blob: 8b273d59100b6f18b5c4ce2c5c2e400670657632 [file] [log] [blame]
/*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Nathan Binkert
* Steve Reinhardt
* Ali Saidi
*/
#include <unistd.h>
#include <fcntl.h>
#include <string>
#include "arch/remote_gdb.hh"
#include "base/intmath.hh"
#include "base/loader/object_file.hh"
#include "base/loader/symtab.hh"
#include "base/statistics.hh"
#include "config/full_system.hh"
#include "cpu/thread_context.hh"
#include "mem/page_table.hh"
#include "mem/physical.hh"
#include "mem/translating_port.hh"
#include "sim/builder.hh"
#include "sim/process.hh"
#include "sim/process_impl.hh"
#include "sim/stats.hh"
#include "sim/syscall_emul.hh"
#include "sim/system.hh"
#include "arch/isa_specific.hh"
#if THE_ISA == ALPHA_ISA
#include "arch/alpha/linux/process.hh"
#include "arch/alpha/tru64/process.hh"
#elif THE_ISA == SPARC_ISA
#include "arch/sparc/linux/process.hh"
#include "arch/sparc/solaris/process.hh"
#elif THE_ISA == MIPS_ISA
#include "arch/mips/linux/process.hh"
#elif THE_ISA == X86_ISA
#include "arch/x86/linux/process.hh"
#else
#error "THE_ISA not set"
#endif
using namespace std;
using namespace TheISA;
//
// The purpose of this code is to fake the loader & syscall mechanism
// when there's no OS: thus there's no resone to use it in FULL_SYSTEM
// mode when we do have an OS
//
#if FULL_SYSTEM
#error "process.cc not compatible with FULL_SYSTEM"
#endif
// current number of allocated processes
int num_processes = 0;
Process::Process(const string &nm,
System *_system,
int stdin_fd, // initial I/O descriptors
int stdout_fd,
int stderr_fd)
: SimObject(nm), system(_system)
{
// initialize first 3 fds (stdin, stdout, stderr)
fd_map[STDIN_FILENO] = stdin_fd;
fd_map[STDOUT_FILENO] = stdout_fd;
fd_map[STDERR_FILENO] = stderr_fd;
// mark remaining fds as free
for (int i = 3; i <= MAX_FD; ++i) {
fd_map[i] = -1;
}
mmap_start = mmap_end = 0;
nxm_start = nxm_end = 0;
pTable = new PageTable(system);
// other parameters will be initialized when the program is loaded
}
void
Process::regStats()
{
using namespace Stats;
num_syscalls
.name(name() + ".PROG:num_syscalls")
.desc("Number of system calls")
;
}
//
// static helper functions
//
int
Process::openInputFile(const string &filename)
{
int fd = open(filename.c_str(), O_RDONLY);
if (fd == -1) {
perror(NULL);
cerr << "unable to open \"" << filename << "\" for reading\n";
fatal("can't open input file");
}
return fd;
}
int
Process::openOutputFile(const string &filename)
{
int fd = open(filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0774);
if (fd == -1) {
perror(NULL);
cerr << "unable to open \"" << filename << "\" for writing\n";
fatal("can't open output file");
}
return fd;
}
int
Process::registerThreadContext(ThreadContext *tc)
{
// add to list
int myIndex = threadContexts.size();
threadContexts.push_back(tc);
// RemoteGDB *rgdb = new RemoteGDB(system, tc);
// GDBListener *gdbl = new GDBListener(rgdb, 7000 + myIndex);
// gdbl->listen();
//gdbl->accept();
// remoteGDB.push_back(rgdb);
// return CPU number to caller
return myIndex;
}
void
Process::startup()
{
if (threadContexts.empty())
fatal("Process %s is not associated with any CPUs!\n", name());
// first thread context for this process... initialize & enable
ThreadContext *tc = threadContexts[0];
// mark this context as active so it will start ticking.
