1]
# The 'local' attribute restricts us to the params declared in
# the object itself, not including inherited params (which
# will also be inherited from the base class's param struct
# here).
params = cls._params.local.values()
ports = cls._ports.local
code('%module(package="m5.internal") param_$cls')
code()
code('%{')
code('#include "sim/sim_object.hh"')
code('#include "params/$cls.hh"')
for param in params:
param.cxx_predecls(code)
code('#include "${{cls.cxx_header}}"')
cls.export_method_cxx_predecls(code)
code('''\
/**
* This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
* headers like vector, string, etc. used to automatically pull in
* the cstddef header but starting with gcc 4.6.1 they no longer do.
* This leads to swig generated a file that does not compile so we
* explicitly include cstddef. Additionally, including version 2.0.4,
* swig uses ptrdiff_t without the std:: namespace prefix which is
* required with gcc 4.6.1. We explicitly provide access to it.
*/
#include <cstddef>
using std::ptrdiff_t;
''')
code('%}')
code()
for param in params:
param.swig_predecls(code)
cls.export_method_swig_predecls(code)
code()
if cls._base:
code('%import "python/m5/internal/param_${{cls._base}}.i"')
code()
for ns in namespaces:
code('namespace $ns {')
if namespaces:
code('// avoid name conflicts')
sep_string = '_COLONS_'
flat_name = sep_string.join(class_path)
code('%rename($flat_name) $classname;')
code()
code('// stop swig from creating/wrapping default ctor/dtor')
code('%nodefault $classname;')
code('class $classname')
if cls._base:
bases = [ cls._base.cxx_class ] + cls.cxx_bases
else:
bases = cls.cxx_bases
base_first = True
for base in bases:
if base_first:
code(' : public ${{base}}')
base_first = False
else:
code(' , public ${{base}}')
code('{')
code(' public:')
cls.export_methods(code)
code('};')
for ns in reversed(namespaces):
code('} // namespace $ns')
code()
code('%include "params/$cls.hh"')
# Generate the C++ declaration (.hh file) for this SimObject's
# param struct. Called from src/SConscript.
def cxx_param_decl(cls, code):
# The 'local' attribute restricts us to the params declared in
# the object itself, not including inherited params (which
# will also be inherited from the base class's param struct
# here).
params = cls._params.local.values()
ports = cls._ports.local
try:
ptypes = [p.ptype for p in params]
except:
print cls, p, p.ptype_str
print params
raise
class_path = cls._value_dict['cxx_class'].split('::')
code('''\
#ifndef __PARAMS__${cls}__
#define __PARAMS__${cls}__
''')
# A forward class declaration is sufficient since we are just
# declaring a pointer.
for ns in class_path[:-1]:
code('namespace $ns {')
code('class $0;', class_path[-1])
for ns in reversed(class_path[:-1]):
code('} // namespace $ns')
code()
# The base SimObject has a couple of params that get
# automatically set from Python without being declared through
# the normal Param mechanism; we slip them in here (needed
# predecls now, actual declarations below)
if cls == SimObject:
code('''
#ifndef PY_VERSION
struct PyObject;
#endif
#include <string>
''')
for param in params:
param.cxx_predecls(code)
for port in ports.itervalues():
port.cxx_predecls(code)
code()
if cls._base:
code('#include "params/${{cls._base.type}}.hh"')
code()
for ptype in ptypes:
if issubclass(ptype, Enum):
code('#include "enums/${{ptype.__name__}}.hh"')
code()
# now generate the actual param struct
code("struct ${cls}Params")
if cls._base:
code(" : public ${{cls._base.type}}Params")
code("{")
if not hasattr(cls, 'abstract') or not cls.abstract:
if 'type' in cls.__dict__:
code(" ${{cls.cxx_type}} create();")
code.indent()
if cls == SimObject:
code('''
SimObjectParams() {}
virtual ~SimObjectParams() {}
std::string name;
PyObject *pyobj;
''')
for param in params:
param.cxx_decl(code)
for port in ports.itervalues():
port.cxx_decl(code)
code.dedent()
code('};')
code()
code('#endif // __PARAMS__${cls}__')
