blob: 8bc34e12e70f37c2d5e7c6c428ead47bc4d3d3e0 [file] [log] [blame]
/*
* Copyright (c) 2011-2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
* Steve Reinhardt
* Andreas Hansson
*/
/**
* @file
* Implementation of a memory-mapped bus bridge that connects a master
* and a slave through a request and response queue.
*/
#include "base/trace.hh"
#include "debug/Bridge.hh"
#include "mem/bridge.hh"
#include "params/Bridge.hh"
Bridge::BridgeSlavePort::BridgeSlavePort(const std::string& _name,
Bridge& _bridge,
BridgeMasterPort& _masterPort,
Cycles _delay, int _resp_limit,
std::vector<AddrRange> _ranges)
: SlavePort(_name, &_bridge), bridge(_bridge), masterPort(_masterPort),
delay(_delay), ranges(_ranges.begin(), _ranges.end()),
outstandingResponses(0), retryReq(false),
respQueueLimit(_resp_limit), sendEvent(*this)
{
}
Bridge::BridgeMasterPort::BridgeMasterPort(const std::string& _name,
Bridge& _bridge,
BridgeSlavePort& _slavePort,
Cycles _delay, int _req_limit)
: MasterPort(_name, &_bridge), bridge(_bridge), slavePort(_slavePort),
delay(_delay), reqQueueLimit(_req_limit), sendEvent(*this)
{
}
Bridge::Bridge(Params *p)
: MemObject(p),
slavePort(p->name + ".slave", *this, masterPort,
ticksToCycles(p->delay), p->resp_size, p->ranges),
masterPort(p->name + ".master", *this, slavePort,
ticksToCycles(p->delay), p->req_size)
{
}
MasterPort&
Bridge::getMasterPort(const std::string &if_name, int idx)
{
if (if_name == "master")
return masterPort;
else
// pass it along to our super class
return MemObject::getMasterPort(if_name, idx);
}
SlavePort&
Bridge::getSlavePort(const std::string &if_name, int idx)
{
if (if_name == "slave")
return slavePort;
else
// pass it along to our super class
return MemObject::getSlavePort(if_name, idx);
}
void
Bridge::init()
{
// make sure both sides are connected and have the same block size
if (!slavePort.isConnected() || !masterPort.isConnected())
fatal("Both ports of bus bridge are not connected to a bus.\n");
if (slavePort.peerBlockSize() != masterPort.peerBlockSize())
fatal("Slave port size %d, master port size %d \n " \
"Busses don't have the same block size... Not supported.\n",
slavePort.peerBlockSize(), masterPort.peerBlockSize());
// notify the master side of our address ranges
slavePort.sendRangeChange();
}
bool
Bridge::BridgeSlavePort::respQueueFull()
{
return outstandingResponses == respQueueLimit;
}
bool
Bridge::BridgeMasterPort::reqQueueFull()
{
return transmitList.size() == reqQueueLimit;
}
bool
Bridge::BridgeMasterPort::recvTimingResp(PacketPtr pkt)
{
// all checks are done when the request is accepted on the slave
// side, so we are guaranteed to have space for the response
DPRINTF(Bridge, "recvTimingResp: %s addr 0x%x\n",
pkt->cmdString(), pkt->getAddr());
DPRINTF(Bridge, "Request queue size: %d\n", transmitList.size());
slavePort.schedTimingResp(pkt, bridge.clockEdge(delay));
return true;
}
bool
Bridge::BridgeSlavePort::recvTimingReq(PacketPtr pkt)
{
DPRINTF(Bridge, "recvTimingReq: %s addr 0x%x\n",
pkt->cmdString(), pkt->getAddr());
// ensure we do not have something waiting to retry
if(retryReq)
return false;
DPRINTF(Bridge, "Response queue size: %d outresp: %d\n",
transmitList.size(), outstandingResponses);
if (masterPort.reqQueueFull()) {
DPRINTF(Bridge, "Request queue full\n");
retryReq = true;
} else if (pkt->needsResponse()) {
if (respQueueFull()) {
DPRINTF(Bridge, "Response queue full\n");
retryReq = true;
} else {
DPRINTF(Bridge, "Reserving space for response\n");
assert(outstandingResponses != respQueueLimit);
++outstandingResponses;
retryReq = false;
masterPort.schedTimingReq(pkt, bridge.clockEdge(delay));
}
}
// remember that we are now stalling a packet and that we have to
// tell the sending master to retry once space becomes available,
// we make no distinction whether the stalling is due to the
// request queue or response queue being full
return !retryReq;
}
void
Bridge::BridgeSlavePort::retryStalledReq()
{
if (retryReq) {
DPRINTF(Bridge, "Request waiting for retry, now retrying\n");
retryReq = false;
sendRetry();
}
}
void
Bridge::BridgeMasterPort::schedTimingReq(PacketPtr pkt, Tick when)
{
// If we expect to see a response, we need to restore the source
// and destination field that is potentially changed by a second
// bus
if (!pkt->memInhibitAsserted() && pkt->needsResponse()) {
// Update the sender state so we can deal with the response
// appropriately
RequestState *req_state = new RequestState(pkt);
pkt->senderState = req_state;
}
// If we're about to put this packet at the head of the queue, we
// need to schedule an event to do the transmit. Otherwise there
// should already be an event scheduled for sending the head
// packet.
if (transmitList.empty()) {
bridge.schedule(sendEvent, when);
}
assert(transmitList.size() != reqQueueLimit);
transmitList.push_back(DeferredPacket(pkt, when));
}
void
Bridge::BridgeSlavePort::schedTimingResp(PacketPtr pkt, Tick when)
{
// This is a response for a request we forwarded earlier. The
// corresponding request state should be stored in the packet's
// senderState field.
