blob: 40720004e49c14c3685a607e0902f7a42fbae679 [file] [log] [blame]
# Copyright (c) 2010 Advanced Micro Devices, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Brad Beckmann
from m5.params import *
from m5.objects import *
from BaseTopology import SimpleTopology
class MeshDirCorners(SimpleTopology):
description='MeshDirCorners'
def __init__(self, controllers):
self.nodes = controllers
# This file contains a special network creation function. This
# networks is not general and will only work with specific system
# configurations. The network specified is similar to GEMS old file
# specified network.
def makeTopology(self, options, network, IntLink, ExtLink, Router):
nodes = self.nodes
num_routers = options.num_cpus
num_rows = options.mesh_rows
# First determine which nodes are cache cntrls vs. dirs vs. dma
cache_nodes = []
dir_nodes = []
dma_nodes = []
for node in nodes:
if node.type == 'L1Cache_Controller' or \
node.type == 'L2Cache_Controller':
cache_nodes.append(node)
elif node.type == 'Directory_Controller':
dir_nodes.append(node)
elif node.type == 'DMA_Controller':
dma_nodes.append(node)
# Obviously the number or rows must be <= the number of routers
# and evenly divisible. Also the number of caches must be a
# multiple of the number of routers and the number of directories
# must be four.
assert(num_rows <= num_routers)
num_columns = int(num_routers / num_rows)
assert(num_columns * num_rows == num_routers)
caches_per_router, remainder = divmod(len(cache_nodes), num_routers)
assert(remainder == 0)
assert(len(dir_nodes) == 4)
# Create the routers in the mesh
routers = [Router(router_id=i) for i in range(num_routers)]
network.routers = routers
# link counter to set unique link ids
link_count = 0
# Connect each cache controller to the appropriate router
ext_links = []
for (i, n) in enumerate(cache_nodes):
cntrl_level, router_id = divmod(i, num_routers)
assert(cntrl_level < caches_per_router)
ext_links.append(ExtLink(link_id=link_count, ext_node=n,
int_node=routers[router_id]))
link_count += 1
# Connect the dir nodes to the corners.
ext_links.append(ExtLink(link_id=link_count, ext_node=dir_nodes[0],
int_node=routers[0]))
link_count += 1
ext_links.append(ExtLink(link_id=link_count, ext_node=dir_nodes[1],
int_node=routers[num_columns - 1]))
link_count += 1
ext_links.append(ExtLink(link_id=link_count, ext_node=dir_nodes[2],
int_node=routers[num_routers - num_columns]))
link_count += 1
ext_links.append(ExtLink(link_id=link_count, ext_node=dir_nodes[3],
int_node=routers[num_routers - 1]))
link_count += 1
# Connect the dma nodes to router 0. These should only be DMA nodes.
for (i, node) in enumerate(dma_nodes):
assert(node.type == 'DMA_Controller')
ext_links.append(ExtLink(link_id=link_count, ext_node=node,
int_node=routers[0]))
network.ext_links = ext_links
# Create the mesh links. First row (east-west) links then column
# (north-south) links
int_links = []
for row in xrange(num_rows):
for col in xrange(num_columns):
if (col + 1 < num_columns):
east_id = col + (row * num_columns)
west_id = (col + 1) + (row * num_columns)
int_links.append(IntLink(link_id=link_count,
node_a=routers[east_id],
node_b=routers[west_id],
weight=1))
link_count += 1
for col in xrange(num_columns):
for row in xrange(num_rows):
if (row + 1 < num_rows):
north_id = col + (row * num_columns)
south_id = col + ((row + 1) * num_columns)
int_links.append(IntLink(link_id=link_count,
node_a=routers[north_id],
node_b=routers[south_id],
weight=2))
link_count += 1
network.int_links = int_links