return code
# This *temporary* definition is required to support calls from the
# SimObject class definition to the MetaSimObject methods (in
# particular _set_param, which gets called for parameters with default
# values defined on the SimObject class itself). It will get
# overridden by the permanent definition (which requires that
# SimObject be defined) lower in this file.
def isSimObjectOrVector(value):
return False
# The SimObject class is the root of the special hierarchy. Most of
# the code in this class deals with the configuration hierarchy itself
# (parent/child node relationships).
class SimObject(object):
# Specify metaclass. Any class inheriting from SimObject will
# get this metaclass.
__metaclass__ = MetaSimObject
type = 'SimObject'
abstract = True
cxx_header = "sim/sim_object.hh"
cxx_bases = [ "Drainable", "Serializable" ]
eventq_index = Param.UInt32(Parent.eventq_index, "Event Queue Index")
@classmethod
def export_method_swig_predecls(cls, code):
code('''
%include <std_string.i>
%import "python/swig/drain.i"
%import "python/swig/serialize.i"
''')
@classmethod
def export_methods(cls, code):
code('''
void init();
void loadState(Checkpoint *cp);
void initState();
void regStats();
void resetStats();
void startup();
''')
# Initialize new instance. For objects with SimObject-valued
# children, we need to recursively clone the classes represented
# by those param values as well in a consistent "deep copy"-style
# fashion. That is, we want to make sure that each instance is
# cloned only once, and that if there are multiple references to
# the same original object, we end up with the corresponding
# cloned references all pointing to the same cloned instance.
def __init__(self, **kwargs):
ancestor = kwargs.get('_ancestor')
memo_dict = kwargs.get('_memo')
if memo_dict is None:
# prepare to memoize any recursively instantiated objects
memo_dict = {}
elif ancestor:
# memoize me now to avoid problems with recursive calls
memo_dict[ancestor] = self
if not ancestor:
ancestor = self.__class__
ancestor._instantiated = True
# initialize required attributes
self._parent = None
self._name = None
self._ccObject = None # pointer to C++ object
self._ccParams = None
self._instantiated = False # really "cloned"
# Clone children specified at class level. No need for a
# multidict here since we will be cloning everything.
# Do children before parameter values so that children that
# are also param values get cloned properly.
self._children = {}
for key,val in ancestor._children.iteritems():
self.add_child(key, val(_memo=memo_dict))
# Inherit parameter values from class using multidict so
# individual value settings can be overridden but we still
# inherit late changes to non-overridden class values.
self._values = multidict(ancestor._values)
# clone SimObject-valued parameters
for key,val in ancestor._values.iteritems():
val = tryAsSimObjectOrVector(val)
if val is not None:
self._values[key] = val(_memo=memo_dict)
# clone port references. no need to use a multidict here
# since we will be creating new references for all ports.
self._port_refs = {}
for key,val in ancestor._port_refs.iteritems():
self._port_refs[key] = val.clone(self, memo_dict)
# apply attribute assignments from keyword args, if any
for key,val in kwargs.iteritems():
setattr(self, key, val)
# "Clone" the current instance by creating another instance of
# this instance's class, but that inherits its parameter values
# and port mappings from the current instance. If we're in a
# "deep copy" recursive clone, check the _memo dict to see if
# we've already cloned this instance.
def __call__(self, **kwargs):
memo_dict = kwargs.get('_memo')
if memo_dict is None:
