|  | /* | 
|  | * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler. | 
|  | * | 
|  | * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. | 
|  | * Copyright (c) 2012 Paolo Valente. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * version 2 as published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/pkt_sched.h> | 
|  | #include <net/sch_generic.h> | 
|  | #include <net/pkt_sched.h> | 
|  | #include <net/pkt_cls.h> | 
|  |  | 
|  |  | 
|  | /*  Quick Fair Queueing Plus | 
|  | ======================== | 
|  |  | 
|  | Sources: | 
|  |  | 
|  | [1] Paolo Valente, | 
|  | "Reducing the Execution Time of Fair-Queueing Schedulers." | 
|  | http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf | 
|  |  | 
|  | Sources for QFQ: | 
|  |  | 
|  | [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient | 
|  | Packet Scheduling with Tight Bandwidth Distribution Guarantees." | 
|  |  | 
|  | See also: | 
|  | http://retis.sssup.it/~fabio/linux/qfq/ | 
|  | */ | 
|  |  | 
|  | /* | 
|  |  | 
|  | QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES | 
|  | classes. Each aggregate is timestamped with a virtual start time S | 
|  | and a virtual finish time F, and scheduled according to its | 
|  | timestamps. S and F are computed as a function of a system virtual | 
|  | time function V. The classes within each aggregate are instead | 
|  | scheduled with DRR. | 
|  |  | 
|  | To speed up operations, QFQ+ divides also aggregates into a limited | 
|  | number of groups. Which group a class belongs to depends on the | 
|  | ratio between the maximum packet length for the class and the weight | 
|  | of the class. Groups have their own S and F. In the end, QFQ+ | 
|  | schedules groups, then aggregates within groups, then classes within | 
|  | aggregates. See [1] and [2] for a full description. | 
|  |  | 
|  | Virtual time computations. | 
|  |  | 
|  | S, F and V are all computed in fixed point arithmetic with | 
|  | FRAC_BITS decimal bits. | 
|  |  | 
|  | QFQ_MAX_INDEX is the maximum index allowed for a group. We need | 
|  | one bit per index. | 
|  | QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. | 
|  |  | 
|  | The layout of the bits is as below: | 
|  |  | 
|  | [ MTU_SHIFT ][      FRAC_BITS    ] | 
|  | [ MAX_INDEX    ][ MIN_SLOT_SHIFT ] | 
|  | ^.__grp->index = 0 | 
|  | *.__grp->slot_shift | 
|  |  | 
|  | where MIN_SLOT_SHIFT is derived by difference from the others. | 
|  |  | 
|  | The max group index corresponds to Lmax/w_min, where | 
|  | Lmax=1<<MTU_SHIFT, w_min = 1 . | 
|  | From this, and knowing how many groups (MAX_INDEX) we want, | 
|  | we can derive the shift corresponding to each group. | 
|  |  | 
|  | Because we often need to compute | 
|  | F = S + len/w_i  and V = V + len/wsum | 
|  | instead of storing w_i store the value | 
|  | inv_w = (1<<FRAC_BITS)/w_i | 
|  | so we can do F = S + len * inv_w * wsum. | 
|  | We use W_TOT in the formulas so we can easily move between | 
|  | static and adaptive weight sum. | 
|  |  | 
|  | The per-scheduler-instance data contain all the data structures | 
|  | for the scheduler: bitmaps and bucket lists. | 
|  |  | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Maximum number of consecutive slots occupied by backlogged classes | 
|  | * inside a group. | 
|  | */ | 
|  | #define QFQ_MAX_SLOTS	32 | 
|  |  | 
|  | /* | 
|  | * Shifts used for aggregate<->group mapping.  We allow class weights that are | 
|  | * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the | 
|  | * group with the smallest index that can support the L_i / r_i configured | 
|  | * for the classes in the aggregate. | 
|  | * | 
|  | * grp->index is the index of the group; and grp->slot_shift | 
|  | * is the shift for the corresponding (scaled) sigma_i. | 
|  | */ | 
|  | #define QFQ_MAX_INDEX		24 | 
|  | #define QFQ_MAX_WSHIFT		10 | 
|  |  | 
|  | #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ | 
|  | #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT) | 
|  |  | 
|  | #define FRAC_BITS		30	/* fixed point arithmetic */ | 
|  | #define ONE_FP			(1UL << FRAC_BITS) | 
|  |  | 
|  | #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */ | 
