blob: fd30d4fc179949172a4939c3d119b33bdfbbe3a9 [file] [log] [blame]
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file
* Tsunami I/O including PIC, PIT, RTC, DMA
*/
#include <sys/time.h>
#include <deque>
#include <string>
#include <vector>
#include "base/trace.hh"
#include "dev/tsunami_io.hh"
#include "dev/tsunami.hh"
#include "dev/pitreg.h"
#include "mem/bus/bus.hh"
#include "mem/bus/pio_interface.hh"
#include "mem/bus/pio_interface_impl.hh"
#include "sim/builder.hh"
#include "dev/tsunami_cchip.hh"
#include "dev/tsunamireg.h"
#include "dev/rtcreg.h"
#include "mem/functional/memory_control.hh"
using namespace std;
TsunamiIO::RTC::RTC(const string &name, Tsunami* t, Tick i)
: _name(name), event(t, i), addr(0)
{
memset(clock_data, 0, sizeof(clock_data));
stat_regA = RTCA_32768HZ | RTCA_1024HZ;
stat_regB = RTCB_PRDC_IE |RTCB_BIN | RTCB_24HR;
}
void
TsunamiIO::RTC::set_time(time_t t)
{
struct tm tm;
gmtime_r(&t, &tm);
sec = tm.tm_sec;
min = tm.tm_min;
hour = tm.tm_hour;
wday = tm.tm_wday + 1;
mday = tm.tm_mday;
mon = tm.tm_mon + 1;
year = tm.tm_year;
DPRINTFN("Real-time clock set to %s", asctime(&tm));
}
void
TsunamiIO::RTC::writeAddr(const uint8_t *data)
{
if (*data <= RTC_STAT_REGD)
addr = *data;
else
panic("RTC addresses over 0xD are not implemented.\n");
}
void
TsunamiIO::RTC::writeData(const uint8_t *data)
{
if (addr < RTC_STAT_REGA)
clock_data[addr] = *data;
else {
switch (addr) {
case RTC_STAT_REGA:
if (*data != (RTCA_32768HZ | RTCA_1024HZ))
panic("Unimplemented RTC register A value write!\n");
stat_regA = *data;
break;
case RTC_STAT_REGB:
if ((*data & ~(RTCB_PRDC_IE | RTCB_SQWE)) != (RTCB_BIN | RTCB_24HR))
panic("Write to RTC reg B bits that are not implemented!\n");
if (*data & RTCB_PRDC_IE) {
if (!event.scheduled())
event.scheduleIntr();
} else {
if (event.scheduled())
event.deschedule();
}
stat_regB = *data;
break;
case RTC_STAT_REGC:
case RTC_STAT_REGD:
panic("RTC status registers C and D are not implemented.\n");
break;
}
}
}
void
TsunamiIO::RTC::readData(uint8_t *data)
{
if (addr < RTC_STAT_REGA)
*data = clock_data[addr];
else {
switch (addr) {
case RTC_STAT_REGA:
// toggle UIP bit for linux
stat_regA ^= RTCA_UIP;
*data = stat_regA;
break;
case RTC_STAT_REGB:
*data = stat_regB;
break;
case RTC_STAT_REGC:
case RTC_STAT_REGD:
*data = 0x00;
break;
}
}
}
void
TsunamiIO::RTC::serialize(const string &base, ostream &os)
{
paramOut(os, base + ".addr", addr);
arrayParamOut(os, base + ".clock_data", clock_data, sizeof(clock_data));
paramOut(os, base + ".stat_regA", stat_regA);
paramOut(os, base + ".stat_regB", stat_regB);
}
void
TsunamiIO::RTC::unserialize(const string &base, Checkpoint *cp,
const string &section)
{
paramIn(cp, section, base + ".addr", addr);
arrayParamIn(cp, section, base + ".clock_data", clock_data,
sizeof(clock_data));
paramIn(cp, section, base + ".stat_regA", stat_regA);
paramIn(cp, section, base + ".stat_regB", stat_regB);
// We're not unserializing the event here, but we need to
// rescehedule the event since curTick was moved forward by the
// checkpoint
event.reschedule(curTick + event.interval);
