blob: 193159b4c1cc8cdb6f51e9a079cb32963ac20ea1 [file] [log] [blame] [edit]
# Copyright (c) 2003-2004 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Nathan Binkert
from __future__ import division
import operator, re, types
class ProxyError(Exception):
pass
def unproxy(proxy):
if hasattr(proxy, '__unproxy__'):
return proxy.__unproxy__()
return proxy
def scalar(stat):
stat = unproxy(stat)
assert(stat.__scalar__() != stat.__vector__())
return stat.__scalar__()
def vector(stat):
stat = unproxy(stat)
assert(stat.__scalar__() != stat.__vector__())
return stat.__vector__()
def value(stat, *args):
stat = unproxy(stat)
return stat.__value__(*args)
def values(stat, run):
stat = unproxy(stat)
result = []
for i in xrange(len(stat)):
val = value(stat, run, i)
if val is None:
return None
result.append(val)
return result
def total(stat, run):
return sum(values(stat, run))
def len(stat):
stat = unproxy(stat)
return stat.__len__()
class Value(object):
def __scalar__(self):
raise AttributeError, "must define __scalar__ for %s" % (type (self))
def __vector__(self):
raise AttributeError, "must define __vector__ for %s" % (type (self))
def __add__(self, other):
return BinaryProxy(operator.__add__, self, other)
def __sub__(self, other):
return BinaryProxy(operator.__sub__, self, other)
def __mul__(self, other):
return BinaryProxy(operator.__mul__, self, other)
def __div__(self, other):
return BinaryProxy(operator.__div__, self, other)
def __truediv__(self, other):
return BinaryProxy(operator.__truediv__, self, other)
def __floordiv__(self, other):
return BinaryProxy(operator.__floordiv__, self, other)
def __radd__(self, other):
return BinaryProxy(operator.__add__, other, self)
def __rsub__(self, other):
return BinaryProxy(operator.__sub__, other, self)
def __rmul__(self, other):
return BinaryProxy(operator.__mul__, other, self)
def __rdiv__(self, other):
return BinaryProxy(operator.__div__, other, self)
def __rtruediv__(self, other):
return BinaryProxy(operator.__truediv__, other, self)
def __rfloordiv__(self, other):
return BinaryProxy(operator.__floordiv__, other, self)
def __neg__(self):
return UnaryProxy(operator.__neg__, self)
def __pos__(self):
return UnaryProxy(operator.__pos__, self)
def __abs__(self):
return UnaryProxy(operator.__abs__, self)
class Scalar(Value):
def __scalar__(self):
return True
def __vector__(self):
return False
def __value__(self, run):
raise AttributeError, '__value__ must be defined'
class VectorItemProxy(Value):
def __init__(self, proxy, index):
self.proxy = proxy
self.index = index
def __scalar__(self):
return True
def __vector__(self):
return False
def __value__(self, run):
return value(self.proxy, run, self.index)
class Vector(Value):
def __scalar__(self):
return False
def __vector__(self):
return True
def __value__(self, run, index):
raise AttributeError, '__value__ must be defined'
def __getitem__(self, index):
return VectorItemProxy(self, index)
class ScalarConstant(Scalar):
def __init__(self, constant):
self.constant = constant
def __value__(self, run):
return self.constant
def __str__(self):
return str(self.constant)
class VectorConstant(Vector):
def __init__(self, constant):
self.constant = constant
def __value__(self, run, index):
return self.constant[index]
def __len__(self):
return len(self.constant)
def __str__(self):
return str(self.constant)
def WrapValue(value):
if isinstance(value, (int, long, float)):
return ScalarConstant(value)
if isinstance(value, (list, tuple)):
return VectorConstant(value)
if isinstance(value, Value):
return value
raise AttributeError, 'Only values can be wrapped'
class Statistic(object):
def __getattr__(self, attr):
if attr in ('data', 'x', 'y'):
result = self.source.data(self, self.ticks)
self.data = result.data
self.x = result.x
self.y = result.y
return super(Statistic, self).__getattribute__(attr)
def __setattr__(self, attr, value):
if attr == 'stat':
raise AttributeError, '%s is read only' % stat
if attr in ('source', 'ticks'):
if getattr(self, attr) != value:
if hasattr(self, 'data'):
delattr(self, 'data')