|  | #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */ | 
|  |  | 
|  | #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */ | 
|  |  | 
|  | /* | 
|  | * Possible group states.  These values are used as indexes for the bitmaps | 
|  | * array of struct qfq_queue. | 
|  | */ | 
|  | enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; | 
|  |  | 
|  | struct qfq_group; | 
|  |  | 
|  | struct qfq_aggregate; | 
|  |  | 
|  | struct qfq_class { | 
|  | struct Qdisc_class_common common; | 
|  |  | 
|  | unsigned int refcnt; | 
|  | unsigned int filter_cnt; | 
|  |  | 
|  | struct gnet_stats_basic_packed bstats; | 
|  | struct gnet_stats_queue qstats; | 
|  | struct gnet_stats_rate_est64 rate_est; | 
|  | struct Qdisc *qdisc; | 
|  | struct list_head alist;		/* Link for active-classes list. */ | 
|  | struct qfq_aggregate *agg;	/* Parent aggregate. */ | 
|  | int deficit;			/* DRR deficit counter. */ | 
|  | }; | 
|  |  | 
|  | struct qfq_aggregate { | 
|  | struct hlist_node next;	/* Link for the slot list. */ | 
|  | u64 S, F;		/* flow timestamps (exact) */ | 
|  |  | 
|  | /* group we belong to. In principle we would need the index, | 
|  | * which is log_2(lmax/weight), but we never reference it | 
|  | * directly, only the group. | 
|  | */ | 
|  | struct qfq_group *grp; | 
|  |  | 
|  | /* these are copied from the flowset. */ | 
|  | u32	class_weight; /* Weight of each class in this aggregate. */ | 
|  | /* Max pkt size for the classes in this aggregate, DRR quantum. */ | 
|  | int	lmax; | 
|  |  | 
|  | u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */ | 
|  | u32	budgetmax;  /* Max budget for this aggregate. */ | 
|  | u32	initial_budget, budget;     /* Initial and current budget. */ | 
|  |  | 
|  | int		  num_classes;	/* Number of classes in this aggr. */ | 
|  | struct list_head  active;	/* DRR queue of active classes. */ | 
|  |  | 
|  | struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */ | 
|  | }; | 
|  |  | 
|  | struct qfq_group { | 
|  | u64 S, F;			/* group timestamps (approx). */ | 
|  | unsigned int slot_shift;	/* Slot shift. */ | 
|  | unsigned int index;		/* Group index. */ | 
|  | unsigned int front;		/* Index of the front slot. */ | 
|  | unsigned long full_slots;	/* non-empty slots */ | 
|  |  | 
|  | /* Array of RR lists of active aggregates. */ | 
|  | struct hlist_head slots[QFQ_MAX_SLOTS]; | 
|  | }; | 
|  |  | 
|  | struct qfq_sched { | 
|  | struct tcf_proto *filter_list; | 
|  | struct Qdisc_class_hash clhash; | 
|  |  | 
|  | u64			oldV, V;	/* Precise virtual times. */ | 
|  | struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */ | 
|  | u32			num_active_agg; /* Num. of active aggregates */ | 
|  | u32			wsum;		/* weight sum */ | 
|  | u32			iwsum;		/* inverse weight sum */ | 
|  |  | 
|  | unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */ | 
|  | struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ | 
|  | u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */ | 
|  |  | 
|  | u32 max_agg_classes;		/* Max number of classes per aggr. */ | 
|  | struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Possible reasons why the timestamps of an aggregate are updated | 
|  | * enqueue: the aggregate switches from idle to active and must scheduled | 
|  | *	    for service | 
|  | * requeue: the aggregate finishes its budget, so it stops being served and | 
|  | *	    must be rescheduled for service | 
|  | */ | 
|  | enum update_reason {enqueue, requeue}; | 
|  |  | 
|  | static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  | struct Qdisc_class_common *clc; | 
|  |  | 
|  | clc = qdisc_class_find(&q->clhash, classid); | 
|  | if (clc == NULL) | 
|  | return NULL; | 
|  | return container_of(clc, struct qfq_class, common); | 
|  | } | 
|  |  | 
|  | static void qfq_purge_queue(struct qfq_class *cl) | 
|  | { | 
|  | unsigned int len = cl->qdisc->q.qlen; | 
|  |  | 
|  | qdisc_reset(cl->qdisc); | 
|  | qdisc_tree_decrease_qlen(cl->qdisc, len); | 
|  | } | 
|  |  | 
|  | static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { | 
|  | [TCA_QFQ_WEIGHT] = { .type = NLA_U32 }, | 
