blob: e966e8e83b1daa841dc18a2fdf69d0108b3c9b0b [file] [log] [blame]
/*
* Copyright (c) 2012 ARM Limited
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2007 MIPS Technologies, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Korey Sewell
*
*/
#include <algorithm>
#include "arch/utility.hh"
#include "base/bigint.hh"
#include "config/the_isa.hh"
#include "cpu/inorder/resources/cache_unit.hh"
#include "cpu/inorder/resources/resource_list.hh"
#include "cpu/inorder/cpu.hh"
#include "cpu/inorder/first_stage.hh"
#include "cpu/inorder/inorder_dyn_inst.hh"
#include "cpu/inorder/pipeline_traits.hh"
#include "cpu/inorder/resource_pool.hh"
#include "cpu/inorder/thread_context.hh"
#include "cpu/inorder/thread_state.hh"
#include "cpu/activity.hh"
#include "cpu/base.hh"
#include "cpu/exetrace.hh"
#include "cpu/quiesce_event.hh"
#include "cpu/reg_class.hh"
#include "cpu/simple_thread.hh"
#include "cpu/thread_context.hh"
#include "debug/Activity.hh"
#include "debug/Drain.hh"
#include "debug/InOrderCPU.hh"
#include "debug/InOrderCachePort.hh"
#include "debug/Interrupt.hh"
#include "debug/Quiesce.hh"
#include "debug/RefCount.hh"
#include "debug/SkedCache.hh"
#include "params/InOrderCPU.hh"
#include "sim/full_system.hh"
#include "sim/process.hh"
#include "sim/stat_control.hh"
#include "sim/system.hh"
#if THE_ISA == ALPHA_ISA
#include "arch/alpha/osfpal.hh"
#endif
using namespace std;
using namespace TheISA;
using namespace ThePipeline;
InOrderCPU::CachePort::CachePort(CacheUnit *_cacheUnit,
const std::string& name) :
MasterPort(_cacheUnit->name() + name, _cacheUnit->cpu),
cacheUnit(_cacheUnit)
{ }
bool
InOrderCPU::CachePort::recvTimingResp(Packet *pkt)
{
if (pkt->isError())
DPRINTF(InOrderCachePort, "Got error packet back for address: %x\n",
pkt->getAddr());
else
cacheUnit->processCacheCompletion(pkt);
return true;
}
void
InOrderCPU::CachePort::recvRetry()
{
cacheUnit->recvRetry();
}
InOrderCPU::TickEvent::TickEvent(InOrderCPU *c)
: Event(CPU_Tick_Pri), cpu(c)
{ }
void
InOrderCPU::TickEvent::process()
{
cpu->tick();
}
const char *
InOrderCPU::TickEvent::description() const
{
return "InOrderCPU tick event";
}
InOrderCPU::CPUEvent::CPUEvent(InOrderCPU *_cpu, CPUEventType e_type,
Fault fault, ThreadID _tid, DynInstPtr inst,
CPUEventPri event_pri)
: Event(event_pri), cpu(_cpu)
{
setEvent(e_type, fault, _tid, inst);
}
std::string InOrderCPU::eventNames[NumCPUEvents] =
{
"ActivateThread",
"ActivateNextReadyThread",
"DeactivateThread",
"HaltThread",
"SuspendThread",
"Trap",
"Syscall",
"SquashFromMemStall",
"UpdatePCs"
};
void
InOrderCPU::CPUEvent::process()
{
switch (cpuEventType)
{
case ActivateThread:
cpu->activateThread(tid);
cpu->resPool->activateThread(tid);
break;
case ActivateNextReadyThread:
cpu->activateNextReadyThread();
break;
case DeactivateThread:
cpu->deactivateThread(tid);
cpu->resPool->deactivateThread(tid);
break;
case HaltThread:
cpu->haltThread(tid);
cpu->resPool->deactivateThread(tid);
break;
case SuspendThread:
cpu->suspendThread(tid);
cpu->resPool->suspendThread(tid);
break;
case SquashFromMemStall:
cpu->squashDueToMemStall(inst->squashingStage, inst->seqNum, tid);
cpu->resPool->squashDueToMemStall(inst, inst->squashingStage,
inst->seqNum, tid);
break;
case Trap:
DPRINTF(InOrderCPU, "Trapping CPU\n");
cpu->trap(fault, tid, inst);
cpu->resPool->trap(fault, tid, inst);
cpu->trapPending[tid] = false;
break;
case Syscall:
cpu->syscall(inst->syscallNum, tid);
cpu->resPool->trap(fault, tid, inst);
break;
default:
fatal("Unrecognized Event Type %s", eventNames[cpuEventType]);
}
cpu->cpuEventRemoveList.push(this);
}
const char *
InOrderCPU::CPUEvent::description() const
{
return "InOrderCPU event";
}
void
InOrderCPU::CPUEvent::scheduleEvent(Cycles delay)
{
assert(!scheduled() || squashed());
cpu->reschedule(this, cpu->clockEdge(delay), true);
}
void
InOrderCPU::CPUEvent::unscheduleEvent()
{
if (scheduled())
squash();
}
InOrderCPU::InOrderCPU(Params *params)
: BaseCPU(params),
cpu_id(params->cpu_id),
coreType("default"),
_status(Idle),
tickEvent(this),
stageWidth(params->stageWidth),
resPool(new ResourcePool(this, params)),
isa(numThreads, NULL),
timeBuffer(2 , 2),
dataPort(resPool->getDataUnit(), ".dcache_port"),
instPort(resPool->getInstUnit(), ".icache_port"),
removeInstsThisCycle(false),
activityRec(params->name, NumStages, 10, params->activity),
system(params->system),
#ifdef DEBUG
cpuEventNum(0),
resReqCount(0),
#endif // DEBUG
drainCount(0),
stageTracing(params->stageTracing),
lastRunningCycle(0),
instsPerSwitch(0)
{
cpu_params = params;
// Resize for Multithreading CPUs
thread.resize(numThreads);
ThreadID active_threads = params->workload.size();
if (FullSystem) {
active_threads = 1;
} else {
active_threads = params->workload.size();
if (active_threads > MaxThreads) {
panic("Workload Size too large. Increase the 'MaxThreads'"
"in your InOrder implementation or "
"edit your workload size.");
}
if (active_threads > 1) {
threadModel = (InOrderCPU::ThreadModel) params->threadModel;
if (threadModel == SMT) {
DPRINTF(InOrderCPU, "Setting Thread Model to SMT.\n");
} else if (threadModel == SwitchOnCacheMiss) {
DPRINTF(InOrderCPU, "Setting Thread Model to "
"Switch On Cache Miss\n");
}
} else {
threadModel = Single;
}
}
for (ThreadID tid = 0; tid < numThreads; ++tid) {
isa[tid] = params->isa[tid];
pc[tid].set(0);
lastCommittedPC[tid].set(0);
if (FullSystem) {
// SMT is not supported in FS mode yet.
assert(numThreads == 1);
thread[tid] = new Thread(this, 0, NULL);
} else {
if (tid < (ThreadID)params->workload.size()) {
DPRINTF(InOrderCPU, "Workload[%i] process is %#x\n",
tid, params->workload[tid]->progName());
thread[tid] =
new Thread(this, tid, params->workload[tid]);
} else {
//Allocate Empty thread so M5 can use later
//when scheduling threads to CPU
Process* dummy_proc = params->workload[0];
thread[tid] = new Thread(this, tid, dummy_proc);
}
// Eventually set this with parameters...
asid[tid] = tid;
}
// Setup the TC that will serve as the interface to the threads/CPU.
