blob: 66c12f07de30b2a0ef85f51bcf9a816de01aad61 [file] [log] [blame]
/*
* Copyright (c) 2012-2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Kevin Lim
*/
#ifndef __SIM_SYSCALL_EMUL_HH__
#define __SIM_SYSCALL_EMUL_HH__
#define NO_STAT64 (defined(__APPLE__) || defined(__OpenBSD__) || \
defined(__FreeBSD__) || defined(__CYGWIN__) || \
defined(__NetBSD__))
///
/// @file syscall_emul.hh
///
/// This file defines objects used to emulate syscalls from the target
/// application on the host machine.
#ifdef __CYGWIN32__
#include <sys/fcntl.h> // for O_BINARY
#endif
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <fcntl.h>
#include <cerrno>
#include <string>
#include "base/chunk_generator.hh"
#include "base/intmath.hh" // for RoundUp
#include "base/misc.hh"
#include "base/trace.hh"
#include "base/types.hh"
#include "config/the_isa.hh"
#include "cpu/base.hh"
#include "cpu/thread_context.hh"
#include "debug/SyscallVerbose.hh"
#include "mem/page_table.hh"
#include "mem/se_translating_port_proxy.hh"
#include "sim/byteswap.hh"
#include "sim/process.hh"
#include "sim/syscallreturn.hh"
#include "sim/system.hh"
///
/// System call descriptor.
///
class SyscallDesc {
public:
/// Typedef for target syscall handler functions.
typedef SyscallReturn (*FuncPtr)(SyscallDesc *, int num,
LiveProcess *, ThreadContext *);
const char *name; //!< Syscall name (e.g., "open").
FuncPtr funcPtr; //!< Pointer to emulation function.
int flags; //!< Flags (see Flags enum).
/// Flag values for controlling syscall behavior.
enum Flags {
/// Don't set return regs according to funcPtr return value.
/// Used for syscalls with non-standard return conventions
/// that explicitly set the ThreadContext regs (e.g.,
/// sigreturn).
SuppressReturnValue = 1
};
/// Constructor.
SyscallDesc(const char *_name, FuncPtr _funcPtr, int _flags = 0)
: name(_name), funcPtr(_funcPtr), flags(_flags)
{
}
/// Emulate the syscall. Public interface for calling through funcPtr.
void doSyscall(int callnum, LiveProcess *proc, ThreadContext *tc);
};
class BaseBufferArg {
public:
BaseBufferArg(Addr _addr, int _size) : addr(_addr), size(_size)
{
bufPtr = new uint8_t[size];
// clear out buffer: in case we only partially populate this,
// and then do a copyOut(), we want to make sure we don't
// introduce any random junk into the simulated address space
memset(bufPtr, 0, size);
}
virtual ~BaseBufferArg() { delete [] bufPtr; }
//
// copy data into simulator space (read from target memory)
//
virtual bool copyIn(SETranslatingPortProxy &memproxy)
{
memproxy.readBlob(addr, bufPtr, size);
return true; // no EFAULT detection for now
}
//
// copy data out of simulator space (write to target memory)
//
virtual bool copyOut(SETranslatingPortProxy &memproxy)
{
memproxy.writeBlob(addr, bufPtr, size);
return true; // no EFAULT detection for now
}
protected:
Addr addr;
int size;
uint8_t *bufPtr;
};
class BufferArg : public BaseBufferArg
{
public:
BufferArg(Addr _addr, int _size) : BaseBufferArg(_addr, _size) { }
void *bufferPtr() { return bufPtr; }
};
template <class T>
class TypedBufferArg : public BaseBufferArg
{
public:
// user can optionally specify a specific number of bytes to
// allocate to deal with those structs that have variable-size
// arrays at the end
TypedBufferArg(Addr _addr, int _size = sizeof(T))
: BaseBufferArg(_addr, _size)
{ }
// type case
operator T*() { return (T *)bufPtr; }
// dereference operators
T &operator*() { return *((T *)bufPtr); }
T* operator->() { return (T *)bufPtr; }
T &operator[](int i) { return ((T *)bufPtr)[i]; }
};
//////////////////////////////////////////////////////////////////////
//
// The following emulation functions are generic enough that they
// don't need to be recompiled for different emulated OS's. They are
// defined in sim/syscall_emul.cc.
//
//////////////////////////////////////////////////////////////////////
/// Handler for unimplemented syscalls that we haven't thought about.
SyscallReturn unimplementedFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Handler for unimplemented syscalls that we never intend to
/// implement (signal handling, etc.) and should not affect the correct
/// behavior of the program. Print a warning only if the appropriate
/// trace flag is enabled. Return success to the target program.