|  | [TCA_QFQ_LMAX] = { .type = NLA_U32 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Calculate a flow index, given its weight and maximum packet length. | 
|  | * index = log_2(maxlen/weight) but we need to apply the scaling. | 
|  | * This is used only once at flow creation. | 
|  | */ | 
|  | static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) | 
|  | { | 
|  | u64 slot_size = (u64)maxlen * inv_w; | 
|  | unsigned long size_map; | 
|  | int index = 0; | 
|  |  | 
|  | size_map = slot_size >> min_slot_shift; | 
|  | if (!size_map) | 
|  | goto out; | 
|  |  | 
|  | index = __fls(size_map) + 1;	/* basically a log_2 */ | 
|  | index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); | 
|  |  | 
|  | if (index < 0) | 
|  | index = 0; | 
|  | out: | 
|  | pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", | 
|  | (unsigned long) ONE_FP/inv_w, maxlen, index); | 
|  |  | 
|  | return index; | 
|  | } | 
|  |  | 
|  | static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); | 
|  | static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, | 
|  | enum update_reason); | 
|  |  | 
|  | static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, | 
|  | u32 lmax, u32 weight) | 
|  | { | 
|  | INIT_LIST_HEAD(&agg->active); | 
|  | hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); | 
|  |  | 
|  | agg->lmax = lmax; | 
|  | agg->class_weight = weight; | 
|  | } | 
|  |  | 
|  | static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, | 
|  | u32 lmax, u32 weight) | 
|  | { | 
|  | struct qfq_aggregate *agg; | 
|  |  | 
|  | hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next) | 
|  | if (agg->lmax == lmax && agg->class_weight == weight) | 
|  | return agg; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Update aggregate as a function of the new number of classes. */ | 
|  | static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, | 
|  | int new_num_classes) | 
|  | { | 
|  | u32 new_agg_weight; | 
|  |  | 
|  | if (new_num_classes == q->max_agg_classes) | 
|  | hlist_del_init(&agg->nonfull_next); | 
|  |  | 
|  | if (agg->num_classes > new_num_classes && | 
|  | new_num_classes == q->max_agg_classes - 1) /* agg no more full */ | 
|  | hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); | 
|  |  | 
|  | /* The next assignment may let | 
|  | * agg->initial_budget > agg->budgetmax | 
|  | * hold, we will take it into account in charge_actual_service(). | 
|  | */ | 
|  | agg->budgetmax = new_num_classes * agg->lmax; | 
|  | new_agg_weight = agg->class_weight * new_num_classes; | 
|  | agg->inv_w = ONE_FP/new_agg_weight; | 
|  |  | 
|  | if (agg->grp == NULL) { | 
|  | int i = qfq_calc_index(agg->inv_w, agg->budgetmax, | 
|  | q->min_slot_shift); | 
|  | agg->grp = &q->groups[i]; | 
|  | } | 
|  |  | 
|  | q->wsum += | 
|  | (int) agg->class_weight * (new_num_classes - agg->num_classes); | 
|  | q->iwsum = ONE_FP / q->wsum; | 
|  |  | 
|  | agg->num_classes = new_num_classes; | 
|  | } | 
|  |  | 
|  | /* Add class to aggregate. */ | 
|  | static void qfq_add_to_agg(struct qfq_sched *q, | 
|  | struct qfq_aggregate *agg, | 
|  | struct qfq_class *cl) | 
|  | { | 
|  | cl->agg = agg; | 
|  |  | 
|  | qfq_update_agg(q, agg, agg->num_classes+1); | 
|  | if (cl->qdisc->q.qlen > 0) { /* adding an active class */ | 
|  | list_add_tail(&cl->alist, &agg->active); | 
|  | if (list_first_entry(&agg->active, struct qfq_class, alist) == | 
|  | cl && q->in_serv_agg != agg) /* agg was inactive */ | 
|  | qfq_activate_agg(q, agg, enqueue); /* schedule agg */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); | 
|  |  | 
|  | static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) | 
|  | { | 
|  | if (!hlist_unhashed(&agg->nonfull_next)) | 
|  | hlist_del_init(&agg->nonfull_next); | 
|  | q->wsum -= agg->class_weight; | 
|  | if (q->wsum != 0) | 
|  | q->iwsum = ONE_FP / q->wsum; | 
|  |  | 
|  | if (q->in_serv_agg == agg) | 
|  | q->in_serv_agg = qfq_choose_next_agg(q); | 
|  | kfree(agg); | 
|  | } | 
|  |  | 
|  | /* Deschedule class from within its parent aggregate. */ | 
|  | static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) | 
|  | { | 