InOrderThreadContext *tc = new InOrderThreadContext;
tc->cpu = this;
tc->thread = thread[tid];
// Setup quiesce event.
this->thread[tid]->quiesceEvent = new EndQuiesceEvent(tc);
// Give the thread the TC.
thread[tid]->tc = tc;
thread[tid]->setFuncExeInst(0);
globalSeqNum[tid] = 1;
// Add the TC to the CPU's list of TC's.
this->threadContexts.push_back(tc);
}
// Initialize TimeBuffer Stage Queues
for (int stNum=0; stNum < NumStages - 1; stNum++) {
stageQueue[stNum] = new StageQueue(NumStages, NumStages);
stageQueue[stNum]->id(stNum);
}
// Set Up Pipeline Stages
for (int stNum=0; stNum < NumStages; stNum++) {
if (stNum == 0)
pipelineStage[stNum] = new FirstStage(params, stNum);
else
pipelineStage[stNum] = new PipelineStage(params, stNum);
pipelineStage[stNum]->setCPU(this);
pipelineStage[stNum]->setActiveThreads(&activeThreads);
pipelineStage[stNum]->setTimeBuffer(&timeBuffer);
// Take Care of 1st/Nth stages
if (stNum > 0)
pipelineStage[stNum]->setPrevStageQueue(stageQueue[stNum - 1]);
if (stNum < NumStages - 1)
pipelineStage[stNum]->setNextStageQueue(stageQueue[stNum]);
}
// Initialize thread specific variables
for (ThreadID tid = 0; tid < numThreads; tid++) {
archRegDepMap[tid].setCPU(this);
nonSpecInstActive[tid] = false;
nonSpecSeqNum[tid] = 0;
squashSeqNum[tid] = MaxAddr;
lastSquashCycle[tid] = 0;
memset(intRegs[tid], 0, sizeof(intRegs[tid]));
memset(floatRegs.i[tid], 0, sizeof(floatRegs.i[tid]));
#ifdef ISA_HAS_CC_REGS
memset(ccRegs[tid], 0, sizeof(ccRegs[tid]));
#endif
isa[tid]->clear();
// Define dummy instructions and resource requests to be used.
dummyInst[tid] = new InOrderDynInst(this,
thread[tid],
0,
tid,
asid[tid]);
dummyReq[tid] = new ResourceRequest(resPool->getResource(0));
if (FullSystem) {
// Use this dummy inst to force squashing behind every instruction
// in pipeline
dummyTrapInst[tid] = new InOrderDynInst(this, NULL, 0, 0, 0);
dummyTrapInst[tid]->seqNum = 0;
dummyTrapInst[tid]->squashSeqNum = 0;
dummyTrapInst[tid]->setTid(tid);
}
trapPending[tid] = false;
}
// InOrderCPU always requires an interrupt controller.
if (!params->switched_out && !interrupts) {
fatal("InOrderCPU %s has no interrupt controller.\n"
"Ensure createInterruptController() is called.\n", name());
}
dummyReqInst = new InOrderDynInst(this, NULL, 0, 0, 0);
dummyReqInst->setSquashed();
dummyReqInst->resetInstCount();
dummyBufferInst = new InOrderDynInst(this, NULL, 0, 0, 0);
dummyBufferInst->setSquashed();
dummyBufferInst->resetInstCount();
endOfSkedIt = skedCache.end();
frontEndSked = createFrontEndSked();
faultSked = createFaultSked();
lastRunningCycle = curCycle();
lockAddr = 0;
lockFlag = false;
// Schedule First Tick Event, CPU will reschedule itself from here on out.
scheduleTickEvent(Cycles(0));
}
InOrderCPU::~InOrderCPU()
{
delete resPool;
SkedCacheIt sked_it = skedCache.begin();
SkedCacheIt sked_end = skedCache.end();
while (sked_it != sked_end) {
delete (*sked_it).second;
sked_it++;
}
skedCache.clear();
}
m5::hash_map<InOrderCPU::SkedID, ThePipeline::RSkedPtr> InOrderCPU::skedCache;
RSkedPtr
InOrderCPU::createFrontEndSked()
{
RSkedPtr res_sked = new ResourceSked();
int stage_num = 0;
StageScheduler F(res_sked, stage_num++);
StageScheduler D(res_sked, stage_num++);
// FETCH
F.needs(FetchSeq, FetchSeqUnit::AssignNextPC);
F.needs(ICache, FetchUnit::InitiateFetch);
// DECODE
D.needs(ICache, FetchUnit::CompleteFetch);
D.needs(Decode, DecodeUnit::DecodeInst);
D.needs(BPred, BranchPredictor::PredictBranch);
D.needs(FetchSeq, FetchSeqUnit::UpdateTargetPC);
DPRINTF(SkedCache, "Resource Sked created for instruction Front End\n");
return res_sked;
}
RSkedPtr
InOrderCPU::createFaultSked()
{
RSkedPtr res_sked = new ResourceSked();
StageScheduler W(res_sked, NumStages - 1);
W.needs(Grad, GraduationUnit::CheckFault);
DPRINTF(SkedCache, "Resource Sked created for instruction Faults\n");
return res_sked;
}
RSkedPtr
InOrderCPU::createBackEndSked(DynInstPtr inst)
{
RSkedPtr res_sked = lookupSked(inst);
if (res_sked != NULL) {
DPRINTF(SkedCache, "Found %s in sked cache.\n",
inst->instName());
return res_sked;
} else {
res_sked = new ResourceSked();
}
int stage_num = ThePipeline::BackEndStartStage;
StageScheduler X(res_sked, stage_num++);
StageScheduler M(res_sked, stage_num++);
StageScheduler W(res_sked, stage_num++);
if (!inst->staticInst) {
warn_once("Static Instruction Object Not Set. Can't Create"
" Back End Schedule");
return NULL;
}
// EXECUTE
X.needs(RegManager, UseDefUnit::MarkDestRegs);
for (int idx=0; idx < inst->numSrcRegs(); idx++) {
if (!idx || !inst->isStore()) {
X.needs(RegManager, UseDefUnit::ReadSrcReg, idx);
}
}
//@todo: schedule non-spec insts to operate on this cycle
// as long as all previous insts are done
if ( inst->isNonSpeculative() ) {
// skip execution of non speculative insts until later
} else if ( inst->isMemRef() ) {
if ( inst->isLoad() ) {