tc->activate(0);
Port *mem_port;
mem_port = system->physmem->getPort("functional");
initVirtMem = new TranslatingPort("process init port", this,
TranslatingPort::Always);
mem_port->setPeer(initVirtMem);
initVirtMem->setPeer(mem_port);
}
void
Process::replaceThreadContext(ThreadContext *tc, int tcIndex)
{
if (tcIndex >= threadContexts.size()) {
panic("replaceThreadContext: bad tcIndex, %d >= %d\n",
tcIndex, threadContexts.size());
}
threadContexts[tcIndex] = tc;
}
// map simulator fd sim_fd to target fd tgt_fd
void
Process::dup_fd(int sim_fd, int tgt_fd)
{
if (tgt_fd < 0 || tgt_fd > MAX_FD)
panic("Process::dup_fd tried to dup past MAX_FD (%d)", tgt_fd);
fd_map[tgt_fd] = sim_fd;
}
// generate new target fd for sim_fd
int
Process::alloc_fd(int sim_fd)
{
// in case open() returns an error, don't allocate a new fd
if (sim_fd == -1)
return -1;
// find first free target fd
for (int free_fd = 0; free_fd < MAX_FD; ++free_fd) {
if (fd_map[free_fd] == -1) {
fd_map[free_fd] = sim_fd;
return free_fd;
}
}
panic("Process::alloc_fd: out of file descriptors!");
}
// free target fd (e.g., after close)
void
Process::free_fd(int tgt_fd)
{
if (fd_map[tgt_fd] == -1)
warn("Process::free_fd: request to free unused fd %d", tgt_fd);
fd_map[tgt_fd] = -1;
}
// look up simulator fd for given target fd
int
Process::sim_fd(int tgt_fd)
{
if (tgt_fd > MAX_FD)
return -1;
return fd_map[tgt_fd];
}
bool
Process::checkAndAllocNextPage(Addr vaddr)
{
// if this is an initial write we might not have
if (vaddr >= stack_min && vaddr < stack_base) {
pTable->allocate(roundDown(vaddr, VMPageSize), VMPageSize);
return true;
}
// We've accessed the next page of the stack, so extend the stack
// to cover it.
if(vaddr < stack_min && vaddr >= stack_min - TheISA::PageBytes)
{
stack_min -= TheISA::PageBytes;
if(stack_base - stack_min > 8*1024*1024)
fatal("Over max stack size for one thread\n");
pTable->allocate(stack_min, TheISA::PageBytes);
warn("Increasing stack size by one page.");
return true;
}
return false;
}
void
Process::serialize(std::ostream &os)
{
SERIALIZE_SCALAR(initialContextLoaded);
SERIALIZE_SCALAR(brk_point);
SERIALIZE_SCALAR(stack_base);
SERIALIZE_SCALAR(stack_size);
SERIALIZE_SCALAR(stack_min);
SERIALIZE_SCALAR(next_thread_stack_base);
SERIALIZE_SCALAR(mmap_start);
SERIALIZE_SCALAR(mmap_end);
SERIALIZE_SCALAR(nxm_start);
SERIALIZE_SCALAR(nxm_end);
SERIALIZE_ARRAY(fd_map, MAX_FD);
pTable->serialize(os);
}
void
Process::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_SCALAR(initialContextLoaded);
UNSERIALIZE_SCALAR(brk_point);
UNSERIALIZE_SCALAR(stack_base);
UNSERIALIZE_SCALAR(stack_size);
UNSERIALIZE_SCALAR(stack_min);
UNSERIALIZE_SCALAR(next_thread_stack_base);
UNSERIALIZE_SCALAR(mmap_start);
UNSERIALIZE_SCALAR(mmap_end);
UNSERIALIZE_SCALAR(nxm_start);
UNSERIALIZE_SCALAR(nxm_end);
UNSERIALIZE_ARRAY(fd_map, MAX_FD);
pTable->unserialize(cp, section);
}
//
// need to declare these here since there is no concrete Process type
// that can be constructed (i.e., no REGISTER_SIM_OBJECT() macro call,
// which is where these get declared for concrete types).
//
DEFINE_SIM_OBJECT_CLASS_NAME("Process", Process)
////////////////////////////////////////////////////////////////////////
//
// LiveProcess member definitions
//
////////////////////////////////////////////////////////////////////////
LiveProcess::LiveProcess(const string &nm, ObjectFile *_objFile,
System *_system,
int stdin_fd, int stdout_fd, int stderr_fd,
vector<string> &_argv, vector<string> &_envp,
const string &_cwd,
uint64_t _uid, uint64_t _euid,
uint64_t _gid, uint64_t _egid,
uint64_t _pid, uint64_t _ppid)
: Process(nm, _system, stdin_fd, stdout_fd, stderr_fd),
objFile(_objFile), argv(_argv), envp(_envp), cwd(_cwd)
{
__uid = _uid;
__euid = _euid;
__gid = _gid;
__egid = _egid;
__pid = _pid;
__ppid = _ppid;
prog_fname = argv[0];
// load up symbols, if any... these may be used for debugging or
// profiling.