|  | struct qfq_aggregate *agg = cl->agg; | 
|  |  | 
|  |  | 
|  | list_del(&cl->alist); /* remove from RR queue of the aggregate */ | 
|  | if (list_empty(&agg->active)) /* agg is now inactive */ | 
|  | qfq_deactivate_agg(q, agg); | 
|  | } | 
|  |  | 
|  | /* Remove class from its parent aggregate. */ | 
|  | static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) | 
|  | { | 
|  | struct qfq_aggregate *agg = cl->agg; | 
|  |  | 
|  | cl->agg = NULL; | 
|  | if (agg->num_classes == 1) { /* agg being emptied, destroy it */ | 
|  | qfq_destroy_agg(q, agg); | 
|  | return; | 
|  | } | 
|  | qfq_update_agg(q, agg, agg->num_classes-1); | 
|  | } | 
|  |  | 
|  | /* Deschedule class and remove it from its parent aggregate. */ | 
|  | static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) | 
|  | { | 
|  | if (cl->qdisc->q.qlen > 0) /* class is active */ | 
|  | qfq_deactivate_class(q, cl); | 
|  |  | 
|  | qfq_rm_from_agg(q, cl); | 
|  | } | 
|  |  | 
|  | /* Move class to a new aggregate, matching the new class weight and/or lmax */ | 
|  | static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, | 
|  | u32 lmax) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  | struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight); | 
|  |  | 
|  | if (new_agg == NULL) { /* create new aggregate */ | 
|  | new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); | 
|  | if (new_agg == NULL) | 
|  | return -ENOBUFS; | 
|  | qfq_init_agg(q, new_agg, lmax, weight); | 
|  | } | 
|  | qfq_deact_rm_from_agg(q, cl); | 
|  | qfq_add_to_agg(q, new_agg, cl); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, | 
|  | struct nlattr **tca, unsigned long *arg) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  | struct qfq_class *cl = (struct qfq_class *)*arg; | 
|  | bool existing = false; | 
|  | struct nlattr *tb[TCA_QFQ_MAX + 1]; | 
|  | struct qfq_aggregate *new_agg = NULL; | 
|  | u32 weight, lmax, inv_w; | 
|  | int err; | 
|  | int delta_w; | 
|  |  | 
|  | if (tca[TCA_OPTIONS] == NULL) { | 
|  | pr_notice("qfq: no options\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | if (tb[TCA_QFQ_WEIGHT]) { | 
|  | weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); | 
|  | if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) { | 
|  | pr_notice("qfq: invalid weight %u\n", weight); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else | 
|  | weight = 1; | 
|  |  | 
|  | if (tb[TCA_QFQ_LMAX]) { | 
|  | lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); | 
|  | if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) { | 
|  | pr_notice("qfq: invalid max length %u\n", lmax); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else | 
|  | lmax = psched_mtu(qdisc_dev(sch)); | 
|  |  | 
|  | inv_w = ONE_FP / weight; | 
|  | weight = ONE_FP / inv_w; | 
|  |  | 
|  | if (cl != NULL && | 
|  | lmax == cl->agg->lmax && | 
|  | weight == cl->agg->class_weight) | 
|  | return 0; /* nothing to change */ | 
|  |  | 
|  | delta_w = weight - (cl ? cl->agg->class_weight : 0); | 
|  |  | 
|  | if (q->wsum + delta_w > QFQ_MAX_WSUM) { | 
|  | pr_notice("qfq: total weight out of range (%d + %u)\n", | 
|  | delta_w, q->wsum); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (cl != NULL) { /* modify existing class */ | 
|  | if (tca[TCA_RATE]) { | 
|  | err = gen_replace_estimator(&cl->bstats, &cl->rate_est, | 
|  | qdisc_root_sleeping_lock(sch), | 
|  | tca[TCA_RATE]); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | existing = true; | 
|  | goto set_change_agg; | 
|  | } | 
|  |  | 
|  | /* create and init new class */ | 
|  | cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); | 
|  | if (cl == NULL) | 
|  | return -ENOBUFS; | 
|  |  | 
|  | cl->refcnt = 1; | 
|  | cl->common.classid = classid; | 
|  | cl->deficit = lmax; | 
|  |  | 
|  | cl->qdisc = qdisc_create_dflt(sch->dev_queue, | 
|  | &pfifo_qdisc_ops, classid); | 
|  | if (cl->qdisc == NULL) | 
|  | cl->qdisc = &noop_qdisc; | 
|  |  | 
|  | if (tca[TCA_RATE]) { | 
|  | err = gen_new_estimator(&cl->bstats, &cl->rate_est, | 
|  | qdisc_root_sleeping_lock(sch), | 
|  | tca[TCA_RATE]); | 
|  | if (err) | 
|  | goto destroy_class; | 