X.needs(AGEN, AGENUnit::GenerateAddr);
}
} else if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
X.needs(MDU, MultDivUnit::StartMultDiv);
} else {
X.needs(ExecUnit, ExecutionUnit::ExecuteInst);
}
// MEMORY
if (!inst->isNonSpeculative()) {
if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
M.needs(MDU, MultDivUnit::EndMultDiv);
}
if ( inst->isLoad() ) {
M.needs(DCache, CacheUnit::InitiateReadData);
if (inst->splitInst)
M.needs(DCache, CacheUnit::InitSecondSplitRead);
} else if ( inst->isStore() ) {
for (int i = 1; i < inst->numSrcRegs(); i++ ) {
M.needs(RegManager, UseDefUnit::ReadSrcReg, i);
}
M.needs(AGEN, AGENUnit::GenerateAddr);
M.needs(DCache, CacheUnit::InitiateWriteData);
if (inst->splitInst)
M.needs(DCache, CacheUnit::InitSecondSplitWrite);
}
}
// WRITEBACK
if (!inst->isNonSpeculative()) {
if ( inst->isLoad() ) {
W.needs(DCache, CacheUnit::CompleteReadData);
if (inst->splitInst)
W.needs(DCache, CacheUnit::CompleteSecondSplitRead);
} else if ( inst->isStore() ) {
W.needs(DCache, CacheUnit::CompleteWriteData);
if (inst->splitInst)
W.needs(DCache, CacheUnit::CompleteSecondSplitWrite);
}
} else {
// Finally, Execute Speculative Data
if (inst->isMemRef()) {
if (inst->isLoad()) {
W.needs(AGEN, AGENUnit::GenerateAddr);
W.needs(DCache, CacheUnit::InitiateReadData);
if (inst->splitInst)
W.needs(DCache, CacheUnit::InitSecondSplitRead);
W.needs(DCache, CacheUnit::CompleteReadData);
if (inst->splitInst)
W.needs(DCache, CacheUnit::CompleteSecondSplitRead);
} else if (inst->isStore()) {
if ( inst->numSrcRegs() >= 2 ) {
W.needs(RegManager, UseDefUnit::ReadSrcReg, 1);
}
W.needs(AGEN, AGENUnit::GenerateAddr);
W.needs(DCache, CacheUnit::InitiateWriteData);
if (inst->splitInst)
W.needs(DCache, CacheUnit::InitSecondSplitWrite);
W.needs(DCache, CacheUnit::CompleteWriteData);
if (inst->splitInst)
W.needs(DCache, CacheUnit::CompleteSecondSplitWrite);
}
} else {
W.needs(ExecUnit, ExecutionUnit::ExecuteInst);
}
}
W.needs(Grad, GraduationUnit::CheckFault);
for (int idx=0; idx < inst->numDestRegs(); idx++) {
W.needs(RegManager, UseDefUnit::WriteDestReg, idx);
}
if (inst->isControl())
W.needs(BPred, BranchPredictor::UpdatePredictor);
W.needs(Grad, GraduationUnit::GraduateInst);
// Insert Back Schedule into our cache of
// resource schedules
addToSkedCache(inst, res_sked);
DPRINTF(SkedCache, "Back End Sked Created for instruction: %s (%08p)\n",
inst->instName(), inst->getMachInst());
res_sked->print();
return res_sked;
}
void
InOrderCPU::regStats()
{
/* Register the Resource Pool's stats here.*/
resPool->regStats();
/* Register for each Pipeline Stage */
for (int stage_num=0; stage_num < ThePipeline::NumStages; stage_num++) {
pipelineStage[stage_num]->regStats();
}
/* Register any of the InOrderCPU's stats here.*/
instsPerCtxtSwitch
.name(name() + ".instsPerContextSwitch")
.desc("Instructions Committed Per Context Switch")
.prereq(instsPerCtxtSwitch);
numCtxtSwitches
.name(name() + ".contextSwitches")
.desc("Number of context switches");
comLoads
.name(name() + ".comLoads")
.desc("Number of Load instructions committed");
comStores
.name(name() + ".comStores")
.desc("Number of Store instructions committed");
comBranches
.name(name() + ".comBranches")
.desc("Number of Branches instructions committed");
comNops
.name(name() + ".comNops")
.desc("Number of Nop instructions committed");
comNonSpec
.name(name() + ".comNonSpec")
.desc("Number of Non-Speculative instructions committed");
comInts
.name(name() + ".comInts")
.desc("Number of Integer instructions committed");
comFloats
.name(name() + ".comFloats")
.desc("Number of Floating Point instructions committed");
timesIdled
.name(name() + ".timesIdled")
.desc("Number of times that the entire CPU went into an idle state and"
" unscheduled itself")
.prereq(timesIdled);
idleCycles
.name(name() + ".idleCycles")
.desc("Number of cycles cpu's stages were not processed");
runCycles
.name(name() + ".runCycles")
.desc("Number of cycles cpu stages are processed.");
activity
.name(name() + ".activity")
.desc("Percentage of cycles cpu is active")
.precision(6);
activity = (runCycles / numCycles) * 100;
threadCycles
.init(numThreads)
.name(name() + ".threadCycles")
.desc("Total Number of Cycles A Thread Was Active in CPU (Per-Thread)");
smtCycles
.name(name() + ".smtCycles")
.desc("Total number of cycles that the CPU was in SMT-mode");
committedInsts
.init(numThreads)
.name(name() + ".committedInsts")
.desc("Number of Instructions committed (Per-Thread)");
committedOps
.init(numThreads)
.name(name() + ".committedOps")
.desc("Number of Ops committed (Per-Thread)");
smtCommittedInsts
.init(numThreads)
.name(name() + ".smtCommittedInsts")
.desc("Number of SMT Instructions committed (Per-Thread)");
totalCommittedInsts
.name(name() + ".committedInsts_total")
.desc("Number of Instructions committed (Total)");
cpi
.name(name() + ".cpi")
.desc("CPI: Cycles Per Instruction (Per-Thread)")