}
TsunamiIO::RTC::RTCEvent::RTCEvent(Tsunami*t, Tick i)
: Event(&mainEventQueue), tsunami(t), interval(i)
{
DPRINTF(MC146818, "RTC Event Initilizing\n");
schedule(curTick + interval);
}
void
TsunamiIO::RTC::RTCEvent::scheduleIntr()
{
schedule(curTick + interval);
}
void
TsunamiIO::RTC::RTCEvent::process()
{
DPRINTF(MC146818, "RTC Timer Interrupt\n");
schedule(curTick + interval);
//Actually interrupt the processor here
tsunami->cchip->postRTC();
}
const char *
TsunamiIO::RTC::RTCEvent::description()
{
return "tsunami RTC interrupt";
}
TsunamiIO::PITimer::PITimer(const string &name)
: _name(name), counter0(name + ".counter0"), counter1(name + ".counter1"),
counter2(name + ".counter2")
{
counter[0] = &counter0;
counter[1] = &counter0;
counter[2] = &counter0;
}
void
TsunamiIO::PITimer::writeControl(const uint8_t *data)
{
int rw;
int sel;
sel = GET_CTRL_SEL(*data);
if (sel == PIT_READ_BACK)
panic("PITimer Read-Back Command is not implemented.\n");
rw = GET_CTRL_RW(*data);
if (rw == PIT_RW_LATCH_COMMAND)
counter[sel]->latchCount();
else {
counter[sel]->setRW(rw);
counter[sel]->setMode(GET_CTRL_MODE(*data));
counter[sel]->setBCD(GET_CTRL_BCD(*data));
}
}
void
TsunamiIO::PITimer::serialize(const string &base, ostream &os)
{
// serialize the counters
counter0.serialize(base + ".counter0", os);
counter1.serialize(base + ".counter1", os);
counter2.serialize(base + ".counter2", os);
}
void
TsunamiIO::PITimer::unserialize(const string &base, Checkpoint *cp,
const string &section)
{
// unserialze the counters
counter0.unserialize(base + ".counter0", cp, section);
counter1.unserialize(base + ".counter1", cp, section);
counter2.unserialize(base + ".counter2", cp, section);
}
TsunamiIO::PITimer::Counter::Counter(const string &name)
: _name(name), event(this), count(0), latched_count(0), period(0),
mode(0), output_high(false), latch_on(false), read_byte(LSB),
write_byte(LSB)
{
}
void
TsunamiIO::PITimer::Counter::latchCount()
{
// behave like a real latch
if(!latch_on) {
latch_on = true;
read_byte = LSB;
latched_count = count;
}
}
void
TsunamiIO::PITimer::Counter::read(uint8_t *data)
{
if (latch_on) {
switch (read_byte) {
case LSB:
read_byte = MSB;
*data = (uint8_t)latched_count;
break;
case MSB:
read_byte = LSB;
latch_on = false;
*data = latched_count >> 8;
break;
}
} else {
switch (read_byte) {
case LSB:
read_byte = MSB;
*data = (uint8_t)count;
break;
case MSB:
read_byte = LSB;
*data = count >> 8;
break;
}
}
}
void
TsunamiIO::PITimer::Counter::write(const uint8_t *data)
{
switch (write_byte) {
case LSB:
count = (count & 0xFF00) | *data;
if (event.scheduled())
event.deschedule();
output_high = false;
write_byte = MSB;
break;
case MSB:
count = (count & 0x00FF) | (*data << 8);
period = count;
if (period > 0) {
DPRINTF(Tsunami, "Timer set to curTick + %d\n",
count * event.interval);
event.schedule(curTick + count * event.interval);
}
write_byte = LSB;
break;
}
}
void
TsunamiIO::PITimer::Counter::setRW(int rw_val)
{
if (rw_val != PIT_RW_16BIT)
panic("Only LSB/MSB read/write is implemented.\n");
}
void