|  | } | 
|  |  | 
|  | sch_tree_lock(sch); | 
|  | qdisc_class_hash_insert(&q->clhash, &cl->common); | 
|  | sch_tree_unlock(sch); | 
|  |  | 
|  | qdisc_class_hash_grow(sch, &q->clhash); | 
|  |  | 
|  | set_change_agg: | 
|  | sch_tree_lock(sch); | 
|  | new_agg = qfq_find_agg(q, lmax, weight); | 
|  | if (new_agg == NULL) { /* create new aggregate */ | 
|  | sch_tree_unlock(sch); | 
|  | new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); | 
|  | if (new_agg == NULL) { | 
|  | err = -ENOBUFS; | 
|  | gen_kill_estimator(&cl->bstats, &cl->rate_est); | 
|  | goto destroy_class; | 
|  | } | 
|  | sch_tree_lock(sch); | 
|  | qfq_init_agg(q, new_agg, lmax, weight); | 
|  | } | 
|  | if (existing) | 
|  | qfq_deact_rm_from_agg(q, cl); | 
|  | qfq_add_to_agg(q, new_agg, cl); | 
|  | sch_tree_unlock(sch); | 
|  |  | 
|  | *arg = (unsigned long)cl; | 
|  | return 0; | 
|  |  | 
|  | destroy_class: | 
|  | qdisc_destroy(cl->qdisc); | 
|  | kfree(cl); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  |  | 
|  | qfq_rm_from_agg(q, cl); | 
|  | gen_kill_estimator(&cl->bstats, &cl->rate_est); | 
|  | qdisc_destroy(cl->qdisc); | 
|  | kfree(cl); | 
|  | } | 
|  |  | 
|  | static int qfq_delete_class(struct Qdisc *sch, unsigned long arg) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  | struct qfq_class *cl = (struct qfq_class *)arg; | 
|  |  | 
|  | if (cl->filter_cnt > 0) | 
|  | return -EBUSY; | 
|  |  | 
|  | sch_tree_lock(sch); | 
|  |  | 
|  | qfq_purge_queue(cl); | 
|  | qdisc_class_hash_remove(&q->clhash, &cl->common); | 
|  |  | 
|  | BUG_ON(--cl->refcnt == 0); | 
|  | /* | 
|  | * This shouldn't happen: we "hold" one cops->get() when called | 
|  | * from tc_ctl_tclass; the destroy method is done from cops->put(). | 
|  | */ | 
|  |  | 
|  | sch_tree_unlock(sch); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid) | 
|  | { | 
|  | struct qfq_class *cl = qfq_find_class(sch, classid); | 
|  |  | 
|  | if (cl != NULL) | 
|  | cl->refcnt++; | 
|  |  | 
|  | return (unsigned long)cl; | 
|  | } | 
|  |  | 
|  | static void qfq_put_class(struct Qdisc *sch, unsigned long arg) | 
|  | { | 
|  | struct qfq_class *cl = (struct qfq_class *)arg; | 
|  |  | 
|  | if (--cl->refcnt == 0) | 
|  | qfq_destroy_class(sch, cl); | 
|  | } | 
|  |  | 
|  | static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  |  | 
|  | if (cl) | 
|  | return NULL; | 
|  |  | 
|  | return &q->filter_list; | 
|  | } | 
|  |  | 
|  | static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, | 
|  | u32 classid) | 
|  | { | 
|  | struct qfq_class *cl = qfq_find_class(sch, classid); | 
|  |  | 
|  | if (cl != NULL) | 
|  | cl->filter_cnt++; | 
|  |  | 
|  | return (unsigned long)cl; | 
|  | } | 
|  |  | 
|  | static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) | 
|  | { | 
|  | struct qfq_class *cl = (struct qfq_class *)arg; | 
|  |  | 
|  | cl->filter_cnt--; | 
|  | } | 
|  |  | 
|  | static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, | 
|  | struct Qdisc *new, struct Qdisc **old) | 
|  | { | 
|  | struct qfq_class *cl = (struct qfq_class *)arg; | 
|  |  | 
|  | if (new == NULL) { | 
|  | new = qdisc_create_dflt(sch->dev_queue, | 
|  | &pfifo_qdisc_ops, cl->common.classid); | 
|  | if (new == NULL) | 
|  | new = &noop_qdisc; | 
|  | } | 
|  |  | 
|  | sch_tree_lock(sch); | 
|  | qfq_purge_queue(cl); | 
|  | *old = cl->qdisc; | 
|  | cl->qdisc = new; | 
|  | sch_tree_unlock(sch); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) | 
|  | { | 
|  | struct qfq_class *cl = (struct qfq_class *)arg; | 
|  |  | 
|  | return cl->qdisc; | 
|  | } | 
|  |  | 
|  | static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, | 
|  | struct sk_buff *skb, struct tcmsg *tcm) | 
|  | { | 
|  | struct qfq_class *cl = (struct qfq_class *)arg; | 
|  | struct nlattr *nest; | 
|  |  | 
|  | tcm->tcm_parent	= TC_H_ROOT; | 
|  | tcm->tcm_handle	= cl->common.classid; | 
|  | tcm->tcm_info	= cl->qdisc->handle; | 
|  |  | 
|  | nest = nla_nest_start(skb, TCA_OPTIONS); | 
|  | if (nest == NULL) | 
|  | goto nla_put_failure; | 
|  | if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) || | 