.precision(6);
cpi = numCycles / committedInsts;
smtCpi
.name(name() + ".smt_cpi")
.desc("CPI: Total SMT-CPI")
.precision(6);
smtCpi = smtCycles / smtCommittedInsts;
totalCpi
.name(name() + ".cpi_total")
.desc("CPI: Total CPI of All Threads")
.precision(6);
totalCpi = numCycles / totalCommittedInsts;
ipc
.name(name() + ".ipc")
.desc("IPC: Instructions Per Cycle (Per-Thread)")
.precision(6);
ipc = committedInsts / numCycles;
smtIpc
.name(name() + ".smt_ipc")
.desc("IPC: Total SMT-IPC")
.precision(6);
smtIpc = smtCommittedInsts / smtCycles;
totalIpc
.name(name() + ".ipc_total")
.desc("IPC: Total IPC of All Threads")
.precision(6);
totalIpc = totalCommittedInsts / numCycles;
BaseCPU::regStats();
}
void
InOrderCPU::tick()
{
DPRINTF(InOrderCPU, "\n\nInOrderCPU: Ticking main, InOrderCPU.\n");
++numCycles;
checkForInterrupts();
bool pipes_idle = true;
//Tick each of the stages
for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
pipelineStage[stNum]->tick();
pipes_idle = pipes_idle && pipelineStage[stNum]->idle;
}
if (pipes_idle)
idleCycles++;
else
runCycles++;
// Now advance the time buffers one tick
timeBuffer.advance();
for (int sqNum=0; sqNum < NumStages - 1; sqNum++) {
stageQueue[sqNum]->advance();
}
activityRec.advance();
// Any squashed events, or insts then remove them now
cleanUpRemovedEvents();
cleanUpRemovedInsts();
// Re-schedule CPU for this cycle
if (!tickEvent.scheduled()) {
if (_status == SwitchedOut) {
// increment stat
lastRunningCycle = curCycle();
} else if (!activityRec.active()) {
DPRINTF(InOrderCPU, "sleeping CPU.\n");
lastRunningCycle = curCycle();
timesIdled++;
} else {
//Tick next_tick = curTick() + cycles(1);
//tickEvent.schedule(next_tick);
schedule(&tickEvent, clockEdge(Cycles(1)));
DPRINTF(InOrderCPU, "Scheduled CPU for next tick @ %i.\n",
clockEdge(Cycles(1)));
}
}
tickThreadStats();
updateThreadPriority();
}
void
InOrderCPU::init()
{
BaseCPU::init();
for (ThreadID tid = 0; tid < numThreads; ++tid) {
// Set noSquashFromTC so that the CPU doesn't squash when initially
// setting up registers.
thread[tid]->noSquashFromTC = true;
// Initialise the ThreadContext's memory proxies
thread[tid]->initMemProxies(thread[tid]->getTC());
}
if (FullSystem && !params()->switched_out) {
for (ThreadID tid = 0; tid < numThreads; tid++) {
ThreadContext *src_tc = threadContexts[tid];
TheISA::initCPU(src_tc, src_tc->contextId());
}
}
// Clear noSquashFromTC.
for (ThreadID tid = 0; tid < numThreads; ++tid)
thread[tid]->noSquashFromTC = false;
// Call Initializiation Routine for Resource Pool
resPool->init();
}
void
InOrderCPU::verifyMemoryMode() const
{
if (!system->isTimingMode()) {
fatal("The in-order CPU requires the memory system to be in "
"'timing' mode.\n");
}
}
Fault
InOrderCPU::hwrei(ThreadID tid)
{
#if THE_ISA == ALPHA_ISA
// Need to clear the lock flag upon returning from an interrupt.
setMiscRegNoEffect(AlphaISA::MISCREG_LOCKFLAG, false, tid);
thread[tid]->kernelStats->hwrei();
// FIXME: XXX check for interrupts? XXX
#endif
return NoFault;
}
bool
InOrderCPU::simPalCheck(int palFunc, ThreadID tid)
{
#if THE_ISA == ALPHA_ISA
if (this->thread[tid]->kernelStats)
this->thread[tid]->kernelStats->callpal(palFunc,
this->threadContexts[tid]);
switch (palFunc) {
case PAL::halt:
halt();
if (--System::numSystemsRunning == 0)
exitSimLoop("all cpus halted");
break;
case PAL::bpt:
case PAL::bugchk:
if (this->system->breakpoint())
return false;
break;
}
#endif
return true;
}
void
InOrderCPU::checkForInterrupts()
{
for (int i = 0; i < threadContexts.size(); i++) {
ThreadContext *tc = threadContexts[i];
if (interrupts->checkInterrupts(tc)) {
Fault interrupt = interrupts->getInterrupt(tc);
if (interrupt != NoFault) {
DPRINTF(Interrupt, "Processing Intterupt for [tid:%i].\n",
tc->threadId());
ThreadID tid = tc->threadId();
interrupts->updateIntrInfo(tc);
// Squash from Last Stage in Pipeline
unsigned last_stage = NumStages - 1;
dummyTrapInst[tid]->squashingStage = last_stage;
pipelineStage[last_stage]->setupSquash(dummyTrapInst[tid],
tid);
// By default, setupSquash will always squash from stage + 1
pipelineStage[BackEndStartStage - 1]->setupSquash(dummyTrapInst[tid],
tid);
// Schedule Squash Through-out Resource Pool
resPool->scheduleEvent(
(InOrderCPU::CPUEventType)ResourcePool::SquashAll,
dummyTrapInst[tid], Cycles(0));
// Finally, Setup Trap to happen at end of cycle
trapContext(interrupt, tid, dummyTrapInst[tid]);
}
}
}
}
Fault
InOrderCPU::getInterrupts()
{
// Check if there are any outstanding interrupts
return interrupts->getInterrupt(threadContexts[0]);
}
void
InOrderCPU::processInterrupts(Fault interrupt)
{
// Check for interrupts here. For now can copy the code that
// exists within isa_fullsys_traits.hh. Also assume that thread 0
// is the one that handles the interrupts.
// @todo: Possibly consolidate the interrupt checking code.