super(Statistic, self).__setattr__(attr, value)
def __str__(self):
return self.name
class ValueProxy(Value):
def __getattr__(self, attr):
if attr == '__value__':
if scalar(self):
return self.__scalarvalue__
if vector(self):
return self.__vectorvalue__
if attr == '__len__':
if vector(self):
return self.__vectorlen__
return super(ValueProxy, self).__getattribute__(attr)
class UnaryProxy(ValueProxy):
def __init__(self, op, arg):
self.op = op
self.arg = WrapValue(arg)
def __scalar__(self):
return scalar(self.arg)
def __vector__(self):
return vector(self.arg)
def __scalarvalue__(self, run):
val = value(self.arg, run)
if val is None:
return None
return self.op(val)
def __vectorvalue__(self, run, index):
val = value(self.arg, run, index)
if val is None:
return None
return self.op(val)
def __vectorlen__(self):
return len(unproxy(self.arg))
def __str__(self):
if self.op == operator.__neg__:
return '-%s' % str(self.arg)
if self.op == operator.__pos__:
return '+%s' % str(self.arg)
if self.op == operator.__abs__:
return 'abs(%s)' % self.arg
class BinaryProxy(ValueProxy):
def __init__(self, op, arg0, arg1):
super(BinaryProxy, self).__init__()
self.op = op
self.arg0 = WrapValue(arg0)
self.arg1 = WrapValue(arg1)
def __scalar__(self):
return scalar(self.arg0) and scalar(self.arg1)
def __vector__(self):
return vector(self.arg0) or vector(self.arg1)
def __scalarvalue__(self, run):
val0 = value(self.arg0, run)
val1 = value(self.arg1, run)
if val0 is None or val1 is None:
return None
try:
return self.op(val0, val1)
except ZeroDivisionError:
return None
def __vectorvalue__(self, run, index):
if scalar(self.arg0):
val0 = value(self.arg0, run)
if vector(self.arg0):
val0 = value(self.arg0, run, index)
if scalar(self.arg1):
val1 = value(self.arg1, run)
if vector(self.arg1):
val1 = value(self.arg1, run, index)
if val0 is None or val1 is None:
return None
try:
return self.op(val0, val1)
except ZeroDivisionError:
return None
def __vectorlen__(self):
if vector(self.arg0) and scalar(self.arg1):
return len(self.arg0)
if scalar(self.arg0) and vector(self.arg1):
return len(self.arg1)
len0 = len(self.arg0)
len1 = len(self.arg1)
if len0 != len1:
raise AttributeError, \
"vectors of different lengths %d != %d" % (len0, len1)
return len0
def __str__(self):
ops = { operator.__add__ : '+',
operator.__sub__ : '-',
operator.__mul__ : '*',
operator.__div__ : '/',
operator.__truediv__ : '/',
operator.__floordiv__ : '//' }
return '(%s %s %s)' % (str(self.arg0), ops[self.op], str(self.arg1))
class Proxy(Value):
def __init__(self, name, dict):
self.name = name
self.dict = dict
def __unproxy__(self):
return unproxy(self.dict[self.name])
def __getitem__(self, index):
return ItemProxy(self, index)
def __getattr__(self, attr):
return AttrProxy(self, attr)
def __str__(self):
return str(self.dict[self.name])
class ItemProxy(Proxy):
def __init__(self, proxy, index):
self.proxy = proxy
self.index = index
def __unproxy__(self):
return unproxy(unproxy(self.proxy)[self.index])
def __str__(self):
return '%s[%s]' % (self.proxy, self.index)
class AttrProxy(Proxy):
def __init__(self, proxy, attr):
self.proxy = proxy
self.attr = attr
def __unproxy__(self):
proxy = unproxy(self.proxy)
try:
attr = getattr(proxy, self.attr)
except AttributeError, e:
raise ProxyError, e
return unproxy(attr)
def __str__(self):
return '%s.%s' % (self.proxy, self.attr)
class ProxyGroup(object):
def __init__(self, dict=None, **kwargs):
self.__dict__['dict'] = {}
if dict is not None:
self.dict.update(dict)
if kwargs:
self.dict.update(kwargs)
def __getattr__(self, name):
return Proxy(name, self.dict)
def __setattr__(self, attr, value):
self.dict[attr] = value
class ScalarStat(Statistic,Scalar):
def __value__(self, run):
if run not in self.data:
return None
return self.data[run][0][0]
def display(self, run=None):
import display
p = display.Print()
p.name = self.name
p.desc = self.desc
p.value = value(self, run)
p.flags = self.flags
p.precision = self.precision
if display.all or (self.flags & flags.printable):
p.display()
class VectorStat(Statistic,Vector):