SyscallReturn ignoreFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
SyscallReturn ignoreWarnOnceFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target exit() handler: terminate current context.
SyscallReturn exitFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target exit_group() handler: terminate simulation. (exit all threads)
SyscallReturn exitGroupFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target getpagesize() handler.
SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target brk() handler: set brk address.
SyscallReturn brkFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target close() handler.
SyscallReturn closeFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target read() handler.
SyscallReturn readFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target write() handler.
SyscallReturn writeFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target lseek() handler.
SyscallReturn lseekFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target _llseek() handler.
SyscallReturn _llseekFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target munmap() handler.
SyscallReturn munmapFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target gethostname() handler.
SyscallReturn gethostnameFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target getcwd() handler.
SyscallReturn getcwdFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target readlink() handler.
SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc,
int index = 0);
SyscallReturn readlinkFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target unlink() handler.
SyscallReturn unlinkFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target mkdir() handler.
SyscallReturn mkdirFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target rename() handler.
SyscallReturn renameFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target truncate() handler.
SyscallReturn truncateFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target ftruncate() handler.
SyscallReturn ftruncateFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target truncate64() handler.
SyscallReturn truncate64Func(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target ftruncate64() handler.
SyscallReturn ftruncate64Func(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target umask() handler.
SyscallReturn umaskFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target chown() handler.
SyscallReturn chownFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target fchown() handler.
SyscallReturn fchownFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target dup() handler.
SyscallReturn dupFunc(SyscallDesc *desc, int num,
LiveProcess *process, ThreadContext *tc);
/// Target fnctl() handler.
SyscallReturn fcntlFunc(SyscallDesc *desc, int num,
LiveProcess *process, ThreadContext *tc);
/// Target fcntl64() handler.
SyscallReturn fcntl64Func(SyscallDesc *desc, int num,
LiveProcess *process, ThreadContext *tc);
/// Target setuid() handler.
SyscallReturn setuidFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target getpid() handler.
SyscallReturn getpidFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target getuid() handler.
SyscallReturn getuidFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target getgid() handler.
SyscallReturn getgidFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target getppid() handler.
SyscallReturn getppidFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target geteuid() handler.
SyscallReturn geteuidFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target getegid() handler.
SyscallReturn getegidFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target clone() handler.
SyscallReturn cloneFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target access() handler
SyscallReturn accessFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
SyscallReturn accessFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc,
int index);
/// Futex system call
/// Implemented by Daniel Sanchez
/// Used by printf's in multi-threaded apps
template <class OS>
SyscallReturn
futexFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index_uaddr = 0;
int index_op = 1;
int index_val = 2;
int index_timeout = 3;
uint64_t uaddr = process->getSyscallArg(tc, index_uaddr);
int op = process->getSyscallArg(tc, index_op);
int val = process->getSyscallArg(tc, index_val);
uint64_t timeout = process->getSyscallArg(tc, index_timeout);
std::map<uint64_t, std::list<ThreadContext *> * >
&futex_map = tc->getSystemPtr()->futexMap;
DPRINTF(SyscallVerbose, "In sys_futex: Address=%llx, op=%d, val=%d\n",
uaddr, op, val);
op &= ~OS::TGT_FUTEX_PRIVATE_FLAG;
if (op == OS::TGT_FUTEX_WAIT) {
if (timeout != 0) {
warn("sys_futex: FUTEX_WAIT with non-null timeout unimplemented;"
"we'll wait indefinitely");
}
uint8_t *buf = new uint8_t[sizeof(int)];
tc->getMemProxy().readBlob((Addr)uaddr, buf, (int)sizeof(int));
int mem_val = *((int *)buf);
delete buf;
if(val != mem_val) {
DPRINTF(SyscallVerbose, "sys_futex: FUTEX_WAKE, read: %d, "
"expected: %d\n", mem_val, val);
return -OS::TGT_EWOULDBLOCK;
}
// Queue the thread context
std::list<ThreadContext *> * tcWaitList;
if (futex_map.count(uaddr)) {
tcWaitList = futex_map.find(uaddr)->second;
} else {
tcWaitList = new std::list<ThreadContext *>();
futex_map.insert(std::pair< uint64_t,
std::list<ThreadContext *> * >(uaddr, tcWaitList));
}
tcWaitList->push_back(tc);
DPRINTF(SyscallVerbose, "sys_futex: FUTEX_WAIT, suspending calling "
"thread context\n");
tc->suspend();
return 0;
} else if (op == OS::TGT_FUTEX_WAKE){
int wokenUp = 0;
std::list<ThreadContext *> * tcWaitList;
if (futex_map.count(uaddr)) {
tcWaitList = futex_map.find(uaddr)->second;
while (tcWaitList->size() > 0 && wokenUp < val) {
tcWaitList->front()->activate();
tcWaitList->pop_front();
wokenUp++;
}
if(tcWaitList->empty()) {
futex_map.erase(uaddr);
delete tcWaitList;
}
}
DPRINTF(SyscallVerbose, "sys_futex: FUTEX_WAKE, activated %d waiting "
"thread contexts\n", wokenUp);
return wokenUp;
} else {
warn("sys_futex: op %d is not implemented, just returning...", op);
return 0;
}
}
/// Pseudo Funcs - These functions use a different return convension,
/// returning a second value in a register other than the normal return register
SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num,
LiveProcess *process, ThreadContext *tc);
/// Target getpidPseudo() handler.
SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target getuidPseudo() handler.
SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// Target getgidPseudo() handler.
SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num,
LiveProcess *p, ThreadContext *tc);
/// A readable name for 1,000,000, for converting microseconds to seconds.
const int one_million = 1000000;
/// Approximate seconds since the epoch (1/1/1970). About a billion,
/// by my reckoning. We want to keep this a constant (not use the
/// real-world time) to keep simulations repeatable.
const unsigned seconds_since_epoch = 1000000000;
/// Helper function to convert current elapsed time to seconds and
/// microseconds.
template <class T1, class T2>
void
getElapsedTime(T1 &sec, T2 &usec)
{
int elapsed_usecs = curTick() / SimClock::Int::us;
sec = elapsed_usecs / one_million;
usec = elapsed_usecs % one_million;
}
//////////////////////////////////////////////////////////////////////
//
// The following emulation functions are generic, but need to be
// templated to account for differences in types, constants, etc.
//
//////////////////////////////////////////////////////////////////////
#if NO_STAT64
typedef struct stat hst_stat;
typedef struct stat hst_stat64;
#else
typedef struct stat hst_stat;
typedef struct stat64 hst_stat64;
#endif
//// Helper function to convert a host stat buffer to a target stat
//// buffer. Also copies the target buffer out to the simulated
//// memory space. Used by stat(), fstat(), and lstat().
template <typename target_stat, typename host_stat>
static void
convertStatBuf(target_stat &tgt, host_stat *host, bool fakeTTY = false)
{
using namespace TheISA;
if (fakeTTY)
tgt->st_dev = 0xA;
else
tgt->st_dev = host->st_dev;
tgt->st_dev = TheISA::htog(tgt->st_dev);
tgt->st_ino = host->st_ino;
tgt->st_ino = TheISA::htog(tgt->st_ino);
tgt->st_mode = host->st_mode;
if (fakeTTY) {
// Claim to be a character device
tgt->st_mode &= ~S_IFMT; // Clear S_IFMT
tgt->st_mode |= S_IFCHR; // Set S_IFCHR
}
tgt->st_mode = TheISA::htog(tgt->st_mode);
tgt->st_nlink = host->st_nlink;
tgt->st_nlink = TheISA::htog(tgt->st_nlink);
tgt->st_uid = host->st_uid;
tgt->st_uid = TheISA::htog(tgt->st_uid);
tgt->st_gid = host->st_gid;
tgt->st_gid = TheISA::htog(tgt->st_gid);
if (fakeTTY)
tgt->st_rdev = 0x880d;
else
tgt->st_rdev = host->st_rdev;
tgt->st_rdev = TheISA::htog(tgt->st_rdev);
tgt->st_size = host->st_size;
tgt->st_size = TheISA::htog(tgt->st_size);
tgt->st_atimeX = host->st_atime;
tgt->st_atimeX = TheISA::htog(tgt->st_atimeX);
tgt->st_mtimeX = host->st_mtime;
tgt->st_mtimeX = TheISA::htog(tgt->st_mtimeX);
tgt->st_ctimeX = host->st_ctime;
tgt->st_ctimeX = TheISA::htog(tgt->st_ctimeX);
// Force the block size to be 8k. This helps to ensure buffered io works
// consistently across different hosts.