// @todo: Allow other threads to handle interrupts.
assert(interrupt != NoFault);
interrupts->updateIntrInfo(threadContexts[0]);
DPRINTF(InOrderCPU, "Interrupt %s being handled\n", interrupt->name());
// Note: Context ID ok here? Impl. of FS mode needs to revisit this
trap(interrupt, threadContexts[0]->contextId(), dummyBufferInst);
}
void
InOrderCPU::trapContext(Fault fault, ThreadID tid, DynInstPtr inst,
Cycles delay)
{
scheduleCpuEvent(Trap, fault, tid, inst, delay);
trapPending[tid] = true;
}
void
InOrderCPU::trap(Fault fault, ThreadID tid, DynInstPtr inst)
{
fault->invoke(tcBase(tid), inst->staticInst);
removePipelineStalls(tid);
}
void
InOrderCPU::squashFromMemStall(DynInstPtr inst, ThreadID tid,
Cycles delay)
{
scheduleCpuEvent(SquashFromMemStall, NoFault, tid, inst, delay);
}
void
InOrderCPU::squashDueToMemStall(int stage_num, InstSeqNum seq_num,
ThreadID tid)
{
DPRINTF(InOrderCPU, "Squashing Pipeline Stages Due to Memory Stall...\n");
// Squash all instructions in each stage including
// instruction that caused the squash (seq_num - 1)
// NOTE: The stage bandwidth needs to be cleared so thats why
// the stalling instruction is squashed as well. The stalled
// instruction is previously placed in another intermediate buffer
// while it's stall is being handled.
InstSeqNum squash_seq_num = seq_num - 1;
for (int stNum=stage_num; stNum >= 0 ; stNum--) {
pipelineStage[stNum]->squashDueToMemStall(squash_seq_num, tid);
}
}
void
InOrderCPU::scheduleCpuEvent(CPUEventType c_event, Fault fault,
ThreadID tid, DynInstPtr inst,
Cycles delay, CPUEventPri event_pri)
{
CPUEvent *cpu_event = new CPUEvent(this, c_event, fault, tid, inst,
event_pri);
Tick sked_tick = clockEdge(delay);
DPRINTF(InOrderCPU, "Scheduling CPU Event (%s) for cycle %i, [tid:%i].\n",
eventNames[c_event], curTick() + delay, tid);
schedule(cpu_event, sked_tick);
// Broadcast event to the Resource Pool
// Need to reset tid just in case this is a dummy instruction
inst->setTid(tid);
// @todo: Is this really right? Should the delay not be passed on?
resPool->scheduleEvent(c_event, inst, Cycles(0), 0, tid);
}
bool
InOrderCPU::isThreadActive(ThreadID tid)
{
list<ThreadID>::iterator isActive =
std::find(activeThreads.begin(), activeThreads.end(), tid);
return (isActive != activeThreads.end());
}
bool
InOrderCPU::isThreadReady(ThreadID tid)
{
list<ThreadID>::iterator isReady =
std::find(readyThreads.begin(), readyThreads.end(), tid);
return (isReady != readyThreads.end());
}
bool
InOrderCPU::isThreadSuspended(ThreadID tid)
{
list<ThreadID>::iterator isSuspended =
std::find(suspendedThreads.begin(), suspendedThreads.end(), tid);
return (isSuspended != suspendedThreads.end());
}
void
InOrderCPU::activateNextReadyThread()
{
if (readyThreads.size() >= 1) {
ThreadID ready_tid = readyThreads.front();
// Activate in Pipeline
activateThread(ready_tid);
// Activate in Resource Pool
resPool->activateThread(ready_tid);
list<ThreadID>::iterator ready_it =
std::find(readyThreads.begin(), readyThreads.end(), ready_tid);
readyThreads.erase(ready_it);
} else {
DPRINTF(InOrderCPU,
"Attempting to activate new thread, but No Ready Threads to"
"activate.\n");
DPRINTF(InOrderCPU,
"Unable to switch to next active thread.\n");
}
}
void
InOrderCPU::activateThread(ThreadID tid)
{
if (isThreadSuspended(tid)) {
DPRINTF(InOrderCPU,
"Removing [tid:%i] from suspended threads list.\n", tid);
list<ThreadID>::iterator susp_it =
std::find(suspendedThreads.begin(), suspendedThreads.end(),
tid);
suspendedThreads.erase(susp_it);
}
if (threadModel == SwitchOnCacheMiss &&
numActiveThreads() == 1) {
DPRINTF(InOrderCPU,
"Ignoring activation of [tid:%i], since [tid:%i] is "
"already running.\n", tid, activeThreadId());
DPRINTF(InOrderCPU,"Placing [tid:%i] on ready threads list\n",
tid);
readyThreads.push_back(tid);
} else if (!isThreadActive(tid)) {
DPRINTF(InOrderCPU,
"Adding [tid:%i] to active threads list.\n", tid);
activeThreads.push_back(tid);
activateThreadInPipeline(tid);
thread[tid]->lastActivate = curTick();
tcBase(tid)->setStatus(ThreadContext::Active);
wakeCPU();
numCtxtSwitches++;
}
}
void
InOrderCPU::activateThreadInPipeline(ThreadID tid)
{
for (int stNum=0; stNum < NumStages; stNum++) {
pipelineStage[stNum]->activateThread(tid);
}
}
void
InOrderCPU::deactivateContext(ThreadID tid, Cycles delay)
{
DPRINTF(InOrderCPU,"[tid:%i]: Deactivating ...\n", tid);
scheduleCpuEvent(DeactivateThread, NoFault, tid, dummyInst[tid], delay);
// Be sure to signal that there's some activity so the CPU doesn't
// deschedule itself.
activityRec.activity();
_status = Running;
}
void
InOrderCPU::deactivateThread(ThreadID tid)
{
DPRINTF(InOrderCPU, "[tid:%i]: Calling deactivate thread.\n", tid);
if (isThreadActive(tid)) {
DPRINTF(InOrderCPU,"[tid:%i]: Removing from active threads list\n",
tid);
list<ThreadID>::iterator thread_it =
std::find(activeThreads.begin(), activeThreads.end(), tid);
removePipelineStalls(*thread_it);
activeThreads.erase(thread_it);
// Ideally, this should be triggered from the
// suspendContext/Thread functions
tcBase(tid)->setStatus(ThreadContext::Suspended);
}
assert(!isThreadActive(tid));
}
void
InOrderCPU::removePipelineStalls(ThreadID tid)
{
DPRINTF(InOrderCPU,"[tid:%i]: Removing all pipeline stalls\n",
tid);
for (int stNum = 0; stNum < NumStages ; stNum++) {
pipelineStage[stNum]->removeStalls(tid);
}
}
void
InOrderCPU::updateThreadPriority()
{
if (activeThreads.size() > 1)
{
//DEFAULT TO ROUND ROBIN SCHEME
//e.g. Move highest priority to end of thread list
list<ThreadID>::iterator list_begin = activeThreads.begin();
unsigned high_thread = *list_begin;
activeThreads.erase(list_begin);
activeThreads.push_back(high_thread);
}
}
inline void
InOrderCPU::tickThreadStats()
{
/** Keep track of cycles that each thread is active */
list<ThreadID>::iterator thread_it = activeThreads.begin();
while (thread_it != activeThreads.end()) {
threadCycles[*thread_it]++;
thread_it++;
}
// Keep track of cycles where SMT is active
if (activeThreads.size() > 1) {
smtCycles++;
}
}
void
InOrderCPU::activateContext(ThreadID tid, Cycles delay)
{
DPRINTF(InOrderCPU,"[tid:%i]: Activating ...\n", tid);
scheduleCpuEvent(ActivateThread, NoFault, tid, dummyInst[tid], delay);
// Be sure to signal that there's some activity so the CPU doesn't
// deschedule itself.
