blob: 201919850c0f995cfbd6c9c3e275808d475dfffa [file] [log] [blame]
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cassert>
#include "debug/RubyNetwork.hh"
#include "mem/protocol/MachineType.hh"
#include "mem/protocol/TopologyType.hh"
#include "mem/ruby/common/NetDest.hh"
#include "mem/ruby/network/BasicLink.hh"
#include "mem/ruby/network/BasicRouter.hh"
#include "mem/ruby/network/Network.hh"
#include "mem/ruby/network/Topology.hh"
#include "mem/ruby/slicc_interface/AbstractController.hh"
using namespace std;
const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
class BasicRouter;
// Note: In this file, we use the first 2*m_nodes SwitchIDs to
// represent the input and output endpoint links. These really are
// not 'switches', as they will not have a Switch object allocated for
// them. The first m_nodes SwitchIDs are the links into the network,
// the second m_nodes set of SwitchIDs represent the the output queues
// of the network.
// Helper functions based on chapter 29 of Cormen et al.
void extend_shortest_path(Matrix& current_dist, Matrix& latencies,
Matrix& inter_switches);
Matrix shortest_path(const Matrix& weights, Matrix& latencies,
Matrix& inter_switches);
bool link_is_shortest_path_to_node(SwitchID src, SwitchID next,
SwitchID final, const Matrix& weights, const Matrix& dist);
NetDest shortest_path_to_node(SwitchID src, SwitchID next,
const Matrix& weights, const Matrix& dist);
Topology::Topology(const Params *p)
: SimObject(p)
{
m_print_config = p->print_config;
m_number_of_switches = p->routers.size();
// initialize component latencies record
m_component_latencies.resize(0);
m_component_inter_switches.resize(0);
// Total nodes/controllers in network
// Must make sure this is called after the State Machine constructors
m_nodes = MachineType_base_number(MachineType_NUM);
assert(m_nodes > 1);
if (m_nodes != params()->ext_links.size() &&
m_nodes != params()->ext_links.size()) {
fatal("m_nodes (%d) != ext_links vector length (%d)\n",
m_nodes != params()->ext_links.size());
}
// analyze both the internal and external links, create data structures
// Note that the python created links are bi-directional, but that the
// topology and networks utilize uni-directional links. Thus each
// BasicLink is converted to two calls to add link, on for each direction
for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
i != params()->ext_links.end(); ++i) {
BasicExtLink *ext_link = (*i);
AbstractController *abs_cntrl = ext_link->params()->ext_node;
BasicRouter *router = ext_link->params()->int_node;
// Store the controller and ExtLink pointers for later
m_controller_vector.push_back(abs_cntrl);
m_ext_link_vector.push_back(ext_link);
int ext_idx1 = abs_cntrl->params()->cntrl_id;
int ext_idx2 = ext_idx1 + m_nodes;
int int_idx = router->params()->router_id + 2*m_nodes;
// create the internal uni-directional links in both directions
// the first direction is marked: In
addLink(ext_idx1, int_idx, ext_link, LinkDirection_In);
// the first direction is marked: Out
addLink(int_idx, ext_idx2, ext_link, LinkDirection_Out);
}
for (vector<BasicIntLink*>::const_iterator i = params()->int_links.begin();
i != params()->int_links.end(); ++i) {
BasicIntLink *int_link = (*i);
BasicRouter *router_a = int_link->params()->node_a;
BasicRouter *router_b = int_link->params()->node_b;
// Store the IntLink pointers for later
m_int_link_vector.push_back(int_link);
int a = router_a->params()->router_id + 2*m_nodes;
int b = router_b->params()->router_id + 2*m_nodes;
// create the internal uni-directional links in both directions
// the first direction is marked: In
addLink(a, b, int_link, LinkDirection_In);
// the second direction is marked: Out
addLink(b, a, int_link, LinkDirection_Out);
}
}
void
Topology::init()
{
}
void
Topology::initNetworkPtr(Network* net_ptr)
{
for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