tgt->st_blksize = 0x2000;
tgt->st_blksize = TheISA::htog(tgt->st_blksize);
tgt->st_blocks = host->st_blocks;
tgt->st_blocks = TheISA::htog(tgt->st_blocks);
}
// Same for stat64
template <typename target_stat, typename host_stat64>
static void
convertStat64Buf(target_stat &tgt, host_stat64 *host, bool fakeTTY = false)
{
using namespace TheISA;
convertStatBuf<target_stat, host_stat64>(tgt, host, fakeTTY);
#if defined(STAT_HAVE_NSEC)
tgt->st_atime_nsec = host->st_atime_nsec;
tgt->st_atime_nsec = TheISA::htog(tgt->st_atime_nsec);
tgt->st_mtime_nsec = host->st_mtime_nsec;
tgt->st_mtime_nsec = TheISA::htog(tgt->st_mtime_nsec);
tgt->st_ctime_nsec = host->st_ctime_nsec;
tgt->st_ctime_nsec = TheISA::htog(tgt->st_ctime_nsec);
#else
tgt->st_atime_nsec = 0;
tgt->st_mtime_nsec = 0;
tgt->st_ctime_nsec = 0;
#endif
}
//Here are a couple convenience functions
template<class OS>
static void
copyOutStatBuf(SETranslatingPortProxy &mem, Addr addr,
hst_stat *host, bool fakeTTY = false)
{
typedef TypedBufferArg<typename OS::tgt_stat> tgt_stat_buf;
tgt_stat_buf tgt(addr);
convertStatBuf<tgt_stat_buf, hst_stat>(tgt, host, fakeTTY);
tgt.copyOut(mem);
}
template<class OS>
static void
copyOutStat64Buf(SETranslatingPortProxy &mem, Addr addr,
hst_stat64 *host, bool fakeTTY = false)
{
typedef TypedBufferArg<typename OS::tgt_stat64> tgt_stat_buf;
tgt_stat_buf tgt(addr);
convertStat64Buf<tgt_stat_buf, hst_stat64>(tgt, host, fakeTTY);
tgt.copyOut(mem);
}
/// Target ioctl() handler. For the most part, programs call ioctl()
/// only to find out if their stdout is a tty, to determine whether to
/// do line or block buffering. We always claim that output fds are
/// not TTYs to provide repeatable results.
template <class OS>
SyscallReturn
ioctlFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
int fd = process->getSyscallArg(tc, index);
unsigned req = process->getSyscallArg(tc, index);
DPRINTF(SyscallVerbose, "ioctl(%d, 0x%x, ...)\n", fd, req);
if (fd < 0 || process->sim_fd(fd) < 0) {
// doesn't map to any simulator fd: not a valid target fd
return -EBADF;
}
if (OS::isTtyReq(req)) {
return -ENOTTY;
}
warn("Unsupported ioctl call: ioctl(%d, 0x%x, ...) @ \n",
fd, req, tc->pcState());
return -ENOTTY;
}
template <class OS>
static SyscallReturn
openFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc, int index)
{
std::string path;
if (!tc->getMemProxy().tryReadString(path,
process->getSyscallArg(tc, index)))
return -EFAULT;
if (path == "/dev/sysdev0") {
// This is a memory-mapped high-resolution timer device on Alpha.
// We don't support it, so just punt.
warn("Ignoring open(%s, ...)\n", path);
return -ENOENT;
}
int tgtFlags = process->getSyscallArg(tc, index);
int mode = process->getSyscallArg(tc, index);
int hostFlags = 0;
// translate open flags
for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) {
if (tgtFlags & OS::openFlagTable[i].tgtFlag) {
tgtFlags &= ~OS::openFlagTable[i].tgtFlag;
hostFlags |= OS::openFlagTable[i].hostFlag;
}
}
// any target flags left?
if (tgtFlags != 0)
warn("Syscall: open: cannot decode flags 0x%x", tgtFlags);
#ifdef __CYGWIN32__
hostFlags |= O_BINARY;
#endif
// Adjust path for current working directory
path = process->fullPath(path);
DPRINTF(SyscallVerbose, "opening file %s\n", path.c_str());
int fd;
int local_errno;
if (startswith(path, "/proc/") || startswith(path, "/system/") ||
startswith(path, "/platform/") || startswith(path, "/sys/")) {
// It's a proc/sys entry and requires special handling
fd = OS::openSpecialFile(path, process, tc);
local_errno = ENOENT;
} else {
// open the file
fd = open(path.c_str(), hostFlags, mode);
local_errno = errno;
}
if (fd == -1)
return -local_errno;
return process->alloc_fd(fd, path.c_str(), hostFlags, mode, false);
}
/// Target open() handler.
template <class OS>
SyscallReturn
openFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
return openFunc<OS>(desc, callnum, process, tc, 0);
}
/// Target openat() handler.
template <class OS>
SyscallReturn
openatFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
int dirfd = process->getSyscallArg(tc, index);
if (dirfd != OS::TGT_AT_FDCWD)
warn("openat: first argument not AT_FDCWD; unlikely to work");
return openFunc<OS>(desc, callnum, process, tc, 1);
}
/// Target facessat() handler
template <class OS>
SyscallReturn
faccessatFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
int dirfd = process->getSyscallArg(tc, index);
if (dirfd != OS::TGT_AT_FDCWD)
warn("faccessat: first argument not AT_FDCWD; unlikely to work");
return accessFunc(desc, callnum, process, tc, 1);
}
/// Target readlinkat() handler
template <class OS>
SyscallReturn
readlinkatFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
int dirfd = process->getSyscallArg(tc, index);
if (dirfd != OS::TGT_AT_FDCWD)
warn("openat: first argument not AT_FDCWD; unlikely to work");
return readlinkFunc(desc, callnum, process, tc, 1);
}
/// Target sysinfo() handler.