# no memo_dict: must be top-level clone operation.
# this is only allowed at the root of a hierarchy
if self._parent:
raise RuntimeError, "attempt to clone object %s " \
"not at the root of a tree (parent = %s)" \
% (self, self._parent)
# create a new dict and use that.
memo_dict = {}
kwargs['_memo'] = memo_dict
elif memo_dict.has_key(self):
# clone already done & memoized
return memo_dict[self]
return self.__class__(_ancestor = self, **kwargs)
def _get_port_ref(self, attr):
# Return reference that can be assigned to another port
# via __setattr__. There is only ever one reference
# object per port, but we create them lazily here.
ref = self._port_refs.get(attr)
if ref == None:
ref = self._ports[attr].makeRef(self)
self._port_refs[attr] = ref
return ref
def __getattr__(self, attr):
if self._ports.has_key(attr):
return self._get_port_ref(attr)
if self._values.has_key(attr):
return self._values[attr]
if self._children.has_key(attr):
return self._children[attr]
# If the attribute exists on the C++ object, transparently
# forward the reference there. This is typically used for
# SWIG-wrapped methods such as init(), regStats(),
# resetStats(), startup(), drain(), and
# resume().
if self._ccObject and hasattr(self._ccObject, attr):
return getattr(self._ccObject, attr)
err_string = "object '%s' has no attribute '%s'" \
% (self.__class__.__name__, attr)
if not self._ccObject:
err_string += "\n (C++ object is not yet constructed," \
" so wrapped C++ methods are unavailable.)"
raise AttributeError, err_string
# Set attribute (called on foo.attr = value when foo is an
# instance of class cls).
def __setattr__(self, attr, value):
# normal processing for private attributes
if attr.startswith('_'):
object.__setattr__(self, attr, value)
return
if self._ports.has_key(attr):
# set up port connection
self._get_port_ref(attr).connect(value)
return
param = self._params.get(attr)
if param:
try:
value = param.convert(value)
except Exception, e:
msg = "%s\nError setting param %s.%s to %s\n" % \
(e, self.__class__.__name__, attr, value)
e.args = (msg, )
raise
self._values[attr] = value
# implicitly parent unparented objects assigned as params
if isSimObjectOrVector(value) and not value.has_parent():
self.add_child(attr, value)
return
# if RHS is a SimObject, it's an implicit child assignment
if isSimObjectOrSequence(value):
self.add_child(attr, value)
return
# no valid assignment... raise exception
raise AttributeError, "Class %s has no parameter %s" \
% (self.__class__.__name__, attr)
# this hack allows tacking a '[0]' onto parameters that may or may
# not be vectors, and always getting the first element (e.g. cpus)
def __getitem__(self, key):
if key == 0:
return self
raise TypeError, "Non-zero index '%s' to SimObject" % key
# Also implemented by SimObjectVector
def clear_parent(self, old_parent):
assert self._parent is old_parent
self._parent = None
# Also implemented by SimObjectVector
def set_parent(self, parent, name):
self._parent = parent
self._name = name
# Return parent object of this SimObject, not implemented by SimObjectVector
# because the elements in a SimObjectVector may not share the same parent
def get_parent(self):
return self._parent
# Also implemented by SimObjectVector
def get_name(self):
return self._name
# Also implemented by SimObjectVector
def has_parent(self):
return self._parent is not None
# clear out child with given name. This code is not likely to be exercised.
# See comment in add_child.
def clear_child(self, name):
child = self._children[name]
child.clear_parent(self)
del self._children[name]
# Add a new child to this object.
def add_child(self, name, child):
child = coerceSimObjectOrVector(child)
if child.has_parent():
warn("add_child('%s'): child '%s' already has parent", name,
child.get_name())
if self._children.has_key(name):
# This code path had an undiscovered bug that would make it fail
# at runtime. It had been here for a long time and was only
# exposed by a buggy script. Changes here will probably not be
# exercised without specialized testing.
self.clear_child(name)
child.set_parent(self, name)