RequestState *req_state = dynamic_cast<RequestState*>(pkt->senderState);
assert(req_state != NULL);
// set up new packet dest & senderState based on values saved
// from original request
req_state->fixResponse(pkt);
delete req_state;
// the bridge assumes that at least one bus has set the
// destination field of the packet
assert(pkt->isDestValid());
DPRINTF(Bridge, "response, new dest %d\n", pkt->getDest());
// If we're about to put this packet at the head of the queue, we
// need to schedule an event to do the transmit. Otherwise there
// should already be an event scheduled for sending the head
// packet.
if (transmitList.empty()) {
bridge.schedule(sendEvent, when);
}
transmitList.push_back(DeferredPacket(pkt, when));
}
void
Bridge::BridgeMasterPort::trySendTiming()
{
assert(!transmitList.empty());
DeferredPacket req = transmitList.front();
assert(req.tick <= curTick());
PacketPtr pkt = req.pkt;
DPRINTF(Bridge, "trySend request addr 0x%x, queue size %d\n",
pkt->getAddr(), transmitList.size());
if (sendTimingReq(pkt)) {
// send successful
transmitList.pop_front();
DPRINTF(Bridge, "trySend request successful\n");
// If there are more packets to send, schedule event to try again.
if (!transmitList.empty()) {
req = transmitList.front();
DPRINTF(Bridge, "Scheduling next send\n");
bridge.schedule(sendEvent, std::max(req.tick,
bridge.nextCycle()));
}
// if we have stalled a request due to a full request queue,
// then send a retry at this point, also note that if the
// request we stalled was waiting for the response queue
// rather than the request queue we might stall it again
slavePort.retryStalledReq();
}
// if the send failed, then we try again once we receive a retry,
// and therefore there is no need to take any action
}
void
Bridge::BridgeSlavePort::trySendTiming()
{
assert(!transmitList.empty());
DeferredPacket resp = transmitList.front();
assert(resp.tick <= curTick());
PacketPtr pkt = resp.pkt;
DPRINTF(Bridge, "trySend response addr 0x%x, outstanding %d\n",
pkt->getAddr(), outstandingResponses);
if (sendTimingResp(pkt)) {
// send successful
transmitList.pop_front();
DPRINTF(Bridge, "trySend response successful\n");
assert(outstandingResponses != 0);
--outstandingResponses;
// If there are more packets to send, schedule event to try again.
if (!transmitList.empty()) {
resp = transmitList.front();
DPRINTF(Bridge, "Scheduling next send\n");
bridge.schedule(sendEvent, std::max(resp.tick,
bridge.nextCycle()));
}
// if there is space in the request queue and we were stalling
// a request, it will definitely be possible to accept it now
// since there is guaranteed space in the response queue
if (!masterPort.reqQueueFull() && retryReq) {
DPRINTF(Bridge, "Request waiting for retry, now retrying\n");
retryReq = false;
sendRetry();
}
}
// if the send failed, then we try again once we receive a retry,
// and therefore there is no need to take any action
}
void
Bridge::BridgeMasterPort::recvRetry()
{
Tick nextReady = transmitList.front().tick;
if (nextReady <= curTick())
trySendTiming();
else
bridge.schedule(sendEvent, nextReady);
}
void
Bridge::BridgeSlavePort::recvRetry()
{
Tick nextReady = transmitList.front().tick;
if (nextReady <= curTick())
trySendTiming();
else
bridge.schedule(sendEvent, nextReady);
}
Tick
Bridge::BridgeSlavePort::recvAtomic(PacketPtr pkt)
{
return delay * bridge.clockPeriod() + masterPort.sendAtomic(pkt);
}
void
Bridge::BridgeSlavePort::recvFunctional(PacketPtr pkt)
{
std::list<DeferredPacket>::iterator i;
pkt->pushLabel(name());
// check the response queue
for (i = transmitList.begin(); i != transmitList.end(); ++i) {
if (pkt->checkFunctional((*i).pkt)) {
pkt->makeResponse();
return;
}
}
// also check the master port's request queue
if (masterPort.checkFunctional(pkt)) {
return;
}
pkt->popLabel();
// fall through if pkt still not satisfied
masterPort.sendFunctional(pkt);
}
bool
Bridge::BridgeMasterPort::checkFunctional(PacketPtr pkt)
{
bool found = false;
std::list<DeferredPacket>::iterator i = transmitList.begin();
while(i != transmitList.end() && !found) {
if (pkt->checkFunctional((*i).pkt)) {
pkt->makeResponse();
found = true;
}
++i;
}
return found;
}
AddrRangeList
Bridge::BridgeSlavePort::getAddrRanges() const
{
return ranges;
}
Bridge *
BridgeParams::create()
{
return new Bridge(this);
}