blob: c674655aba896ee1f87af00c107da0eaebcf97a2 [file] [log] [blame]
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// modified (rewritten) 05/20/05 by Dan Gibson to accomimdate FASTER
// >32 bit set sizes
#include <cassert>
#include <cstdio>
#include "base/misc.hh"
#include "mem/ruby/common/Set.hh"
Set::Set()
{
m_p_nArray = NULL;
m_nArrayLen = 0;
m_nSize = 0;
}
Set::Set(const Set& obj)
{
m_p_nArray = NULL;
setSize(obj.m_nSize);
// copy from the host to this array
for (int i = 0; i < m_nArrayLen; i++)
m_p_nArray[i] = obj.m_p_nArray[i];
}
Set::Set(int size)
{
m_p_nArray = NULL;
m_nArrayLen = 0;
m_nSize = 0;
if (size > 0)
setSize(size);
}
Set::~Set()
{
if (m_p_nArray && m_p_nArray != &m_p_nArray_Static[0])
delete [] m_p_nArray;
m_p_nArray = NULL;
}
void
Set::clearExcess()
{
// now just ensure that no bits over the maximum size were set
#ifdef _LP64
long mask = 0x7FFFFFFFFFFFFFFF;
#else
long mask = 0x7FFFFFFF;
#endif
// the number of populated spaces in the higest-order array slot
// is: m_nSize % LONG_BITS, so the uppermost LONG_BITS -
// m_nSize%64 bits should be cleared
if ((m_nSize % LONG_BITS) != 0) {
for (int j = 0; j < 64 - (m_nSize & INDEX_MASK); j++) {
m_p_nArray[m_nArrayLen - 1] &= mask;
mask = mask >> 1;
}
}
}
/*
* This function should set all the bits in the current set that are
* already set in the parameter set
*/
void
Set::addSet(const Set& set)
{
assert(getSize()==set.getSize());
for (int i = 0; i < m_nArrayLen; i++)
m_p_nArray[i] |= set.m_p_nArray[i];
}
/*
* This function should randomly assign 1 to the bits in the set--it
* should not clear the bits bits first, though?
*/
void
Set::addRandom()
{
for (int i = 0; i < m_nArrayLen; i++) {
// this ensures that all 32 bits are subject to random effects,
// as RAND_MAX typically = 0x7FFFFFFF
m_p_nArray[i] |= random() ^ (random() << 4);
}
clearExcess();
}
/*
* This function clears bits that are =1 in the parameter set
*/
void
Set::removeSet(const Set& set)
{
assert(m_nSize == set.m_nSize);
for (int i = 0; i < m_nArrayLen; i++)
m_p_nArray[i] &= ~set.m_p_nArray[i];
}
/*
* this function sets all bits in the set
*/
void
Set::broadcast()
{
for (int i = 0; i < m_nArrayLen; i++)
m_p_nArray[i] = -1; // note that -1 corresponds to all 1's in 2's comp.