|  | nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax)) | 
|  | goto nla_put_failure; | 
|  | return nla_nest_end(skb, nest); | 
|  |  | 
|  | nla_put_failure: | 
|  | nla_nest_cancel(skb, nest); | 
|  | return -EMSGSIZE; | 
|  | } | 
|  |  | 
|  | static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, | 
|  | struct gnet_dump *d) | 
|  | { | 
|  | struct qfq_class *cl = (struct qfq_class *)arg; | 
|  | struct tc_qfq_stats xstats; | 
|  |  | 
|  | memset(&xstats, 0, sizeof(xstats)); | 
|  | cl->qdisc->qstats.qlen = cl->qdisc->q.qlen; | 
|  |  | 
|  | xstats.weight = cl->agg->class_weight; | 
|  | xstats.lmax = cl->agg->lmax; | 
|  |  | 
|  | if (gnet_stats_copy_basic(d, &cl->bstats) < 0 || | 
|  | gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 || | 
|  | gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0) | 
|  | return -1; | 
|  |  | 
|  | return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); | 
|  | } | 
|  |  | 
|  | static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  | struct qfq_class *cl; | 
|  | unsigned int i; | 
|  |  | 
|  | if (arg->stop) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < q->clhash.hashsize; i++) { | 
|  | hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { | 
|  | if (arg->count < arg->skip) { | 
|  | arg->count++; | 
|  | continue; | 
|  | } | 
|  | if (arg->fn(sch, (unsigned long)cl, arg) < 0) { | 
|  | arg->stop = 1; | 
|  | return; | 
|  | } | 
|  | arg->count++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, | 
|  | int *qerr) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  | struct qfq_class *cl; | 
|  | struct tcf_result res; | 
|  | int result; | 
|  |  | 
|  | if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { | 
|  | pr_debug("qfq_classify: found %d\n", skb->priority); | 
|  | cl = qfq_find_class(sch, skb->priority); | 
|  | if (cl != NULL) | 
|  | return cl; | 
|  | } | 
|  |  | 
|  | *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; | 
|  | result = tc_classify(skb, q->filter_list, &res); | 
|  | if (result >= 0) { | 
|  | #ifdef CONFIG_NET_CLS_ACT | 
|  | switch (result) { | 
|  | case TC_ACT_QUEUED: | 
|  | case TC_ACT_STOLEN: | 
|  | *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; | 
|  | case TC_ACT_SHOT: | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  | cl = (struct qfq_class *)res.class; | 
|  | if (cl == NULL) | 
|  | cl = qfq_find_class(sch, res.classid); | 
|  | return cl; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Generic comparison function, handling wraparound. */ | 
|  | static inline int qfq_gt(u64 a, u64 b) | 
|  | { | 
|  | return (s64)(a - b) > 0; | 
|  | } | 
|  |  | 
|  | /* Round a precise timestamp to its slotted value. */ | 
|  | static inline u64 qfq_round_down(u64 ts, unsigned int shift) | 
|  | { | 
|  | return ts & ~((1ULL << shift) - 1); | 
|  | } | 
|  |  | 
|  | /* return the pointer to the group with lowest index in the bitmap */ | 
|  | static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, | 
|  | unsigned long bitmap) | 
|  | { | 
|  | int index = __ffs(bitmap); | 
|  | return &q->groups[index]; | 
|  | } | 
|  | /* Calculate a mask to mimic what would be ffs_from(). */ | 
|  | static inline unsigned long mask_from(unsigned long bitmap, int from) | 
|  | { | 
|  | return bitmap & ~((1UL << from) - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The state computation relies on ER=0, IR=1, EB=2, IB=3 | 
|  | * First compute eligibility comparing grp->S, q->V, | 
|  | * then check if someone is blocking us and possibly add EB | 
|  | */ | 
|  | static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) | 
|  | { | 
|  | /* if S > V we are not eligible */ | 
|  | unsigned int state = qfq_gt(grp->S, q->V); | 
|  | unsigned long mask = mask_from(q->bitmaps[ER], grp->index); | 
|  | struct qfq_group *next; | 
|  |  | 
|  | if (mask) { | 
|  | next = qfq_ffs(q, mask); | 
|  | if (qfq_gt(grp->F, next->F)) | 
|  | state |= EB; | 
|  | } | 
|  |  | 
|  | return state; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * In principle | 
|  | *	q->bitmaps[dst] |= q->bitmaps[src] & mask; | 
|  | *	q->bitmaps[src] &= ~mask; | 
|  | * but we should make sure that src != dst | 