template <class OS>
SyscallReturn
sysinfoFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
TypedBufferArg<typename OS::tgt_sysinfo>
sysinfo(process->getSyscallArg(tc, index));
sysinfo->uptime=seconds_since_epoch;
sysinfo->totalram=process->system->memSize();
sysinfo.copyOut(tc->getMemProxy());
return 0;
}
/// Target chmod() handler.
template <class OS>
SyscallReturn
chmodFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
std::string path;
int index = 0;
if (!tc->getMemProxy().tryReadString(path,
process->getSyscallArg(tc, index))) {
return -EFAULT;
}
uint32_t mode = process->getSyscallArg(tc, index);
mode_t hostMode = 0;
// XXX translate mode flags via OS::something???
hostMode = mode;
// Adjust path for current working directory
path = process->fullPath(path);
// do the chmod
int result = chmod(path.c_str(), hostMode);
if (result < 0)
return -errno;
return 0;
}
/// Target fchmod() handler.
template <class OS>
SyscallReturn
fchmodFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
int fd = process->getSyscallArg(tc, index);
if (fd < 0 || process->sim_fd(fd) < 0) {
// doesn't map to any simulator fd: not a valid target fd
return -EBADF;
}
uint32_t mode = process->getSyscallArg(tc, index);
mode_t hostMode = 0;
// XXX translate mode flags via OS::someting???
hostMode = mode;
// do the fchmod
int result = fchmod(process->sim_fd(fd), hostMode);
if (result < 0)
return -errno;
return 0;
}
/// Target mremap() handler.
template <class OS>
SyscallReturn
mremapFunc(SyscallDesc *desc, int callnum, LiveProcess *process, ThreadContext *tc)
{
int index = 0;
Addr start = process->getSyscallArg(tc, index);
uint64_t old_length = process->getSyscallArg(tc, index);
uint64_t new_length = process->getSyscallArg(tc, index);
uint64_t flags = process->getSyscallArg(tc, index);
uint64_t provided_address = 0;
bool use_provided_address = flags & OS::TGT_MREMAP_FIXED;
if (use_provided_address)
provided_address = process->getSyscallArg(tc, index);
if ((start % TheISA::PageBytes != 0) ||
(new_length % TheISA::PageBytes != 0) ||
(provided_address % TheISA::PageBytes != 0)) {
warn("mremap failing: arguments not page aligned");
return -EINVAL;
}
if (new_length > old_length) {
if ((start + old_length) == process->mmap_end &&
(!use_provided_address || provided_address == start)) {
uint64_t diff = new_length - old_length;
process->allocateMem(process->mmap_end, diff);
process->mmap_end += diff;
return start;
} else {
if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) {
warn("can't remap here and MREMAP_MAYMOVE flag not set\n");
return -ENOMEM;
} else {
uint64_t new_start = use_provided_address ?
provided_address : process->mmap_end;
process->pTable->remap(start, old_length, new_start);
warn("mremapping to new vaddr %08p-%08p, adding %d\n",
new_start, new_start + new_length,
new_length - old_length);
// add on the remaining unallocated pages
process->allocateMem(new_start + old_length,
new_length - old_length,
use_provided_address /* clobber */);
if (!use_provided_address)
process->mmap_end += new_length;
if (use_provided_address &&
new_start + new_length > process->mmap_end) {
// something fishy going on here, at least notify the user
// @todo: increase mmap_end?
warn("mmap region limit exceeded with MREMAP_FIXED\n");
}
warn("returning %08p as start\n", new_start);
return new_start;
}
}
} else {
if (use_provided_address && provided_address != start)
process->pTable->remap(start, new_length, provided_address);
process->pTable->unmap(start + new_length, old_length - new_length);
return use_provided_address ? provided_address : start;
}
}
/// Target stat() handler.
template <class OS>
SyscallReturn
statFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
std::string path;
int index = 0;
if (!tc->getMemProxy().tryReadString(path,
process->getSyscallArg(tc, index))) {
return -EFAULT;
}
Addr bufPtr = process->getSyscallArg(tc, index);
// Adjust path for current working directory
path = process->fullPath(path);
struct stat hostBuf;
int result = stat(path.c_str(), &hostBuf);
if (result < 0)
return -errno;
copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
return 0;
}
/// Target stat64() handler.