clearExcess();
}
/*
* This function returns the population count of 1's in the set
*/
int
Set::count() const
{
int counter = 0;
long mask;
for (int i = 0; i < m_nArrayLen; i++) {
mask = (long)0x01;
for (int j = 0; j < LONG_BITS; j++) {
// FIXME - significant performance loss when array
// population << LONG_BITS
if ((m_p_nArray[i] & mask) != 0) {
counter++;
}
mask = mask << 1;
}
}
return counter;
}
/*
* This function checks for set equality
*/
bool
Set::isEqual(const Set& set) const
{
assert(m_nSize == set.m_nSize);
for (int i = 0; i < m_nArrayLen; i++)
if (m_p_nArray[i] != set.m_p_nArray[i])
return false;
return true;
}
/*
* This function returns the NodeID (int) of the least set bit
*/
NodeID
Set::smallestElement() const
{
assert(count() > 0);
long x;
for (int i = 0; i < m_nArrayLen; i++) {
if (m_p_nArray[i] != 0) {
// the least-set bit must be in here
x = m_p_nArray[i];
for (int j = 0; j < LONG_BITS; j++) {
if (x & (unsigned long)1) {
return LONG_BITS * i + j;
}
x = x >> 1;
}
panic("No smallest element of an empty set.");
}
}
panic("No smallest element of an empty set.");
}
/*
* this function returns true iff all bits are set
*/
bool
Set::isBroadcast() const
{
// check the fully-loaded words by equal to 0xffffffff
// only the last word may not be fully loaded, it is not
// fully loaded iff m_nSize % 32 or 64 !=0 => fully loaded iff
// m_nSize % 32 or 64 == 0
int max = (m_nSize % LONG_BITS) == 0 ? m_nArrayLen : m_nArrayLen - 1;
for (int i = 0; i < max; i++) {
if (m_p_nArray[i] != -1) {
return false;
}
}
// now check the last word, which may not be fully loaded
long mask = 1;
for (int j = 0; j < (m_nSize % LONG_BITS); j++) {
if ((mask & m_p_nArray[m_nArrayLen-1]) == 0) {
return false;
}
mask = mask << 1;
}
return true;
}
/*
* this function returns true iff no bits are set
*/
bool
Set::isEmpty() const
{
// here we can simply check if all = 0, since we ensure
// that "extra slots" are all zero
for (int i = 0; i < m_nArrayLen ; i++)
if (m_p_nArray[i])
return false;
return true;
}
// returns the logical OR of "this" set and orSet
Set
Set::OR(const Set& orSet) const
{
Set result(m_nSize);
assert(m_nSize == orSet.m_nSize);
for (int i = 0; i < m_nArrayLen; i++)
result.m_p_nArray[i] = m_p_nArray[i] | orSet.m_p_nArray[i];
return result;
}
// returns the logical AND of "this" set and andSet
Set
Set::AND(const Set& andSet) const
{
Set result(m_nSize);
assert(m_nSize == andSet.m_nSize);
for (int i = 0; i < m_nArrayLen; i++) {
result.m_p_nArray[i] = m_p_nArray[i] & andSet.m_p_nArray[i];
}
return result;
}
/*
* Returns false if a bit is set in the parameter set that is NOT set
* in this set
*/
bool
Set::isSuperset(const Set& test) const
{
assert(m_nSize == test.m_nSize);
for (int i = 0; i < m_nArrayLen; i++)
if (((test.m_p_nArray[i] & m_p_nArray[i]) | ~test.m_p_nArray[i]) != -1)
return false;
return true;
}
void
Set::setSize(int size)
{
m_nSize = size;
m_nArrayLen = (m_nSize + LONG_BITS - 1) / LONG_BITS;
// decide whether to use dynamic or static alloction
if (m_nArrayLen <= NUMBER_WORDS_PER_SET) {
// constant defined in RubySystem.hh
// its OK to use the static allocation, and it will
// probably be faster (as m_nArrayLen is already in the
// cache and they will probably share the same cache line)
// if switching from dyanamic to static allocation (which
// is probably rare, but why not be complete?), must delete
// the dynamically allocated space
if (m_p_nArray && m_p_nArray != &m_p_nArray_Static[0])
delete [] m_p_nArray;
m_p_nArray = &m_p_nArray_Static[0];
} else {
// can't use static allocation...simply not enough room
// so dynamically allocate some space
if (m_p_nArray && m_p_nArray != &m_p_nArray_Static[0])
delete [] m_p_nArray;
m_p_nArray = new long[m_nArrayLen];
}
clear();
}
Set&
Set::operator=(const Set& obj)
{
if (this != &obj) {
// resize this item
setSize(obj.getSize());
// copy the elements from obj to this
for (int i = 0; i < m_nArrayLen; i++)
m_p_nArray[i] = obj.m_p_nArray[i];
}
return *this;
}
void
Set::print(std::ostream& out) const
{
if (!m_p_nArray) {
out << "[Set {Empty}]";
return;
}
out << "[Set (" << m_nSize << ")";
for (int i = m_nArrayLen - 1; i >= 0; i--) {
out << csprintf(" 0x%08X", m_p_nArray[i]);
}
out << " ]";
}