activityRec.activity();
_status = Running;
}
void
InOrderCPU::activateNextReadyContext(Cycles delay)
{
DPRINTF(InOrderCPU,"Activating next ready thread\n");
scheduleCpuEvent(ActivateNextReadyThread, NoFault, 0/*tid*/, dummyInst[0],
delay, ActivateNextReadyThread_Pri);
// Be sure to signal that there's some activity so the CPU doesn't
// deschedule itself.
activityRec.activity();
_status = Running;
}
void
InOrderCPU::haltContext(ThreadID tid)
{
DPRINTF(InOrderCPU, "[tid:%i]: Calling Halt Context...\n", tid);
scheduleCpuEvent(HaltThread, NoFault, tid, dummyInst[tid]);
activityRec.activity();
}
void
InOrderCPU::haltThread(ThreadID tid)
{
DPRINTF(InOrderCPU, "[tid:%i]: Placing on Halted Threads List...\n", tid);
deactivateThread(tid);
squashThreadInPipeline(tid);
haltedThreads.push_back(tid);
tcBase(tid)->setStatus(ThreadContext::Halted);
if (threadModel == SwitchOnCacheMiss) {
activateNextReadyContext();
}
}
void
InOrderCPU::suspendContext(ThreadID tid)
{
scheduleCpuEvent(SuspendThread, NoFault, tid, dummyInst[tid]);
}
void
InOrderCPU::suspendThread(ThreadID tid)
{
DPRINTF(InOrderCPU, "[tid:%i]: Placing on Suspended Threads List...\n",
tid);
deactivateThread(tid);
suspendedThreads.push_back(tid);
thread[tid]->lastSuspend = curTick();
tcBase(tid)->setStatus(ThreadContext::Suspended);
}
void
InOrderCPU::squashThreadInPipeline(ThreadID tid)
{
//Squash all instructions in each stage
for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
pipelineStage[stNum]->squash(0 /*seq_num*/, tid);
}
}
PipelineStage*
InOrderCPU::getPipeStage(int stage_num)
{
return pipelineStage[stage_num];
}
RegIndex
InOrderCPU::flattenRegIdx(RegIndex reg_idx, RegClass &reg_type, ThreadID tid)
{
RegIndex rel_idx;
reg_type = regIdxToClass(reg_idx, &rel_idx);
switch (reg_type) {
case IntRegClass:
return isa[tid]->flattenIntIndex(rel_idx);
case FloatRegClass:
return isa[tid]->flattenFloatIndex(rel_idx);
case MiscRegClass:
return rel_idx;
default:
panic("register %d out of range\n", reg_idx);
}
}
uint64_t
InOrderCPU::readIntReg(RegIndex reg_idx, ThreadID tid)
{
DPRINTF(IntRegs, "[tid:%i]: Reading Int. Reg %i as %x\n",
tid, reg_idx, intRegs[tid][reg_idx]);
return intRegs[tid][reg_idx];
}
FloatReg
InOrderCPU::readFloatReg(RegIndex reg_idx, ThreadID tid)
{
DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n",
tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]);
return floatRegs.f[tid][reg_idx];
}
FloatRegBits
InOrderCPU::readFloatRegBits(RegIndex reg_idx, ThreadID tid)
{
DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n",
tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]);
return floatRegs.i[tid][reg_idx];
}
CCReg
InOrderCPU::readCCReg(RegIndex reg_idx, ThreadID tid)
{
#ifdef ISA_HAS_CC_REGS
DPRINTF(CCRegs, "[tid:%i]: Reading CC. Reg %i as %x\n",
tid, reg_idx, ccRegs[tid][reg_idx]);
return ccRegs[tid][reg_idx];
#else
panic("readCCReg: ISA does not have CC regs\n");
#endif
}
void
InOrderCPU::setIntReg(RegIndex reg_idx, uint64_t val, ThreadID tid)
{
if (reg_idx == TheISA::ZeroReg) {
DPRINTF(IntRegs, "[tid:%i]: Ignoring Setting of ISA-ZeroReg "
"(Int. Reg %i) to %x\n", tid, reg_idx, val);
return;
} else {
DPRINTF(IntRegs, "[tid:%i]: Setting Int. Reg %i to %x\n",
tid, reg_idx, val);
intRegs[tid][reg_idx] = val;
}
}
void
InOrderCPU::setFloatReg(RegIndex reg_idx, FloatReg val, ThreadID tid)
{
floatRegs.f[tid][reg_idx] = val;
DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to "
"%x, %08f\n",
tid, reg_idx,
floatRegs.i[tid][reg_idx],
floatRegs.f[tid][reg_idx]);
}
void
InOrderCPU::setFloatRegBits(RegIndex reg_idx, FloatRegBits val, ThreadID tid)
{
floatRegs.i[tid][reg_idx] = val;
DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to "
"%x, %08f\n",
tid, reg_idx,
floatRegs.i[tid][reg_idx],
floatRegs.f[tid][reg_idx]);
}
void
InOrderCPU::setCCReg(RegIndex reg_idx, CCReg val, ThreadID tid)
{
#ifdef ISA_HAS_CC_REGS
DPRINTF(CCRegs, "[tid:%i]: Setting CC. Reg %i to %x\n",
tid, reg_idx, val);
ccRegs[tid][reg_idx] = val;
#else
panic("readCCReg: ISA does not have CC regs\n");
#endif
}
uint64_t
InOrderCPU::readRegOtherThread(unsigned reg_idx, ThreadID tid)
{
// If Default value is set, then retrieve target thread
if (tid == InvalidThreadID) {
tid = TheISA::getTargetThread(tcBase(tid));
}
RegIndex rel_idx;
switch (regIdxToClass(reg_idx, &rel_idx)) {
case IntRegClass:
// Integer Register File
return readIntReg(rel_idx, tid);
case FloatRegClass:
// Float Register File
return readFloatRegBits(rel_idx, tid);
case MiscRegClass:
return readMiscReg(rel_idx, tid); // Misc. Register File
default:
panic("register %d out of range\n", reg_idx);
}
}
void
InOrderCPU::setRegOtherThread(unsigned reg_idx, const MiscReg &val,
ThreadID tid)
{
// If Default value is set, then retrieve target thread
if (tid == InvalidThreadID) {
tid = TheISA::getTargetThread(tcBase(tid));
}
RegIndex rel_idx;
switch (regIdxToClass(reg_idx, &rel_idx)) {
case IntRegClass:
setIntReg(rel_idx, val, tid);
break;
case FloatRegClass:
setFloatRegBits(rel_idx, val, tid);
break;
case CCRegClass:
setCCReg(rel_idx, val, tid);
break;
case MiscRegClass:
setMiscReg(rel_idx, val, tid); // Misc. Register File
break;
}
}
MiscReg
InOrderCPU::readMiscRegNoEffect(int misc_reg, ThreadID tid)