if (!debugSymbolTable) {
debugSymbolTable = new SymbolTable();
if (!objFile->loadGlobalSymbols(debugSymbolTable) ||
!objFile->loadLocalSymbols(debugSymbolTable)) {
// didn't load any symbols
delete debugSymbolTable;
debugSymbolTable = NULL;
}
}
}
void
LiveProcess::argsInit(int intSize, int pageSize)
{
Process::startup();
// load object file into target memory
objFile->loadSections(initVirtMem);
// Calculate how much space we need for arg & env arrays.
int argv_array_size = intSize * (argv.size() + 1);
int envp_array_size = intSize * (envp.size() + 1);
int arg_data_size = 0;
for (int i = 0; i < argv.size(); ++i) {
arg_data_size += argv[i].size() + 1;
}
int env_data_size = 0;
for (int i = 0; i < envp.size(); ++i) {
env_data_size += envp[i].size() + 1;
}
int space_needed =
argv_array_size + envp_array_size + arg_data_size + env_data_size;
if (space_needed < 32*1024)
space_needed = 32*1024;
// set bottom of stack
stack_min = stack_base - space_needed;
// align it
stack_min = roundDown(stack_min, pageSize);
stack_size = stack_base - stack_min;
// map memory
pTable->allocate(stack_min, roundUp(stack_size, pageSize));
// map out initial stack contents
Addr argv_array_base = stack_min + intSize; // room for argc
Addr envp_array_base = argv_array_base + argv_array_size;
Addr arg_data_base = envp_array_base + envp_array_size;
Addr env_data_base = arg_data_base + arg_data_size;
// write contents to stack
uint64_t argc = argv.size();
if (intSize == 8)
argc = htog((uint64_t)argc);
else if (intSize == 4)
argc = htog((uint32_t)argc);
else
panic("Unknown int size");
initVirtMem->writeBlob(stack_min, (uint8_t*)&argc, intSize);
copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
threadContexts[0]->setIntReg(ArgumentReg0, argc);
threadContexts[0]->setIntReg(ArgumentReg1, argv_array_base);
threadContexts[0]->setIntReg(StackPointerReg, stack_min);
Addr prog_entry = objFile->entryPoint();
threadContexts[0]->setPC(prog_entry);
threadContexts[0]->setNextPC(prog_entry + sizeof(MachInst));
#if THE_ISA != ALPHA_ISA //e.g. MIPS or Sparc
threadContexts[0]->setNextNPC(prog_entry + (2 * sizeof(MachInst)));
#endif
num_processes++;
}
void
LiveProcess::syscall(int64_t callnum, ThreadContext *tc)
{
num_syscalls++;
SyscallDesc *desc = getDesc(callnum);
if (desc == NULL)
fatal("Syscall %d out of range", callnum);
desc->doSyscall(callnum, this, tc);
}
LiveProcess *
LiveProcess::create(const std::string &nm, System *system, int stdin_fd,
int stdout_fd, int stderr_fd, std::string executable,
std::vector<std::string> &argv,
std::vector<std::string> &envp,
const std::string &cwd,
uint64_t _uid, uint64_t _euid,
uint64_t _gid, uint64_t _egid,
uint64_t _pid, uint64_t _ppid)
{
LiveProcess *process = NULL;
ObjectFile *objFile = createObjectFile(executable);
if (objFile == NULL) {
fatal("Can't load object file %s", executable);
}
if (objFile->isDynamic())
fatal("Object file is a dynamic executable however only static "
"executables are supported!\n Please recompile your "
"executable as a static binary and try again.\n");
#if THE_ISA == ALPHA_ISA
if (objFile->getArch() != ObjectFile::Alpha)
fatal("Object file architecture does not match compiled ISA (Alpha).");
switch (objFile->getOpSys()) {
case ObjectFile::Tru64:
process = new AlphaTru64Process(nm, objFile, system,
stdin_fd, stdout_fd, stderr_fd,
argv, envp, cwd,
_uid, _euid, _gid, _egid, _pid, _ppid);
break;
case ObjectFile::Linux:
process = new AlphaLinuxProcess(nm, objFile, system,
stdin_fd, stdout_fd, stderr_fd,
argv, envp, cwd,
_uid, _euid, _gid, _egid, _pid, _ppid);
break;
default:
fatal("Unknown/unsupported operating system.");