self._children[name] = child
# Take SimObject-valued parameters that haven't been explicitly
# assigned as children and make them children of the object that
# they were assigned to as a parameter value. This guarantees
# that when we instantiate all the parameter objects we're still
# inside the configuration hierarchy.
def adoptOrphanParams(self):
for key,val in self._values.iteritems():
if not isSimObjectVector(val) and isSimObjectSequence(val):
# need to convert raw SimObject sequences to
# SimObjectVector class so we can call has_parent()
val = SimObjectVector(val)
self._values[key] = val
if isSimObjectOrVector(val) and not val.has_parent():
warn("%s adopting orphan SimObject param '%s'", self, key)
self.add_child(key, val)
def path(self):
if not self._parent:
return '<orphan %s>' % self.__class__
ppath = self._parent.path()
if ppath == 'root':
return self._name
return ppath + "." + self._name
def __str__(self):
return self.path()
def ini_str(self):
return self.path()
def find_any(self, ptype):
if isinstance(self, ptype):
return self, True
found_obj = None
for child in self._children.itervalues():
if isinstance(child, ptype):
if found_obj != None and child != found_obj:
raise AttributeError, \
'parent.any matched more than one: %s %s' % \
(found_obj.path, child.path)
found_obj = child
# search param space
for pname,pdesc in self._params.iteritems():
if issubclass(pdesc.ptype, ptype):
match_obj = self._values[pname]
if found_obj != None and found_obj != match_obj:
raise AttributeError, \
'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
found_obj = match_obj
return found_obj, found_obj != None
def find_all(self, ptype):
all = {}
# search children
for child in self._children.itervalues():
# a child could be a list, so ensure we visit each item
if isinstance(child, list):
children = child
else:
children = [child]
for child in children:
if isinstance(child, ptype) and not isproxy(child) and \
not isNullPointer(child):
all[child] = True
if isSimObject(child):
# also add results from the child itself
child_all, done = child.find_all(ptype)
all.update(dict(zip(child_all, [done] * len(child_all))))
# search param space
for pname,pdesc in self._params.iteritems():
if issubclass(pdesc.ptype, ptype):
match_obj = self._values[pname]
if not isproxy(match_obj) and not isNullPointer(match_obj):
all[match_obj] = True
return all.keys(), True
def unproxy(self, base):
return self
def unproxyParams(self):
for param in self._params.iterkeys():
value = self._values.get(param)
if value != None and isproxy(value):
try:
value = value.unproxy(self)
except:
print "Error in unproxying param '%s' of %s" % \
(param, self.path())
raise
setattr(self, param, value)
# Unproxy ports in sorted order so that 'append' operations on
# vector ports are done in a deterministic fashion.
port_names = self._ports.keys()
port_names.sort()
for port_name in port_names:
port = self._port_refs.get(port_name)
if port != None:
port.unproxy(self)
def print_ini(self, ini_file):
print >>ini_file, '[' + self.path() + ']' # .ini section header
instanceDict[self.path()] = self
if hasattr(self, 'type'):
print >>ini_file, 'type=%s' % self.type
if len(self._children.keys()):
print >>ini_file, 'children=%s' % \
' '.join(self._children[n].get_name() \
for n in sorted(self._children.keys()))
for param in sorted(self._params.keys()):
value = self._values.get(param)
if value != None:
print >>ini_file, '%s=%s' % (param,
self._values[param].ini_str())
for port_name in sorted(self._ports.keys()):
port = self._port_refs.get(port_name, None)
if port != None:
print >>ini_file, '%s=%s' % (port_name, port.ini_str())
print >>ini_file # blank line between objects
# generate a tree of dictionaries expressing all the parameters in the
# instantiated system for use by scripts that want to do power, thermal
# visualization, and other similar tasks
def get_config_as_dict(self):
d = attrdict()
if hasattr(self, 'type'):
d.type = self.type
if hasattr(self, 'cxx_class'):
d.cxx_class = self.cxx_class
# Add the name and path of this object to be able to link to
# the stats
d.name = self.get_name()
d.path = self.path()
for param in sorted(self._params.keys()):
value = self._values.get(param)
if value != None:
try:
# Use native type for those supported by JSON and
# strings for everything else. skipkeys=True seems
# to not work as well as one would hope
if type(self._values[param].value) in \