{
return isa[tid]->readMiscRegNoEffect(misc_reg);
}
MiscReg
InOrderCPU::readMiscReg(int misc_reg, ThreadID tid)
{
return isa[tid]->readMiscReg(misc_reg, tcBase(tid));
}
void
InOrderCPU::setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid)
{
isa[tid]->setMiscRegNoEffect(misc_reg, val);
}
void
InOrderCPU::setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid)
{
isa[tid]->setMiscReg(misc_reg, val, tcBase(tid));
}
InOrderCPU::ListIt
InOrderCPU::addInst(DynInstPtr inst)
{
ThreadID tid = inst->readTid();
instList[tid].push_back(inst);
return --(instList[tid].end());
}
InOrderCPU::ListIt
InOrderCPU::findInst(InstSeqNum seq_num, ThreadID tid)
{
ListIt it = instList[tid].begin();
ListIt end = instList[tid].end();
while (it != end) {
if ((*it)->seqNum == seq_num)
return it;
else if ((*it)->seqNum > seq_num)
break;
it++;
}
return instList[tid].end();
}
void
InOrderCPU::updateContextSwitchStats()
{
// Set Average Stat Here, then reset to 0
instsPerCtxtSwitch = instsPerSwitch;
instsPerSwitch = 0;
}
void
InOrderCPU::drainResume()
{
setDrainState(Drainable::Running);
if (switchedOut())
return;
DPRINTF(Drain, "Resuming...\n");
verifyMemoryMode();
assert(!tickEvent.scheduled());
// Activate threads and also signal the resource pool to activate
// the thread on all resources.
_status = Idle;
for (ThreadID i = 0; i < thread.size(); i++) {
if (thread[i]->status() == ThreadContext::Active) {
DPRINTF(Drain, "Activating thread: %i\n", i);
activateThread(i);
resPool->activateThread(i);
_status = Running;
}
}
}
void
InOrderCPU::switchOut()
{
DPRINTF(InOrderCPU, "Switching out\n");
BaseCPU::switchOut();
activityRec.reset();
_status = SwitchedOut;
}
void
InOrderCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU);
// Call takeOverFrom() on each pipeline stage
for (int stNum=0; stNum < NumStages; stNum++) {
pipelineStage[stNum]->takeOverFrom();
}
assert(!tickEvent.scheduled());
// Copy over the current instruction sequence numbers if we are
// taking over from another InOrderCPU.
InOrderCPU *oldIOCPU = dynamic_cast<InOrderCPU*>(oldCPU);
if (oldIOCPU) {
for (ThreadID tid = 0; tid < numThreads; tid++)
globalSeqNum[tid] = oldIOCPU->globalSeqNum[tid];
}
lastRunningCycle = curCycle();
_status = Idle;
}
void
InOrderCPU::instDone(DynInstPtr inst, ThreadID tid)
{
// Set the nextPC to be fetched if this is the last instruction
// committed
// ========
// This contributes to the precise state of the CPU
// which can be used when restoring a thread to the CPU after after any
// type of context switching activity (fork, exception, etc.)
TheISA::PCState comm_pc = inst->pcState();
lastCommittedPC[tid] = comm_pc;
TheISA::advancePC(comm_pc, inst->staticInst);
pcState(comm_pc, tid);
//@todo: may be unnecessary with new-ISA-specific branch handling code
if (inst->isControl()) {
thread[tid]->lastGradIsBranch = true;
thread[tid]->lastBranchPC = inst->pcState();
TheISA::advancePC(thread[tid]->lastBranchPC, inst->staticInst);
} else {
thread[tid]->lastGradIsBranch = false;
}
// Finalize Trace Data For Instruction
if (inst->traceData) {
//inst->traceData->setCycle(curTick());
inst->traceData->setFetchSeq(inst->seqNum);
//inst->traceData->setCPSeq(cpu->tcBase(tid)->numInst);
inst->traceData->dump();
delete inst->traceData;
inst->traceData = NULL;
}
// Increment active thread's instruction count
instsPerSwitch++;
// Increment thread-state's instruction count
thread[tid]->numInst++;
thread[tid]->numOp++;
// Increment thread-state's instruction stats
thread[tid]->numInsts++;
thread[tid]->numOps++;
// Count committed insts per thread stats
if (!inst->isMicroop() || inst->isLastMicroop()) {
committedInsts[tid]++;
// Count total insts committed stat
totalCommittedInsts++;
}
committedOps[tid]++;
// Count SMT-committed insts per thread stat
if (numActiveThreads() > 1) {
if (!inst->isMicroop() || inst->isLastMicroop())
smtCommittedInsts[tid]++;
}
// Instruction-Mix Stats
if (inst->isLoad()) {
comLoads++;
} else if (inst->isStore()) {
comStores++;
} else if (inst->isControl()) {
comBranches++;
} else if (inst->isNop()) {
comNops++;
} else if (inst->isNonSpeculative()) {
comNonSpec++;
} else if (inst->isInteger()) {
comInts++;
} else if (inst->isFloating()) {
comFloats++;
}
// Check for instruction-count-based events.
comInstEventQueue[tid]->serviceEvents(thread[tid]->numOp);
// Finally, remove instruction from CPU
removeInst(inst);
}
// currently unused function, but substitute repetitive code w/this function
// call
void
InOrderCPU::addToRemoveList(DynInstPtr inst)
{
removeInstsThisCycle = true;
if (!inst->isRemoveList()) {
DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
"[sn:%lli] to remove list\n",
inst->threadNumber, inst->pcState(), inst->seqNum);
inst->setRemoveList();
removeList.push(inst->getInstListIt());
} else {
DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
"[sn:%lli], already remove list\n",
inst->threadNumber, inst->pcState(), inst->seqNum);
}
}
void
InOrderCPU::removeInst(DynInstPtr inst)
{
DPRINTF(InOrderCPU, "Removing graduated instruction [tid:%i] PC %s "
"[sn:%lli]\n",
inst->threadNumber, inst->pcState(), inst->seqNum);
removeInstsThisCycle = true;
// Remove the instruction.