template <class OS>
SyscallReturn
stat64Func(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
std::string path;
int index = 0;
if (!tc->getMemProxy().tryReadString(path,
process->getSyscallArg(tc, index)))
return -EFAULT;
Addr bufPtr = process->getSyscallArg(tc, index);
// Adjust path for current working directory
path = process->fullPath(path);
#if NO_STAT64
struct stat hostBuf;
int result = stat(path.c_str(), &hostBuf);
#else
struct stat64 hostBuf;
int result = stat64(path.c_str(), &hostBuf);
#endif
if (result < 0)
return -errno;
copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
return 0;
}
/// Target fstatat64() handler.
template <class OS>
SyscallReturn
fstatat64Func(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
int dirfd = process->getSyscallArg(tc, index);
if (dirfd != OS::TGT_AT_FDCWD)
warn("openat: first argument not AT_FDCWD; unlikely to work");
std::string path;
if (!tc->getMemProxy().tryReadString(path,
process->getSyscallArg(tc, index)))
return -EFAULT;
Addr bufPtr = process->getSyscallArg(tc, index);
// Adjust path for current working directory
path = process->fullPath(path);
#if NO_STAT64
struct stat hostBuf;
int result = stat(path.c_str(), &hostBuf);
#else
struct stat64 hostBuf;
int result = stat64(path.c_str(), &hostBuf);
#endif
if (result < 0)
return -errno;
copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
return 0;
}
/// Target fstat64() handler.
template <class OS>
SyscallReturn
fstat64Func(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
int fd = process->getSyscallArg(tc, index);
Addr bufPtr = process->getSyscallArg(tc, index);
if (fd < 0 || process->sim_fd(fd) < 0) {
// doesn't map to any simulator fd: not a valid target fd
return -EBADF;
}
#if NO_STAT64
struct stat hostBuf;
int result = fstat(process->sim_fd(fd), &hostBuf);
#else
struct stat64 hostBuf;
int result = fstat64(process->sim_fd(fd), &hostBuf);
#endif
if (result < 0)
return -errno;
copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (fd == 1));
return 0;
}
/// Target lstat() handler.
template <class OS>
SyscallReturn
lstatFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
std::string path;
int index = 0;
if (!tc->getMemProxy().tryReadString(path,
process->getSyscallArg(tc, index))) {
return -EFAULT;
}
Addr bufPtr = process->getSyscallArg(tc, index);
// Adjust path for current working directory
path = process->fullPath(path);
struct stat hostBuf;
int result = lstat(path.c_str(), &hostBuf);
if (result < 0)
return -errno;
copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
return 0;
}
/// Target lstat64() handler.
template <class OS>
SyscallReturn
lstat64Func(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
std::string path;
int index = 0;
if (!tc->getMemProxy().tryReadString(path,
process->getSyscallArg(tc, index))) {
return -EFAULT;
}
Addr bufPtr = process->getSyscallArg(tc, index);
// Adjust path for current working directory
path = process->fullPath(path);
#if NO_STAT64
struct stat hostBuf;
int result = lstat(path.c_str(), &hostBuf);
#else
struct stat64 hostBuf;
int result = lstat64(path.c_str(), &hostBuf);
#endif
if (result < 0)
return -errno;
copyOutStat64Buf<OS>(tc->getMemProxy(), bufPtr, &hostBuf);
return 0;
}
/// Target fstat() handler.
template <class OS>
SyscallReturn
fstatFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
int fd = process->sim_fd(process->getSyscallArg(tc, index));
Addr bufPtr = process->getSyscallArg(tc, index);
DPRINTF(SyscallVerbose, "fstat(%d, ...)\n", fd);
if (fd < 0)
return -EBADF;
struct stat hostBuf;
int result = fstat(fd, &hostBuf);
if (result < 0)
return -errno;
copyOutStatBuf<OS>(tc->getMemProxy(), bufPtr, &hostBuf, (fd == 1));
return 0;
}
/// Target statfs() handler.
template <class OS>
SyscallReturn
statfsFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
std::string path;
int index = 0;
if (!tc->getMemProxy().tryReadString(path,
process->getSyscallArg(tc, index))) {
return -EFAULT;
}
Addr bufPtr = process->getSyscallArg(tc, index);
// Adjust path for current working directory
path = process->fullPath(path);
struct statfs hostBuf;
int result = statfs(path.c_str(), &hostBuf);
if (result < 0)
return -errno;
OS::copyOutStatfsBuf(tc->getMemProxy(), bufPtr, &hostBuf);
return 0;
}
/// Target fstatfs() handler.