TsunamiIO::PITimer::Counter::setMode(int mode_val)
{
if(mode_val != PIT_MODE_INTTC && mode_val != PIT_MODE_RATEGEN &&
mode_val != PIT_MODE_SQWAVE)
panic("PIT mode %#x is not implemented: \n", mode_val);
mode = mode_val;
}
void
TsunamiIO::PITimer::Counter::setBCD(int bcd_val)
{
if (bcd_val != PIT_BCD_FALSE)
panic("PITimer does not implement BCD counts.\n");
}
bool
TsunamiIO::PITimer::Counter::outputHigh()
{
return output_high;
}
void
TsunamiIO::PITimer::Counter::serialize(const string &base, ostream &os)
{
paramOut(os, base + ".count", count);
paramOut(os, base + ".latched_count", latched_count);
paramOut(os, base + ".period", period);
paramOut(os, base + ".mode", mode);
paramOut(os, base + ".output_high", output_high);
paramOut(os, base + ".latch_on", latch_on);
paramOut(os, base + ".read_byte", read_byte);
paramOut(os, base + ".write_byte", write_byte);
Tick event_tick = 0;
if (event.scheduled())
event_tick = event.when();
paramOut(os, base + ".event_tick", event_tick);
}
void
TsunamiIO::PITimer::Counter::unserialize(const string &base, Checkpoint *cp,
const string &section)
{
paramIn(cp, section, base + ".count", count);
paramIn(cp, section, base + ".latched_count", latched_count);
paramIn(cp, section, base + ".period", period);
paramIn(cp, section, base + ".mode", mode);
paramIn(cp, section, base + ".output_high", output_high);
paramIn(cp, section, base + ".latch_on", latch_on);
paramIn(cp, section, base + ".read_byte", read_byte);
paramIn(cp, section, base + ".write_byte", write_byte);
Tick event_tick;
paramIn(cp, section, base + ".event_tick", event_tick);
if (event_tick)
event.schedule(event_tick);
}
TsunamiIO::PITimer::Counter::CounterEvent::CounterEvent(Counter* c_ptr)
: Event(&mainEventQueue)
{
interval = (Tick)(Clock::Float::s / 1193180.0);
counter = c_ptr;
}
void
TsunamiIO::PITimer::Counter::CounterEvent::process()
{
DPRINTF(Tsunami, "Timer Interrupt\n");
switch (counter->mode) {
case PIT_MODE_INTTC:
counter->output_high = true;
case PIT_MODE_RATEGEN:
case PIT_MODE_SQWAVE:
break;
default:
panic("Unimplemented PITimer mode.\n");
}
}
const char *
TsunamiIO::PITimer::Counter::CounterEvent::description()
{
return "tsunami 8254 Interval timer";
}
TsunamiIO::TsunamiIO(const string &name, Tsunami *t, time_t init_time,
Addr a, MemoryController *mmu, HierParams *hier, Bus *bus,
Tick pio_latency, Tick ci)
: PioDevice(name, t), addr(a), clockInterval(ci), tsunami(t),
pitimer(name + "pitimer"), rtc(name + ".rtc", t, ci)
{
mmu->add_child(this, RangeSize(addr, size));
if (bus) {
pioInterface = newPioInterface(name + ".pio", hier, bus, this,
&TsunamiIO::cacheAccess);
pioInterface->addAddrRange(RangeSize(addr, size));
pioLatency = pio_latency * bus->clockRate;
}
// set the back pointer from tsunami to myself
tsunami->io = this;
timerData = 0;
rtc.set_time(init_time == 0 ? time(NULL) : init_time);
picr = 0;
picInterrupting = false;
}
Tick
TsunamiIO::frequency() const
{
return Clock::Frequency / clockInterval;
}
Fault
TsunamiIO::read(MemReqPtr &req, uint8_t *data)
{
DPRINTF(Tsunami, "io read va=%#x size=%d IOPorrt=%#x\n",