[str, unicode, int, long, float, bool, None]:
d[param] = self._values[param].value
else:
d[param] = str(self._values[param])
except AttributeError:
pass
for n in sorted(self._children.keys()):
child = self._children[n]
# Use the name of the attribute (and not get_name()) as
# the key in the JSON dictionary to capture the hierarchy
# in the Python code that assembled this system
d[n] = child.get_config_as_dict()
for port_name in sorted(self._ports.keys()):
port = self._port_refs.get(port_name, None)
if port != None:
# Represent each port with a dictionary containing the
# prominent attributes
d[port_name] = port.get_config_as_dict()
return d
def getCCParams(self):
if self._ccParams:
return self._ccParams
cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
cc_params = cc_params_struct()
cc_params.pyobj = self
cc_params.name = str(self)
param_names = self._params.keys()
param_names.sort()
for param in param_names:
value = self._values.get(param)
if value is None:
fatal("%s.%s without default or user set value",
self.path(), param)
value = value.getValue()
if isinstance(self._params[param], VectorParamDesc):
assert isinstance(value, list)
vec = getattr(cc_params, param)
assert not len(vec)
for v in value:
vec.append(v)
else:
setattr(cc_params, param, value)
port_names = self._ports.keys()
port_names.sort()
for port_name in port_names:
port = self._port_refs.get(port_name, None)
if port != None:
port_count = len(port)
else:
port_count = 0
setattr(cc_params, 'port_' + port_name + '_connection_count',
port_count)
self._ccParams = cc_params
return self._ccParams
# Get C++ object corresponding to this object, calling C++ if
# necessary to construct it. Does *not* recursively create
# children.
def getCCObject(self):
if not self._ccObject:
# Make sure this object is in the configuration hierarchy
if not self._parent and not isRoot(self):
raise RuntimeError, "Attempt to instantiate orphan node"
# Cycles in the configuration hierarchy are not supported. This
# will catch the resulting recursion and stop.
self._ccObject = -1
params = self.getCCParams()
self._ccObject = params.create()
elif self._ccObject == -1:
raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
% self.path()
return self._ccObject
def descendants(self):
yield self
for child in self._children.itervalues():
for obj in child.descendants():
yield obj
# Call C++ to create C++ object corresponding to this object
def createCCObject(self):
self.getCCParams()
self.getCCObject() # force creation
def getValue(self):
return self.getCCObject()
# Create C++ port connections corresponding to the connections in
# _port_refs
def connectPorts(self):
for portRef in self._port_refs.itervalues():
portRef.ccConnect()
# Function to provide to C++ so it can look up instances based on paths
def resolveSimObject(name):
obj = instanceDict[name]
return obj.getCCObject()
def isSimObject(value):
return isinstance(value, SimObject)
def isSimObjectClass(value):
return issubclass(value, SimObject)
def isSimObjectVector(value):
return isinstance(value, SimObjectVector)
def isSimObjectSequence(value):
if not isinstance(value, (list, tuple)) or len(value) == 0:
return False
for val in value:
if not isNullPointer(val) and not isSimObject(val):
return False
return True
def isSimObjectOrSequence(value):
return isSimObject(value) or isSimObjectSequence(value)
def isRoot(obj):
from m5.objects import Root
return obj and obj is Root.getInstance()
def isSimObjectOrVector(value):
return isSimObject(value) or isSimObjectVector(value)
def tryAsSimObjectOrVector(value):
if isSimObjectOrVector(value):
return value
if isSimObjectSequence(value):
return SimObjectVector(value)
return None
def coerceSimObjectOrVector(value):
value = tryAsSimObjectOrVector(value)
if value is None:
raise TypeError, "SimObject or SimObjectVector expected"
return value
baseClasses = allClasses.copy()
baseInstances = instanceDict.copy()
def clear():
global allClasses, instanceDict, noCxxHeader
allClasses = baseClasses.copy()
instanceDict = baseInstances.copy()
noCxxHeader = False
# __all__ defines the list of symbols that get exported when
# 'from config import *' is invoked. Try to keep this reasonably
# short to avoid polluting other namespaces.
__all__ = [ 'SimObject' ]