blob: 0f5a70a6e8b7704424d58646e0a70502e87f4da1 [file] [log] [blame]
/*
* Copyright (c) 2011 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mem/ruby/slicc_interface/AbstractController.hh"
#include "mem/ruby/system/Sequencer.hh"
#include "mem/ruby/system/System.hh"
AbstractController::AbstractController(const Params *p)
: ClockedObject(p), Consumer(this)
{
m_version = p->version;
m_clusterID = p->cluster_id;
m_transitions_per_cycle = p->transitions_per_cycle;
m_buffer_size = p->buffer_size;
m_recycle_latency = p->recycle_latency;
m_number_of_TBEs = p->number_of_TBEs;
m_is_blocking = false;
if (m_version == 0) {
// Combine the statistics from all controllers
// of this particular type.
Stats::registerDumpCallback(new StatsCallback(this));
}
}
void
AbstractController::init()
{
params()->ruby_system->registerAbstractController(this);
m_delayHistogram.init(10);
uint32_t size = Network::getNumberOfVirtualNetworks();
for (uint32_t i = 0; i < size; i++) {
m_delayVCHistogram.push_back(new Stats::Histogram());
m_delayVCHistogram[i]->init(10);
}
}
void
AbstractController::resetStats()
{
m_delayHistogram.reset();
uint32_t size = Network::getNumberOfVirtualNetworks();
for (uint32_t i = 0; i < size; i++) {
m_delayVCHistogram[i]->reset();
}
}
void
AbstractController::regStats()
{
m_fully_busy_cycles
.name(name() + ".fully_busy_cycles")
.desc("cycles for which number of transistions == max transitions")
.flags(Stats::nozero);
}
void
AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay)
{
assert(virtualNetwork < m_delayVCHistogram.size());
m_delayHistogram.sample(delay);
m_delayVCHistogram[virtualNetwork]->sample(delay);
}
void
AbstractController::connectWithPeer(AbstractController *c)
{
getQueuesFromPeer(c);
c->getQueuesFromPeer(this);
}
void
AbstractController::stallBuffer(MessageBuffer* buf, Address addr)
{
if (m_waiting_buffers.count(addr) == 0) {
MsgVecType* msgVec = new MsgVecType;
msgVec->resize(m_in_ports, NULL);
m_waiting_buffers[addr] = msgVec;
}
(*(m_waiting_buffers[addr]))[m_cur_in_port] = buf;
}
void
AbstractController::wakeUpBuffers(Address addr)
{
if (m_waiting_buffers.count(addr) > 0) {
//
// Wake up all possible lower rank (i.e. lower priority) buffers that could
// be waiting on this message.
//
for (int in_port_rank = m_cur_in_port - 1;
in_port_rank >= 0;
in_port_rank--) {
if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
(*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
}
}
delete m_waiting_buffers[addr];
m_waiting_buffers.erase(addr);
}
}
void
AbstractController::wakeUpAllBuffers(Address addr)
{
if (m_waiting_buffers.count(addr) > 0) {
//
// Wake up all possible lower rank (i.e. lower priority) buffers that could
// be waiting on this message.
//
for (int in_port_rank = m_in_ports - 1;
in_port_rank >= 0;
in_port_rank--) {
if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
(*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
}
}
delete m_waiting_buffers[addr];
m_waiting_buffers.erase(addr);
}
}
void
AbstractController::wakeUpAllBuffers()
{
//
// Wake up all possible buffers that could be waiting on any message.
//
std::vector<MsgVecType*> wokeUpMsgVecs;
if(m_waiting_buffers.size() > 0) {
for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin();
buf_iter != m_waiting_buffers.end();
++buf_iter) {
for (MsgVecType::iterator vec_iter = buf_iter->second->begin();
vec_iter != buf_iter->second->end();
++vec_iter) {
if (*vec_iter != NULL) {
(*vec_iter)->reanalyzeAllMessages();
}
}
wokeUpMsgVecs.push_back(buf_iter->second);
}
for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin();
wb_iter != wokeUpMsgVecs.end();
++wb_iter) {
delete (*wb_iter);
}
m_waiting_buffers.clear();
}
}
void
AbstractController::blockOnQueue(Address addr, MessageBuffer* port)
{
m_is_blocking = true;
m_block_map[addr] = port;
}
void
AbstractController::unblock(Address addr)
{
m_block_map.erase(addr);
if (m_block_map.size() == 0) {
m_is_blocking = false;
}
}