def __value__(self, run, item):
if run not in self.data:
return None
return self.data[run][item][0]
def __len__(self):
return self.x
def display(self, run=None):
import display
d = display.VectorDisplay()
d.name = self.name
d.desc = self.desc
d.value = [ value(self, run, i) for i in xrange(len(self)) ]
d.flags = self.flags
d.precision = self.precision
d.display()
class Formula(Value):
def __getattribute__(self, attr):
if attr not in ( '__scalar__', '__vector__', '__value__', '__len__' ):
return super(Formula, self).__getattribute__(attr)
formula = re.sub(':', '__', self.formula)
value = eval(formula, self.source.stattop)
return getattr(value, attr)
def __str__(self):
return self.name
class SimpleDist(Statistic):
def __init__(self, sums, squares, samples):
self.sums = sums
self.squares = squares
self.samples = samples
def display(self, name, desc, flags, precision):
import display
p = display.Print()
p.flags = flags
p.precision = precision
if self.samples > 0:
p.name = name + ".mean"
p.value = self.sums / self.samples
p.display()
p.name = name + ".stdev"
if self.samples > 1:
var = (self.samples * self.squares - self.sums ** 2) \
/ (self.samples * (self.samples - 1))
if var >= 0:
p.value = math.sqrt(var)
else:
p.value = 'NaN'
else:
p.value = 0.0
p.display()
p.name = name + ".samples"
p.value = self.samples
p.display()
def comparable(self, other):
return True
def __eq__(self, other):
return self.sums == other.sums and self.squares == other.squares and \
self.samples == other.samples
def __isub__(self, other):
self.sums -= other.sums
self.squares -= other.squares
self.samples -= other.samples
return self
def __iadd__(self, other):
self.sums += other.sums
self.squares += other.squares
self.samples += other.samples
return self
def __itruediv__(self, other):
if not other:
return self
self.sums /= other
self.squares /= other
self.samples /= other
return self
class FullDist(SimpleDist):
def __init__(self, sums, squares, samples, minval, maxval,
under, vec, over, min, max, bsize, size):
self.sums = sums
self.squares = squares
self.samples = samples
self.minval = minval
self.maxval = maxval
self.under = under
self.vec = vec
self.over = over
self.min = min
self.max = max
self.bsize = bsize
self.size = size
def display(self, name, desc, flags, precision):
import display
p = display.Print()
p.flags = flags
p.precision = precision
p.name = name + '.min_val'
p.value = self.minval
p.display()
p.name = name + '.max_val'
p.value = self.maxval
p.display()
p.name = name + '.underflow'
p.value = self.under
p.display()
i = self.min
for val in self.vec[:-1]:
p.name = name + '[%d:%d]' % (i, i + self.bsize - 1)
p.value = val
p.display()
i += self.bsize
p.name = name + '[%d:%d]' % (i, self.max)
p.value = self.vec[-1]
p.display()
p.name = name + '.overflow'
p.value = self.over
p.display()
SimpleDist.display(self, name, desc, flags, precision)
def comparable(self, other):
return self.min == other.min and self.max == other.max and \
self.bsize == other.bsize and self.size == other.size
def __eq__(self, other):
return self.sums == other.sums and self.squares == other.squares and \
self.samples == other.samples
def __isub__(self, other):
self.sums -= other.sums
self.squares -= other.squares
self.samples -= other.samples
if other.samples:
self.minval = min(self.minval, other.minval)
self.maxval = max(self.maxval, other.maxval)
self.under -= under
self.vec = map(lambda x,y: x - y, self.vec, other.vec)
self.over -= over
return self
def __iadd__(self, other):
if not self.samples and other.samples:
self = other
return self
self.sums += other.sums
self.squares += other.squares
self.samples += other.samples
if other.samples:
self.minval = min(self.minval, other.minval)
self.maxval = max(self.maxval, other.maxval)
self.under += other.under
self.vec = map(lambda x,y: x + y, self.vec, other.vec)
self.over += other.over
return self
def __itruediv__(self, other):
if not other:
return self
self.sums /= other
self.squares /= other
self.samples /= other
if self.samples:
self.under /= other
for i in xrange(len(self.vec)):
self.vec[i] /= other
