blob: 43fe96c492112026b9b5bc5c7ba1473b31e366ad [file] [log] [blame]
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_O3_CPU_INST_QUEUE_HH__
#define __CPU_O3_CPU_INST_QUEUE_HH__
#include <list>
#include <map>
#include <queue>
#include <vector>
#include "base/statistics.hh"
#include "base/timebuf.hh"
#include "cpu/inst_seq.hh"
#include "sim/host.hh"
/**
* A standard instruction queue class. It holds ready instructions, in
* order, in seperate priority queues to facilitate the scheduling of
* instructions. The IQ uses a separate linked list to track dependencies.
* Similar to the rename map and the free list, it expects that
* floating point registers have their indices start after the integer
* registers (ie with 96 int and 96 fp registers, regs 0-95 are integer
* and 96-191 are fp). This remains true even for both logical and
* physical register indices.
*/
template <class Impl>
class InstructionQueue
{
public:
//Typedefs from the Impl.
typedef typename Impl::FullCPU FullCPU;
typedef typename Impl::DynInstPtr DynInstPtr;
typedef typename Impl::Params Params;
typedef typename Impl::CPUPol::MemDepUnit MemDepUnit;
typedef typename Impl::CPUPol::IssueStruct IssueStruct;
typedef typename Impl::CPUPol::TimeStruct TimeStruct;
// Typedef of iterator through the list of instructions. Might be
// better to untie this from the FullCPU or pass its information to
// the stages.
typedef typename std::list<DynInstPtr>::iterator ListIt;
/**
* Struct for comparing entries to be added to the priority queue. This
* gives reverse ordering to the instructions in terms of sequence
* numbers: the instructions with smaller sequence numbers (and hence
* are older) will be at the top of the priority queue.
*/
struct pqCompare
{
bool operator() (const DynInstPtr &lhs, const DynInstPtr &rhs) const
{
return lhs->seqNum > rhs->seqNum;
}
};
/**
* Struct for comparing entries to be added to the set. This gives
* standard ordering in terms of sequence numbers.
*/
struct setCompare
{
bool operator() (const DynInstPtr &lhs, const DynInstPtr &rhs) const
{
return lhs->seqNum < rhs->seqNum;
}
};
typedef std::priority_queue<DynInstPtr, vector<DynInstPtr>, pqCompare>
ReadyInstQueue;
InstructionQueue(Params &params);
void regStats();
void setCPU(FullCPU *cpu);
void setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2eQueue);
void setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr);
unsigned numFreeEntries();
bool isFull();
void insert(DynInstPtr &new_inst);
void insertNonSpec(DynInstPtr &new_inst);
void advanceTail(DynInstPtr &inst);
void scheduleReadyInsts();
void scheduleNonSpec(const InstSeqNum &inst);
void wakeDependents(DynInstPtr &completed_inst);
void violation(DynInstPtr &store, DynInstPtr &faulting_load);
// Change this to take in the sequence number
void squash();
void doSquash();
void stopSquash();
private:
/** Pointer to the CPU. */
FullCPU *cpu;
/** The memory dependence unit, which tracks/predicts memory dependences
* between instructions.
*/
MemDepUnit memDepUnit;
/** The queue to the execute stage. Issued instructions will be written
* into it.
*/
TimeBuffer<IssueStruct> *issueToExecuteQueue;
/** The backwards time buffer. */
TimeBuffer<TimeStruct> *timeBuffer;
/** Wire to read information from timebuffer. */
typename TimeBuffer<TimeStruct>::wire fromCommit;
enum InstList {
Int,
Float,
Branch,
Memory,
Misc,
Squashed,
None
};
/** List of ready int instructions. Used to keep track of the order in
* which instructions should issue.
*/
ReadyInstQueue readyIntInsts;
/** List of ready floating point instructions. */
ReadyInstQueue readyFloatInsts;
/** List of ready branch instructions. */
ReadyInstQueue readyBranchInsts;
/** List of ready miscellaneous instructions. */
ReadyInstQueue readyMiscInsts;
/** List of squashed instructions (which are still valid and in IQ).
* Implemented using a priority queue; the entries must contain both
* the IQ index and sequence number of each instruction so that
* ordering based on sequence numbers can be used.
*/
ReadyInstQueue squashedInsts;
/** List of non-speculative instructions that will be scheduled
* once the IQ gets a signal from commit. While it's redundant to
* have the key be a part of the value (the sequence number is stored
* inside of DynInst), when these instructions are woken up only
* the sequence number will be available. Thus it is most efficient to be
* able to search by the sequence number alone.