template <class OS>
SyscallReturn
fstatfsFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
int fd = process->sim_fd(process->getSyscallArg(tc, index));
Addr bufPtr = process->getSyscallArg(tc, index);
if (fd < 0)
return -EBADF;
struct statfs hostBuf;
int result = fstatfs(fd, &hostBuf);
if (result < 0)
return -errno;
OS::copyOutStatfsBuf(tc->getMemProxy(), bufPtr, &hostBuf);
return 0;
}
/// Target writev() handler.
template <class OS>
SyscallReturn
writevFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
int fd = process->getSyscallArg(tc, index);
if (fd < 0 || process->sim_fd(fd) < 0) {
// doesn't map to any simulator fd: not a valid target fd
return -EBADF;
}
SETranslatingPortProxy &p = tc->getMemProxy();
uint64_t tiov_base = process->getSyscallArg(tc, index);
size_t count = process->getSyscallArg(tc, index);
struct iovec hiov[count];
for (size_t i = 0; i < count; ++i) {
typename OS::tgt_iovec tiov;
p.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec),
(uint8_t*)&tiov, sizeof(typename OS::tgt_iovec));
hiov[i].iov_len = TheISA::gtoh(tiov.iov_len);
hiov[i].iov_base = new char [hiov[i].iov_len];
p.readBlob(TheISA::gtoh(tiov.iov_base), (uint8_t *)hiov[i].iov_base,
hiov[i].iov_len);
}
int result = writev(process->sim_fd(fd), hiov, count);
for (size_t i = 0; i < count; ++i)
delete [] (char *)hiov[i].iov_base;
if (result < 0)
return -errno;
return 0;
}
/// Target mmap() handler.
///
/// We don't really handle mmap(). If the target is mmaping an
/// anonymous region or /dev/zero, we can get away with doing basically
/// nothing (since memory is initialized to zero and the simulator
/// doesn't really check addresses anyway).
///
template <class OS>
SyscallReturn
mmapFunc(SyscallDesc *desc, int num, LiveProcess *p, ThreadContext *tc)
{
int index = 0;
Addr start = p->getSyscallArg(tc, index);
uint64_t length = p->getSyscallArg(tc, index);
index++; // int prot = p->getSyscallArg(tc, index);
int flags = p->getSyscallArg(tc, index);
int tgt_fd = p->getSyscallArg(tc, index);
// int offset = p->getSyscallArg(tc, index);
if (length > 0x100000000ULL)
warn("mmap length argument %#x is unreasonably large.\n", length);
if (!(flags & OS::TGT_MAP_ANONYMOUS)) {
Process::FdMap *fd_map = p->sim_fd_obj(tgt_fd);
if (!fd_map || fd_map->fd < 0) {
warn("mmap failing: target fd %d is not valid\n", tgt_fd);
return -EBADF;
}
if (fd_map->filename != "/dev/zero") {
// This is very likely broken, but leave a warning here
// (rather than panic) in case /dev/zero is known by
// another name on some platform
warn("allowing mmap of file %s; mmap not supported on files"
" other than /dev/zero\n", fd_map->filename);
}
}
if ((start % TheISA::PageBytes) != 0 ||
(length % TheISA::PageBytes) != 0) {
warn("mmap failing: arguments not page-aligned: "
"start 0x%x length 0x%x",
start, length);
return -EINVAL;
}
// are we ok with clobbering existing mappings? only set this to
// true if the user has been warned.
bool clobber = false;
// try to use the caller-provided address if there is one
bool use_provided_address = (start != 0);
if (use_provided_address) {
// check to see if the desired address is already in use
if (!p->pTable->isUnmapped(start, length)) {
// there are existing mappings in the desired range
// whether we clobber them or not depends on whether the caller
// specified MAP_FIXED
if (flags & OS::TGT_MAP_FIXED) {
// MAP_FIXED specified: clobber existing mappings
warn("mmap: MAP_FIXED at 0x%x overwrites existing mappings\n",
start);
clobber = true;
} else {
// MAP_FIXED not specified: ignore suggested start address
warn("mmap: ignoring suggested map address 0x%x\n", start);
use_provided_address = false;
}
}
}
if (!use_provided_address) {
// no address provided, or provided address unusable:
// pick next address from our "mmap region"
if (OS::mmapGrowsDown()) {
start = p->mmap_end - length;
p->mmap_end = start;
} else {
start = p->mmap_end;
p->mmap_end += length;
}
}
p->allocateMem(start, length, clobber);
return start;
}
/// Target getrlimit() handler.