self.over /= other
return self
class Dist(Statistic):
def display(self):
import display
if not display.all and not (self.flags & flags.printable):
return
self.dist.display(self.name, self.desc, self.flags, self.precision)
def comparable(self, other):
return self.name == other.name and \
self.dist.compareable(other.dist)
def __eq__(self, other):
return self.dist == other.dist
def __isub__(self, other):
self.dist -= other.dist
return self
def __iadd__(self, other):
self.dist += other.dist
return self
def __itruediv__(self, other):
if not other:
return self
self.dist /= other
return self
class VectorDist(Statistic):
def display(self):
import display
if not display.all and not (self.flags & flags.printable):
return
if isinstance(self.dist, SimpleDist):
return
for dist,sn,sd,i in map(None, self.dist, self.subnames, self.subdescs,
range(len(self.dist))):
if len(sn) > 0:
name = '%s.%s' % (self.name, sn)
else:
name = '%s[%d]' % (self.name, i)
if len(sd) > 0:
desc = sd
else:
desc = self.desc
dist.display(name, desc, self.flags, self.precision)
if (self.flags & flags.total) or 1:
if isinstance(self.dist[0], SimpleDist):
disttotal = SimpleDist( \
reduce(sums, [d.sums for d in self.dist]),
reduce(sums, [d.squares for d in self.dist]),
reduce(sums, [d.samples for d in self.dist]))
else:
disttotal = FullDist( \
reduce(sums, [d.sums for d in self.dist]),
reduce(sums, [d.squares for d in self.dist]),
reduce(sums, [d.samples for d in self.dist]),
min([d.minval for d in self.dist]),
max([d.maxval for d in self.dist]),
reduce(sums, [d.under for d in self.dist]),
reduce(sums, [d.vec for d in self.dist]),
reduce(sums, [d.over for d in self.dist]),
dist[0].min,
dist[0].max,
dist[0].bsize,
dist[0].size)
name = '%s.total' % (self.name)
desc = self.desc
disttotal.display(name, desc, self.flags, self.precision)
def comparable(self, other):
return self.name == other.name and \
alltrue(map(lambda x, y : x.comparable(y),
self.dist,
other.dist))
def __eq__(self, other):
return alltrue(map(lambda x, y : x == y, self.dist, other.dist))
def __isub__(self, other):
if isinstance(self.dist, (list, tuple)) and \
isinstance(other.dist, (list, tuple)):
for sd,od in zip(self.dist, other.dist):
sd -= od
else:
self.dist -= other.dist
return self
def __iadd__(self, other):
if isinstance(self.dist, (list, tuple)) and \
isinstance(other.dist, (list, tuple)):
for sd,od in zip(self.dist, other.dist):
sd += od
else:
self.dist += other.dist
return self
def __itruediv__(self, other):
if not other:
return self
if isinstance(self.dist, (list, tuple)):
for dist in self.dist:
dist /= other
else:
self.dist /= other
return self
class Vector2d(Statistic):
def display(self):
import display
if not display.all and not (self.flags & flags.printable):
return
d = display.VectorDisplay()
d.__dict__.update(self.__dict__)
if self.__dict__.has_key('ysubnames'):
ysubnames = list(self.ysubnames)
slack = self.x - len(ysubnames)
if slack > 0:
ysubnames.extend(['']*slack)
else:
ysubnames = range(self.x)
for x,sname in enumerate(ysubnames):
o = x * self.y
d.value = self.value[o:o+self.y]
d.name = '%s[%s]' % (self.name, sname)
d.display()
if self.flags & flags.total:
d.value = []
for y in range(self.y):
xtot = 0.0
for x in range(self.x):
xtot += self.value[y + x * self.x]
d.value.append(xtot)
d.name = self.name + '.total'
d.display()
def comparable(self, other):
return self.name == other.name and self.x == other.x and \
self.y == other.y
def __eq__(self, other):
return True
def __isub__(self, other):
return self
def __iadd__(self, other):
return self
def __itruediv__(self, other):
if not other:
return self
return self
def NewStat(source, data):
stat = None
if data.type == 'SCALAR':
stat = ScalarStat()
elif data.type == 'VECTOR':
stat = VectorStat()
elif data.type == 'DIST':
stat = Dist()
elif data.type == 'VECTORDIST':
stat = VectorDist()
elif data.type == 'VECTOR2D':
stat = Vector2d()
elif data.type == 'FORMULA':
stat = Formula()
stat.__dict__['source'] = source
stat.__dict__['ticks'] = None
stat.__dict__.update(data.__dict__)
return stat