i != params()->ext_links.end(); ++i) {
BasicExtLink *ext_link = (*i);
AbstractController *abs_cntrl = ext_link->params()->ext_node;
abs_cntrl->initNetworkPtr(net_ptr);
}
}
void
Topology::createLinks(Network *net, bool isReconfiguration)
{
// Find maximum switchID
SwitchID max_switch_id = 0;
for (LinkMap::const_iterator i = m_link_map.begin();
i != m_link_map.end(); ++i) {
std::pair<int, int> src_dest = (*i).first;
max_switch_id = max(max_switch_id, src_dest.first);
max_switch_id = max(max_switch_id, src_dest.second);
}
// Initialize weight, latency, and inter switched vectors
Matrix topology_weights;
int num_switches = max_switch_id+1;
topology_weights.resize(num_switches);
m_component_latencies.resize(num_switches);
m_component_inter_switches.resize(num_switches);
for (int i = 0; i < topology_weights.size(); i++) {
topology_weights[i].resize(num_switches);
m_component_latencies[i].resize(num_switches);
m_component_inter_switches[i].resize(num_switches);
for (int j = 0; j < topology_weights[i].size(); j++) {
topology_weights[i][j] = INFINITE_LATENCY;
// initialize to invalid values
m_component_latencies[i][j] = -1;
// initially assume direct connections / no intermediate
// switches between components
m_component_inter_switches[i][j] = 0;
}
}
// Set identity weights to zero
for (int i = 0; i < topology_weights.size(); i++) {
topology_weights[i][i] = 0;
}
// Fill in the topology weights and bandwidth multipliers
for (LinkMap::const_iterator i = m_link_map.begin();
i != m_link_map.end(); ++i) {
std::pair<int, int> src_dest = (*i).first;
BasicLink* link = (*i).second.link;
int src = src_dest.first;
int dst = src_dest.second;
m_component_latencies[src][dst] = link->m_latency;
topology_weights[src][dst] = link->m_weight;
}
// Walk topology and hookup the links
Matrix dist = shortest_path(topology_weights, m_component_latencies,
m_component_inter_switches);
for (int i = 0; i < topology_weights.size(); i++) {
for (int j = 0; j < topology_weights[i].size(); j++) {
int weight = topology_weights[i][j];
if (weight > 0 && weight != INFINITE_LATENCY) {
NetDest destination_set = shortest_path_to_node(i, j,
topology_weights, dist);
makeLink(net, i, j, destination_set, isReconfiguration);
}
}
}
}
void
Topology::addLink(SwitchID src, SwitchID dest, BasicLink* link,
LinkDirection dir)
{
assert(src <= m_number_of_switches+m_nodes+m_nodes);
assert(dest <= m_number_of_switches+m_nodes+m_nodes);
std::pair<int, int> src_dest_pair;
LinkEntry link_entry;
src_dest_pair.first = src;
src_dest_pair.second = dest;
link_entry.direction = dir;
link_entry.link = link;
m_link_map[src_dest_pair] = link_entry;
}
void
Topology::makeLink(Network *net, SwitchID src, SwitchID dest,
const NetDest& routing_table_entry, bool isReconfiguration)
{
// Make sure we're not trying to connect two end-point nodes
// directly together
assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
std::pair<int, int> src_dest;
LinkEntry link_entry;
if (src < m_nodes) {
src_dest.first = src;
src_dest.second = dest;
link_entry = m_link_map[src_dest];
net->makeInLink(src, dest - (2 * m_nodes), link_entry.link,
link_entry.direction,
routing_table_entry,
isReconfiguration);
} else if (dest < 2*m_nodes) {
assert(dest >= m_nodes);
NodeID node = dest - m_nodes;
src_dest.first = src;
src_dest.second = dest;
link_entry = m_link_map[src_dest];
net->makeOutLink(src - (2 * m_nodes), node, link_entry.link,
link_entry.direction,
routing_table_entry,
isReconfiguration);
} else {
assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
src_dest.first = src;
src_dest.second = dest;
link_entry = m_link_map[src_dest];
net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes),
link_entry.link, link_entry.direction,
routing_table_entry, isReconfiguration);
}
}
void
Topology::printStats(std::ostream& out) const
{
for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