|  | */ | 
|  | static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, | 
|  | int src, int dst) | 
|  | { | 
|  | q->bitmaps[dst] |= q->bitmaps[src] & mask; | 
|  | q->bitmaps[src] &= ~mask; | 
|  | } | 
|  |  | 
|  | static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) | 
|  | { | 
|  | unsigned long mask = mask_from(q->bitmaps[ER], index + 1); | 
|  | struct qfq_group *next; | 
|  |  | 
|  | if (mask) { | 
|  | next = qfq_ffs(q, mask); | 
|  | if (!qfq_gt(next->F, old_F)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | mask = (1UL << index) - 1; | 
|  | qfq_move_groups(q, mask, EB, ER); | 
|  | qfq_move_groups(q, mask, IB, IR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * perhaps | 
|  | * | 
|  | old_V ^= q->V; | 
|  | old_V >>= q->min_slot_shift; | 
|  | if (old_V) { | 
|  | ... | 
|  | } | 
|  | * | 
|  | */ | 
|  | static void qfq_make_eligible(struct qfq_sched *q) | 
|  | { | 
|  | unsigned long vslot = q->V >> q->min_slot_shift; | 
|  | unsigned long old_vslot = q->oldV >> q->min_slot_shift; | 
|  |  | 
|  | if (vslot != old_vslot) { | 
|  | unsigned long mask; | 
|  | int last_flip_pos = fls(vslot ^ old_vslot); | 
|  |  | 
|  | if (last_flip_pos > 31) /* higher than the number of groups */ | 
|  | mask = ~0UL;    /* make all groups eligible */ | 
|  | else | 
|  | mask = (1UL << last_flip_pos) - 1; | 
|  |  | 
|  | qfq_move_groups(q, mask, IR, ER); | 
|  | qfq_move_groups(q, mask, IB, EB); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The index of the slot in which the input aggregate agg is to be | 
|  | * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2' | 
|  | * and not a '-1' because the start time of the group may be moved | 
|  | * backward by one slot after the aggregate has been inserted, and | 
|  | * this would cause non-empty slots to be right-shifted by one | 
|  | * position. | 
|  | * | 
|  | * QFQ+ fully satisfies this bound to the slot index if the parameters | 
|  | * of the classes are not changed dynamically, and if QFQ+ never | 
|  | * happens to postpone the service of agg unjustly, i.e., it never | 
|  | * happens that the aggregate becomes backlogged and eligible, or just | 
|  | * eligible, while an aggregate with a higher approximated finish time | 
|  | * is being served. In particular, in this case QFQ+ guarantees that | 
|  | * the timestamps of agg are low enough that the slot index is never | 
|  | * higher than 2. Unfortunately, QFQ+ cannot provide the same | 
|  | * guarantee if it happens to unjustly postpone the service of agg, or | 
|  | * if the parameters of some class are changed. | 
|  | * | 
|  | * As for the first event, i.e., an out-of-order service, the | 
|  | * upper bound to the slot index guaranteed by QFQ+ grows to | 
|  | * 2 + | 
|  | * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * | 
|  | * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1. | 
|  | * | 
|  | * The following function deals with this problem by backward-shifting | 
|  | * the timestamps of agg, if needed, so as to guarantee that the slot | 
|  | * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may | 
|  | * cause the service of other aggregates to be postponed, yet the | 
|  | * worst-case guarantees of these aggregates are not violated.  In | 
|  | * fact, in case of no out-of-order service, the timestamps of agg | 
|  | * would have been even lower than they are after the backward shift, | 
|  | * because QFQ+ would have guaranteed a maximum value equal to 2 for | 
|  | * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose | 
|  | * service is postponed because of the backward-shift would have | 
|  | * however waited for the service of agg before being served. | 
|  | * | 
|  | * The other event that may cause the slot index to be higher than 2 | 
|  | * for agg is a recent change of the parameters of some class. If the | 
|  | * weight of a class is increased or the lmax (max_pkt_size) of the | 
|  | * class is decreased, then a new aggregate with smaller slot size | 
|  | * than the original parent aggregate of the class may happen to be | 
|  | * activated. The activation of this aggregate should be properly | 