req->vaddr, req->size, req->vaddr & 0xfff);
Addr daddr = (req->paddr - (addr & EV5::PAddrImplMask));
switch(req->size) {
case sizeof(uint8_t):
switch(daddr) {
// PIC1 mask read
case TSDEV_PIC1_MASK:
*(uint8_t*)data = ~mask1;
return No_Fault;
case TSDEV_PIC2_MASK:
*(uint8_t*)data = ~mask2;
return No_Fault;
case TSDEV_PIC1_ISR:
// !!! If this is modified 64bit case needs to be too
// Pal code has to do a 64 bit physical read because there is
// no load physical byte instruction
*(uint8_t*)data = picr;
return No_Fault;
case TSDEV_PIC2_ISR:
// PIC2 not implemnted... just return 0
*(uint8_t*)data = 0x00;
return No_Fault;
case TSDEV_TMR0_DATA:
pitimer.counter0.read(data);
return No_Fault;
case TSDEV_TMR1_DATA:
pitimer.counter1.read(data);
return No_Fault;
case TSDEV_TMR2_DATA:
pitimer.counter2.read(data);
return No_Fault;
case TSDEV_RTC_DATA:
rtc.readData(data);
return No_Fault;
case TSDEV_CTRL_PORTB:
if (pitimer.counter2.outputHigh())
*data = PORTB_SPKR_HIGH;
else
*data = 0x00;
return No_Fault;
default:
panic("I/O Read - va%#x size %d\n", req->vaddr, req->size);
}
case sizeof(uint16_t):
case sizeof(uint32_t):
panic("I/O Read - invalid size - va %#x size %d\n",
req->vaddr, req->size);
case sizeof(uint64_t):
switch(daddr) {
case TSDEV_PIC1_ISR:
// !!! If this is modified 8bit case needs to be too
// Pal code has to do a 64 bit physical read because there is
// no load physical byte instruction
*(uint64_t*)data = (uint64_t)picr;
return No_Fault;
default:
panic("I/O Read - invalid size - va %#x size %d\n",
req->vaddr, req->size);
}
default:
panic("I/O Read - invalid size - va %#x size %d\n",
req->vaddr, req->size);
}
panic("I/O Read - va%#x size %d\n", req->vaddr, req->size);
return No_Fault;
}
Fault
TsunamiIO::write(MemReqPtr &req, const uint8_t *data)
{
#if TRACING_ON
uint8_t dt = *(uint8_t*)data;
uint64_t dt64 = dt;
#endif
DPRINTF(Tsunami, "io write - va=%#x size=%d IOPort=%#x Data=%#x\n",
req->vaddr, req->size, req->vaddr & 0xfff, dt64);
Addr daddr = (req->paddr - (addr & EV5::PAddrImplMask));
switch(req->size) {
case sizeof(uint8_t):
switch(daddr) {
case TSDEV_PIC1_MASK:
mask1 = ~(*(uint8_t*)data);
if ((picr & mask1) && !picInterrupting) {
picInterrupting = true;
tsunami->cchip->postDRIR(55);
DPRINTF(Tsunami, "posting pic interrupt to cchip\n");
}
if ((!(picr & mask1)) && picInterrupting) {
picInterrupting = false;
tsunami->cchip->clearDRIR(55);
DPRINTF(Tsunami, "clearing pic interrupt\n");
}
return No_Fault;
case TSDEV_PIC2_MASK:
mask2 = *(uint8_t*)data;
//PIC2 Not implemented to interrupt
return No_Fault;
case TSDEV_PIC1_ACK:
// clear the interrupt on the PIC
picr &= ~(1 << (*(uint8_t*)data & 0xF));
if (!(picr & mask1))
tsunami->cchip->clearDRIR(55);
return No_Fault;
case TSDEV_DMA1_CMND:
return No_Fault;
case TSDEV_DMA2_CMND:
return No_Fault;
case TSDEV_DMA1_MMASK:
return No_Fault;
case TSDEV_DMA2_MMASK:
return No_Fault;
case TSDEV_PIC2_ACK:
return No_Fault;
case TSDEV_DMA1_RESET:
return No_Fault;
case TSDEV_DMA2_RESET:
return No_Fault;
case TSDEV_DMA1_MODE:
mode1 = *(uint8_t*)data;
return No_Fault;
case TSDEV_DMA2_MODE:
mode2 = *(uint8_t*)data;