template <class OS>
SyscallReturn
getrlimitFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
unsigned resource = process->getSyscallArg(tc, index);
TypedBufferArg<typename OS::rlimit> rlp(process->getSyscallArg(tc, index));
switch (resource) {
case OS::TGT_RLIMIT_STACK:
// max stack size in bytes: make up a number (8MB for now)
rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024;
rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
rlp->rlim_max = TheISA::htog(rlp->rlim_max);
break;
case OS::TGT_RLIMIT_DATA:
// max data segment size in bytes: make up a number
rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024;
rlp->rlim_cur = TheISA::htog(rlp->rlim_cur);
rlp->rlim_max = TheISA::htog(rlp->rlim_max);
break;
default:
std::cerr << "getrlimitFunc: unimplemented resource " << resource
<< std::endl;
abort();
break;
}
rlp.copyOut(tc->getMemProxy());
return 0;
}
/// Target gettimeofday() handler.
template <class OS>
SyscallReturn
gettimeofdayFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
TypedBufferArg<typename OS::timeval> tp(process->getSyscallArg(tc, index));
getElapsedTime(tp->tv_sec, tp->tv_usec);
tp->tv_sec += seconds_since_epoch;
tp->tv_sec = TheISA::htog(tp->tv_sec);
tp->tv_usec = TheISA::htog(tp->tv_usec);
tp.copyOut(tc->getMemProxy());
return 0;
}
/// Target utimes() handler.
template <class OS>
SyscallReturn
utimesFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
std::string path;
int index = 0;
if (!tc->getMemProxy().tryReadString(path,
process->getSyscallArg(tc, index))) {
return -EFAULT;
}
TypedBufferArg<typename OS::timeval [2]>
tp(process->getSyscallArg(tc, index));
tp.copyIn(tc->getMemProxy());
struct timeval hostTimeval[2];
for (int i = 0; i < 2; ++i)
{
hostTimeval[i].tv_sec = TheISA::gtoh((*tp)[i].tv_sec);
hostTimeval[i].tv_usec = TheISA::gtoh((*tp)[i].tv_usec);
}
// Adjust path for current working directory
path = process->fullPath(path);
int result = utimes(path.c_str(), hostTimeval);
if (result < 0)
return -errno;
return 0;
}
/// Target getrusage() function.
template <class OS>
SyscallReturn
getrusageFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN
TypedBufferArg<typename OS::rusage> rup(process->getSyscallArg(tc, index));
rup->ru_utime.tv_sec = 0;
rup->ru_utime.tv_usec = 0;
rup->ru_stime.tv_sec = 0;
rup->ru_stime.tv_usec = 0;
rup->ru_maxrss = 0;
rup->ru_ixrss = 0;
rup->ru_idrss = 0;
rup->ru_isrss = 0;
rup->ru_minflt = 0;
rup->ru_majflt = 0;
rup->ru_nswap = 0;
rup->ru_inblock = 0;
rup->ru_oublock = 0;
rup->ru_msgsnd = 0;
rup->ru_msgrcv = 0;
rup->ru_nsignals = 0;
rup->ru_nvcsw = 0;
rup->ru_nivcsw = 0;
switch (who) {
case OS::TGT_RUSAGE_SELF:
getElapsedTime(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec);
rup->ru_utime.tv_sec = TheISA::htog(rup->ru_utime.tv_sec);
rup->ru_utime.tv_usec = TheISA::htog(rup->ru_utime.tv_usec);
break;
case OS::TGT_RUSAGE_CHILDREN:
// do nothing. We have no child processes, so they take no time.
break;
default:
// don't really handle THREAD or CHILDREN, but just warn and
// plow ahead
warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.",
who);
}
rup.copyOut(tc->getMemProxy());
return 0;
}
/// Target times() function.
template <class OS>
SyscallReturn
timesFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
int index = 0;
TypedBufferArg<typename OS::tms> bufp(process->getSyscallArg(tc, index));
// Fill in the time structure (in clocks)
int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s;
bufp->tms_utime = clocks;
bufp->tms_stime = 0;
bufp->tms_cutime = 0;
bufp->tms_cstime = 0;
// Convert to host endianness
bufp->tms_utime = TheISA::htog(bufp->tms_utime);
// Write back
bufp.copyOut(tc->getMemProxy());
// Return clock ticks since system boot
return clocks;
}
/// Target time() function.
template <class OS>
SyscallReturn
timeFunc(SyscallDesc *desc, int callnum, LiveProcess *process,
ThreadContext *tc)
{
typename OS::time_t sec, usec;
getElapsedTime(sec, usec);
sec += seconds_since_epoch;
int index = 0;
Addr taddr = (Addr)process->getSyscallArg(tc, index);
if(taddr != 0) {
typename OS::time_t t = sec;
t = TheISA::htog(t);
SETranslatingPortProxy &p = tc->getMemProxy();
p.writeBlob(taddr, (uint8_t*)&t, (int)sizeof(typename OS::time_t));
}
return sec;
}
#endif // __SIM_SYSCALL_EMUL_HH__