*/
std::map<InstSeqNum, DynInstPtr> nonSpecInsts;
typedef typename std::map<InstSeqNum, DynInstPtr>::iterator non_spec_it_t;
/** Number of free IQ entries left. */
unsigned freeEntries;
/** The number of entries in the instruction queue. */
unsigned numEntries;
/** The number of integer instructions that can be issued in one
* cycle.
*/
unsigned intWidth;
/** The number of floating point instructions that can be issued
* in one cycle.
*/
unsigned floatWidth;
/** The number of branches that can be issued in one cycle. */
unsigned branchWidth;
/** The number of memory instructions that can be issued in one cycle. */
unsigned memoryWidth;
/** The total number of instructions that can be issued in one cycle. */
unsigned totalWidth;
//The number of physical registers in the CPU.
unsigned numPhysRegs;
/** The number of physical integer registers in the CPU. */
unsigned numPhysIntRegs;
/** The number of floating point registers in the CPU. */
unsigned numPhysFloatRegs;
/** Delay between commit stage and the IQ.
* @todo: Make there be a distinction between the delays within IEW.
*/
unsigned commitToIEWDelay;
//////////////////////////////////
// Variables needed for squashing
//////////////////////////////////
/** The sequence number of the squashed instruction. */
InstSeqNum squashedSeqNum;
/** Iterator that points to the youngest instruction in the IQ. */
ListIt tail;
/** Iterator that points to the last instruction that has been squashed.
* This will not be valid unless the IQ is in the process of squashing.
*/
ListIt squashIt;
///////////////////////////////////
// Dependency graph stuff
///////////////////////////////////
class DependencyEntry
{
public:
DynInstPtr inst;
//Might want to include data about what arch. register the
//dependence is waiting on.
DependencyEntry *next;
//This function, and perhaps this whole class, stand out a little
//bit as they don't fit a classification well. I want access
//to the underlying structure of the linked list, yet at
//the same time it feels like this should be something abstracted
//away. So for now it will sit here, within the IQ, until
//a better implementation is decided upon.
// This function probably shouldn't be within the entry...
void insert(DynInstPtr &new_inst);
void remove(DynInstPtr &inst_to_remove);
// Debug variable, remove when done testing.
static unsigned mem_alloc_counter;
};
/** Array of linked lists. Each linked list is a list of all the
* instructions that depend upon a given register. The actual
* register's index is used to index into the graph; ie all
* instructions in flight that are dependent upon r34 will be
* in the linked list of dependGraph[34].
*/
DependencyEntry *dependGraph;
/** A cache of the recently woken registers. It is 1 if the register
* has been woken up recently, and 0 if the register has been added
* to the dependency graph and has not yet received its value. It
* is basically a secondary scoreboard, and should pretty much mirror
* the scoreboard that exists in the rename map.
*/
vector<bool> regScoreboard;
bool addToDependents(DynInstPtr &new_inst);
void insertDependency(DynInstPtr &new_inst);
void createDependency(DynInstPtr &new_inst);
void addIfReady(DynInstPtr &inst);
private:
/** Debugging function to count how many entries are in the IQ. It does
* a linear walk through the instructions, so do not call this function
* during normal execution.
*/
int countInsts();
/** Debugging function to dump out the dependency graph.
*/
void dumpDependGraph();
/** Debugging function to dump all the list sizes, as well as print
* out the list of nonspeculative instructions. Should not be used
* in any other capacity, but it has no harmful sideaffects.
*/
void dumpLists();
Stats::Scalar<> iqInstsAdded;
Stats::Scalar<> iqNonSpecInstsAdded;
// Stats::Scalar<> iqIntInstsAdded;
Stats::Scalar<> iqIntInstsIssued;
// Stats::Scalar<> iqFloatInstsAdded;
Stats::Scalar<> iqFloatInstsIssued;
// Stats::Scalar<> iqBranchInstsAdded;
Stats::Scalar<> iqBranchInstsIssued;
// Stats::Scalar<> iqMemInstsAdded;
Stats::Scalar<> iqMemInstsIssued;
// Stats::Scalar<> iqMiscInstsAdded;
Stats::Scalar<> iqMiscInstsIssued;
Stats::Scalar<> iqSquashedInstsIssued;
Stats::Scalar<> iqLoopSquashStalls;
Stats::Scalar<> iqSquashedInstsExamined;
Stats::Scalar<> iqSquashedOperandsExamined;
Stats::Scalar<> iqSquashedNonSpecRemoved;
};
#endif //__CPU_O3_CPU_INST_QUEUE_HH__