return No_Fault;
case TSDEV_DMA1_MASK:
case TSDEV_DMA2_MASK:
return No_Fault;
case TSDEV_TMR0_DATA:
pitimer.counter0.write(data);
return No_Fault;
case TSDEV_TMR1_DATA:
pitimer.counter1.write(data);
return No_Fault;
case TSDEV_TMR2_DATA:
pitimer.counter2.write(data);
return No_Fault;
case TSDEV_TMR_CTRL:
pitimer.writeControl(data);
return No_Fault;
case TSDEV_RTC_ADDR:
rtc.writeAddr(data);
return No_Fault;
case TSDEV_KBD:
return No_Fault;
case TSDEV_RTC_DATA:
rtc.writeData(data);
return No_Fault;
case TSDEV_CTRL_PORTB:
// System Control Port B not implemented
return No_Fault;
default:
panic("I/O Write - va%#x size %d data %#x\n", req->vaddr, req->size, (int)*data);
}
case sizeof(uint16_t):
case sizeof(uint32_t):
case sizeof(uint64_t):
default:
panic("I/O Write - invalid size - va %#x size %d\n",
req->vaddr, req->size);
}
return No_Fault;
}
void
TsunamiIO::postPIC(uint8_t bitvector)
{
//PIC2 Is not implemented, because nothing of interest there
picr |= bitvector;
if (picr & mask1) {
tsunami->cchip->postDRIR(55);
DPRINTF(Tsunami, "posting pic interrupt to cchip\n");
}
}
void
TsunamiIO::clearPIC(uint8_t bitvector)
{
//PIC2 Is not implemented, because nothing of interest there
picr &= ~bitvector;
if (!(picr & mask1)) {
tsunami->cchip->clearDRIR(55);
DPRINTF(Tsunami, "clearing pic interrupt to cchip\n");
}
}
Tick
TsunamiIO::cacheAccess(MemReqPtr &req)
{
return curTick + pioLatency;
}
void
TsunamiIO::serialize(ostream &os)
{
SERIALIZE_SCALAR(timerData);
SERIALIZE_SCALAR(mask1);
SERIALIZE_SCALAR(mask2);
SERIALIZE_SCALAR(mode1);
SERIALIZE_SCALAR(mode2);
SERIALIZE_SCALAR(picr);
SERIALIZE_SCALAR(picInterrupting);
// Serialize the timers
pitimer.serialize("pitimer", os);
rtc.serialize("rtc", os);
}
void
TsunamiIO::unserialize(Checkpoint *cp, const string &section)
{
UNSERIALIZE_SCALAR(timerData);
UNSERIALIZE_SCALAR(mask1);
UNSERIALIZE_SCALAR(mask2);
UNSERIALIZE_SCALAR(mode1);
UNSERIALIZE_SCALAR(mode2);
UNSERIALIZE_SCALAR(picr);
UNSERIALIZE_SCALAR(picInterrupting);
// Unserialize the timers
pitimer.unserialize("pitimer", cp, section);
rtc.unserialize("rtc", cp, section);
}
BEGIN_DECLARE_SIM_OBJECT_PARAMS(TsunamiIO)
SimObjectParam<Tsunami *> tsunami;
Param<time_t> time;
SimObjectParam<MemoryController *> mmu;
Param<Addr> addr;
SimObjectParam<Bus*> io_bus;
Param<Tick> pio_latency;
SimObjectParam<HierParams *> hier;
Param<Tick> frequency;
END_DECLARE_SIM_OBJECT_PARAMS(TsunamiIO)
BEGIN_INIT_SIM_OBJECT_PARAMS(TsunamiIO)
INIT_PARAM(tsunami, "Tsunami"),
INIT_PARAM(time, "System time to use (0 for actual time"),
INIT_PARAM(mmu, "Memory Controller"),
INIT_PARAM(addr, "Device Address"),
INIT_PARAM_DFLT(io_bus, "The IO Bus to attach to", NULL),
INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1),
INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams),
INIT_PARAM(frequency, "clock interrupt frequency")
END_INIT_SIM_OBJECT_PARAMS(TsunamiIO)
CREATE_SIM_OBJECT(TsunamiIO)
{
return new TsunamiIO(getInstanceName(), tsunami, time, addr, mmu, hier,
io_bus, pio_latency, frequency);
}
REGISTER_SIM_OBJECT("TsunamiIO", TsunamiIO)