if (!inst->isRemoveList()) {
DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
"[sn:%lli] to remove list\n",
inst->threadNumber, inst->pcState(), inst->seqNum);
inst->setRemoveList();
removeList.push(inst->getInstListIt());
} else {
DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
"[sn:%lli], already on remove list\n",
inst->threadNumber, inst->pcState(), inst->seqNum);
}
}
void
InOrderCPU::removeInstsUntil(const InstSeqNum &seq_num, ThreadID tid)
{
//assert(!instList[tid].empty());
removeInstsThisCycle = true;
ListIt inst_iter = instList[tid].end();
inst_iter--;
DPRINTF(InOrderCPU, "Squashing instructions from CPU instruction "
"list that are from [tid:%i] and above [sn:%lli] (end=%lli).\n",
tid, seq_num, (*inst_iter)->seqNum);
while ((*inst_iter)->seqNum > seq_num) {
bool break_loop = (inst_iter == instList[tid].begin());
squashInstIt(inst_iter, tid);
inst_iter--;
if (break_loop)
break;
}
}
inline void
InOrderCPU::squashInstIt(const ListIt inst_it, ThreadID tid)
{
DynInstPtr inst = (*inst_it);
if (inst->threadNumber == tid) {
DPRINTF(InOrderCPU, "Squashing instruction, "
"[tid:%i] [sn:%lli] PC %s\n",
inst->threadNumber,
inst->seqNum,
inst->pcState());
inst->setSquashed();
archRegDepMap[tid].remove(inst);
if (!inst->isRemoveList()) {
DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
"[sn:%lli] to remove list\n",
inst->threadNumber, inst->pcState(),
inst->seqNum);
inst->setRemoveList();
removeList.push(inst_it);
} else {
DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i]"
" PC %s [sn:%lli], already on remove list\n",
inst->threadNumber, inst->pcState(),
inst->seqNum);
}
}
}
void
InOrderCPU::cleanUpRemovedInsts()
{
while (!removeList.empty()) {
DPRINTF(InOrderCPU, "Removing instruction, "
"[tid:%i] [sn:%lli] PC %s\n",
(*removeList.front())->threadNumber,
(*removeList.front())->seqNum,
(*removeList.front())->pcState());
DynInstPtr inst = *removeList.front();
ThreadID tid = inst->threadNumber;
// Remove From Register Dependency Map, If Necessary
// archRegDepMap[tid].remove(inst);
// Clear if Non-Speculative
if (inst->staticInst &&
inst->seqNum == nonSpecSeqNum[tid] &&
nonSpecInstActive[tid]) {
nonSpecInstActive[tid] = false;
}
inst->onInstList = false;
instList[tid].erase(removeList.front());
removeList.pop();
}
removeInstsThisCycle = false;
}
void
InOrderCPU::cleanUpRemovedEvents()
{
while (!cpuEventRemoveList.empty()) {
Event *cpu_event = cpuEventRemoveList.front();
cpuEventRemoveList.pop();
delete cpu_event;
}
}
void
InOrderCPU::dumpInsts()
{
int num = 0;
ListIt inst_list_it = instList[0].begin();
cprintf("Dumping Instruction List\n");
while (inst_list_it != instList[0].end()) {
cprintf("Instruction:%i\nPC:%s\n[tid:%i]\n[sn:%lli]\nIssued:%i\n"
"Squashed:%i\n\n",
num, (*inst_list_it)->pcState(),
(*inst_list_it)->threadNumber,
(*inst_list_it)->seqNum, (*inst_list_it)->isIssued(),
(*inst_list_it)->isSquashed());
inst_list_it++;
++num;
}
}
void
InOrderCPU::wakeCPU()
{
if (/*activityRec.active() || */tickEvent.scheduled()) {
DPRINTF(Activity, "CPU already running.\n");
return;
}
DPRINTF(Activity, "Waking up CPU\n");
Tick extra_cycles = curCycle() - lastRunningCycle;
if (extra_cycles != 0)
--extra_cycles;
idleCycles += extra_cycles;
for (int stage_num = 0; stage_num < NumStages; stage_num++) {
pipelineStage[stage_num]->idleCycles += extra_cycles;
}
numCycles += extra_cycles;
schedule(&tickEvent, clockEdge());
}
// Lots of copied full system code...place into BaseCPU class?
void
InOrderCPU::wakeup()
{
if (thread[0]->status() != ThreadContext::Suspended)
return;
wakeCPU();
DPRINTF(Quiesce, "Suspended Processor woken\n");
threadContexts[0]->activate();
}
void
InOrderCPU::syscallContext(Fault fault, ThreadID tid, DynInstPtr inst,
Cycles delay)
{
// Syscall must be non-speculative, so squash from last stage
unsigned squash_stage = NumStages - 1;
inst->setSquashInfo(squash_stage);
// Squash In Pipeline Stage
pipelineStage[squash_stage]->setupSquash(inst, tid);
// Schedule Squash Through-out Resource Pool
resPool->scheduleEvent(
(InOrderCPU::CPUEventType)ResourcePool::SquashAll, inst,
Cycles(0));
scheduleCpuEvent(Syscall, fault, tid, inst, delay, Syscall_Pri);
}
void
InOrderCPU::syscall(int64_t callnum, ThreadID tid)
{
DPRINTF(InOrderCPU, "[tid:%i] Executing syscall().\n\n", tid);
DPRINTF(Activity,"Activity: syscall() called.\n");
// Temporarily increase this by one to account for the syscall
// instruction.
++(this->thread[tid]->funcExeInst);
// Execute the actual syscall.
this->thread[tid]->syscall(callnum);
// Decrease funcExeInst by one as the normal commit will handle
// incrementing it.
--(this->thread[tid]->funcExeInst);
// Clear Non-Speculative Block Variable
nonSpecInstActive[tid] = false;
}
TheISA::TLB*
InOrderCPU::getITBPtr()
{
CacheUnit *itb_res = resPool->getInstUnit();
return itb_res->tlb();
}
TheISA::TLB*
InOrderCPU::getDTBPtr()
{
return resPool->getDataUnit()->tlb();
}
TheISA::Decoder *
InOrderCPU::getDecoderPtr(unsigned tid)
{
return resPool->getInstUnit()->decoder[tid];
}
Fault
InOrderCPU::read(DynInstPtr inst, Addr addr,
uint8_t *data, unsigned size, unsigned flags)
{
return resPool->getDataUnit()->read(inst, addr, data, size, flags);
}
Fault
InOrderCPU::write(DynInstPtr inst, uint8_t *data, unsigned size,
Addr addr, unsigned flags, uint64_t *write_res)
{
return resPool->getDataUnit()->write(inst, data, size, addr, flags,
write_res);
}