}
#elif THE_ISA == SPARC_ISA
if (objFile->getArch() != ObjectFile::SPARC64 && objFile->getArch() != ObjectFile::SPARC32)
fatal("Object file architecture does not match compiled ISA (SPARC).");
switch (objFile->getOpSys()) {
case ObjectFile::Linux:
if (objFile->getArch() == ObjectFile::SPARC64) {
process = new Sparc64LinuxProcess(nm, objFile, system,
stdin_fd, stdout_fd, stderr_fd,
argv, envp, cwd,
_uid, _euid, _gid,
_egid, _pid, _ppid);
} else {
process = new Sparc32LinuxProcess(nm, objFile, system,
stdin_fd, stdout_fd, stderr_fd,
argv, envp, cwd,
_uid, _euid, _gid,
_egid, _pid, _ppid);
}
break;
case ObjectFile::Solaris:
process = new SparcSolarisProcess(nm, objFile, system,
stdin_fd, stdout_fd, stderr_fd,
argv, envp, cwd,
_uid, _euid, _gid, _egid, _pid, _ppid);
break;
default:
fatal("Unknown/unsupported operating system.");
}
#elif THE_ISA == X86_ISA
if (objFile->getArch() != ObjectFile::X86)
fatal("Object file architecture does not match compiled ISA (x86).");
switch (objFile->getOpSys()) {
case ObjectFile::Linux:
process = new X86LinuxProcess(nm, objFile, system,
stdin_fd, stdout_fd, stderr_fd,
argv, envp, cwd,
_uid, _euid, _gid,
_egid, _pid, _ppid);
break;
default:
fatal("Unknown/unsupported operating system.");
}
#elif THE_ISA == MIPS_ISA
if (objFile->getArch() != ObjectFile::Mips)
fatal("Object file architecture does not match compiled ISA (MIPS).");
switch (objFile->getOpSys()) {
case ObjectFile::Linux:
process = new MipsLinuxProcess(nm, objFile, system,
stdin_fd, stdout_fd, stderr_fd,
argv, envp, cwd,
_uid, _euid, _gid, _egid, _pid, _ppid);
break;
default:
fatal("Unknown/unsupported operating system.");
}
#else
#error "THE_ISA not set"
#endif
if (process == NULL)
fatal("Unknown error creating process object.");
return process;
}
BEGIN_DECLARE_SIM_OBJECT_PARAMS(LiveProcess)
VectorParam<string> cmd;
Param<string> executable;
Param<string> input;
Param<string> output;
VectorParam<string> env;
Param<string> cwd;
SimObjectParam<System *> system;
Param<uint64_t> uid;
Param<uint64_t> euid;
Param<uint64_t> gid;
Param<uint64_t> egid;
Param<uint64_t> pid;
Param<uint64_t> ppid;
END_DECLARE_SIM_OBJECT_PARAMS(LiveProcess)
BEGIN_INIT_SIM_OBJECT_PARAMS(LiveProcess)
INIT_PARAM(cmd, "command line (executable plus arguments)"),
INIT_PARAM(executable, "executable (overrides cmd[0] if set)"),
INIT_PARAM(input, "filename for stdin (dflt: use sim stdin)"),
INIT_PARAM(output, "filename for stdout/stderr (dflt: use sim stdout)"),
INIT_PARAM(env, "environment settings"),
INIT_PARAM(cwd, "current working directory"),
INIT_PARAM(system, "system"),
INIT_PARAM(uid, "user id"),
INIT_PARAM(euid, "effective user id"),
INIT_PARAM(gid, "group id"),
INIT_PARAM(egid, "effective group id"),
INIT_PARAM(pid, "process id"),
INIT_PARAM(ppid, "parent process id")
END_INIT_SIM_OBJECT_PARAMS(LiveProcess)
CREATE_SIM_OBJECT(LiveProcess)
{
string in = input;
string out = output;
// initialize file descriptors to default: same as simulator
int stdin_fd, stdout_fd, stderr_fd;
if (in == "stdin" || in == "cin")
stdin_fd = STDIN_FILENO;
else
stdin_fd = Process::openInputFile(input);
if (out == "stdout" || out == "cout")
stdout_fd = STDOUT_FILENO;
else if (out == "stderr" || out == "cerr")
stdout_fd = STDERR_FILENO;
else
stdout_fd = Process::openOutputFile(out);
stderr_fd = (stdout_fd != STDOUT_FILENO) ? stdout_fd : STDERR_FILENO;
return LiveProcess::create(getInstanceName(), system,
stdin_fd, stdout_fd, stderr_fd,
(string)executable == "" ? cmd[0] : executable,
cmd, env, cwd,
uid, euid, gid, egid, pid, ppid);
}
REGISTER_SIM_OBJECT("LiveProcess", LiveProcess)