m_controller_vector[cntrl]->printStats(out);
}
}
void
Topology::clearStats()
{
for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
m_controller_vector[cntrl]->clearStats();
}
}
void
Topology::printConfig(std::ostream& out) const
{
if (m_print_config == false)
return;
assert(m_component_latencies.size() > 0);
out << "--- Begin Topology Print ---" << endl
<< endl
<< "Topology print ONLY indicates the _NETWORK_ latency between two "
<< "machines" << endl
<< "It does NOT include the latency within the machines" << endl
<< endl;
for (int m = 0; m < MachineType_NUM; m++) {
int i_end = MachineType_base_count((MachineType)m);
for (int i = 0; i < i_end; i++) {
MachineID cur_mach = {(MachineType)m, i};
out << cur_mach << " Network Latencies" << endl;
for (int n = 0; n < MachineType_NUM; n++) {
int j_end = MachineType_base_count((MachineType)n);
for (int j = 0; j < j_end; j++) {
MachineID dest_mach = {(MachineType)n, j};
if (cur_mach == dest_mach)
continue;
int src = MachineType_base_number((MachineType)m) + i;
int dst = MachineType_base_number(MachineType_NUM) +
MachineType_base_number((MachineType)n) + j;
int link_latency = m_component_latencies[src][dst];
int intermediate_switches =
m_component_inter_switches[src][dst];
// NOTE switches are assumed to have single
// cycle latency
out << " " << cur_mach << " -> " << dest_mach
<< " net_lat: "
<< link_latency + intermediate_switches << endl;
}
}
out << endl;
}
}
out << "--- End Topology Print ---" << endl;
}
// The following all-pairs shortest path algorithm is based on the
// discussion from Cormen et al., Chapter 26.1.
void
extend_shortest_path(Matrix& current_dist, Matrix& latencies,
Matrix& inter_switches)
{
bool change = true;
int nodes = current_dist.size();
while (change) {
change = false;
for (int i = 0; i < nodes; i++) {
for (int j = 0; j < nodes; j++) {
int minimum = current_dist[i][j];
int previous_minimum = minimum;
int intermediate_switch = -1;
for (int k = 0; k < nodes; k++) {
minimum = min(minimum,
current_dist[i][k] + current_dist[k][j]);
if (previous_minimum != minimum) {
intermediate_switch = k;
inter_switches[i][j] =
inter_switches[i][k] +
inter_switches[k][j] + 1;
}
previous_minimum = minimum;
}
if (current_dist[i][j] != minimum) {
change = true;
current_dist[i][j] = minimum;
assert(intermediate_switch >= 0);
assert(intermediate_switch < latencies[i].size());
latencies[i][j] = latencies[i][intermediate_switch] +
latencies[intermediate_switch][j];
}
}
}
}
}
Matrix
shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches)
{
Matrix dist = weights;
extend_shortest_path(dist, latencies, inter_switches);
return dist;
}
bool
link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final,
const Matrix& weights, const Matrix& dist)
{
return weights[src][next] + dist[next][final] == dist[src][final];
}
NetDest
shortest_path_to_node(SwitchID src, SwitchID next, const Matrix& weights,
const Matrix& dist)
{
NetDest result;
int d = 0;
int machines;
int max_machines;
machines = MachineType_NUM;
max_machines = MachineType_base_number(MachineType_NUM);
for (int m = 0; m < machines; m++) {
for (int i = 0; i < MachineType_base_count((MachineType)m); i++) {
// we use "d+max_machines" below since the "destination"
// switches for the machines are numbered
// [MachineType_base_number(MachineType_NUM)...
// 2*MachineType_base_number(MachineType_NUM)-1] for the
// component network
if (link_is_shortest_path_to_node(src, next, d + max_machines,
weights, dist)) {
MachineID mach = {(MachineType)m, i};
result.add(mach);
}
d++;
}
}
DPRINTF(RubyNetwork, "Returning shortest path\n"
"(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
"src: %d, next: %d, result: %s\n",
(src-(2*max_machines)), (next-(2*max_machines)),
src, next, result);
return result;
}
Topology *
TopologyParams::create()
{
return new Topology(this);
}