|  | * delayed to when the service of the class has finished in the ideal | 
|  | * system tracked by QFQ+. If the activation of the aggregate is not | 
|  | * delayed to this reference time instant, then this aggregate may be | 
|  | * unjustly served before other aggregates waiting for service. This | 
|  | * may cause the above bound to the slot index to be violated for some | 
|  | * of these unlucky aggregates. | 
|  | * | 
|  | * Instead of delaying the activation of the new aggregate, which is | 
|  | * quite complex, the above-discussed capping of the slot index is | 
|  | * used to handle also the consequences of a change of the parameters | 
|  | * of a class. | 
|  | */ | 
|  | static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, | 
|  | u64 roundedS) | 
|  | { | 
|  | u64 slot = (roundedS - grp->S) >> grp->slot_shift; | 
|  | unsigned int i; /* slot index in the bucket list */ | 
|  |  | 
|  | if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { | 
|  | u64 deltaS = roundedS - grp->S - | 
|  | ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); | 
|  | agg->S -= deltaS; | 
|  | agg->F -= deltaS; | 
|  | slot = QFQ_MAX_SLOTS - 2; | 
|  | } | 
|  |  | 
|  | i = (grp->front + slot) % QFQ_MAX_SLOTS; | 
|  |  | 
|  | hlist_add_head(&agg->next, &grp->slots[i]); | 
|  | __set_bit(slot, &grp->full_slots); | 
|  | } | 
|  |  | 
|  | /* Maybe introduce hlist_first_entry?? */ | 
|  | static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) | 
|  | { | 
|  | return hlist_entry(grp->slots[grp->front].first, | 
|  | struct qfq_aggregate, next); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove the entry from the slot | 
|  | */ | 
|  | static void qfq_front_slot_remove(struct qfq_group *grp) | 
|  | { | 
|  | struct qfq_aggregate *agg = qfq_slot_head(grp); | 
|  |  | 
|  | BUG_ON(!agg); | 
|  | hlist_del(&agg->next); | 
|  | if (hlist_empty(&grp->slots[grp->front])) | 
|  | __clear_bit(0, &grp->full_slots); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the first aggregate in the first non-empty bucket of the | 
|  | * group. As a side effect, adjusts the bucket list so the first | 
|  | * non-empty bucket is at position 0 in full_slots. | 
|  | */ | 
|  | static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | pr_debug("qfq slot_scan: grp %u full %#lx\n", | 
|  | grp->index, grp->full_slots); | 
|  |  | 
|  | if (grp->full_slots == 0) | 
|  | return NULL; | 
|  |  | 
|  | i = __ffs(grp->full_slots);  /* zero based */ | 
|  | if (i > 0) { | 
|  | grp->front = (grp->front + i) % QFQ_MAX_SLOTS; | 
|  | grp->full_slots >>= i; | 
|  | } | 
|  |  | 
|  | return qfq_slot_head(grp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * adjust the bucket list. When the start time of a group decreases, | 
|  | * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to | 
|  | * move the objects. The mask of occupied slots must be shifted | 
|  | * because we use ffs() to find the first non-empty slot. | 
|  | * This covers decreases in the group's start time, but what about | 
|  | * increases of the start time ? | 
|  | * Here too we should make sure that i is less than 32 | 
|  | */ | 
|  | static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) | 
|  | { | 
|  | unsigned int i = (grp->S - roundedS) >> grp->slot_shift; | 
|  |  | 
|  | grp->full_slots <<= i; | 
|  | grp->front = (grp->front - i) % QFQ_MAX_SLOTS; | 
|  | } | 
|  |  | 
|  | static void qfq_update_eligible(struct qfq_sched *q) | 
|  | { | 
|  | struct qfq_group *grp; | 
|  | unsigned long ineligible; | 
|  |  | 
|  | ineligible = q->bitmaps[IR] | q->bitmaps[IB]; | 
|  | if (ineligible) { | 
|  | if (!q->bitmaps[ER]) { | 
|  | grp = qfq_ffs(q, ineligible); | 
|  | if (qfq_gt(grp->S, q->V)) | 
|  | q->V = grp->S; | 
|  | } | 
|  | qfq_make_eligible(q); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Dequeue head packet of the head class in the DRR queue of the aggregate. */ | 
|  | static void agg_dequeue(struct qfq_aggregate *agg, | 
|  | struct qfq_class *cl, unsigned int len) | 
|  | { | 
|  | qdisc_dequeue_peeked(cl->qdisc); | 
|  |  | 
|  | cl->deficit -= (int) len; | 
|  |  | 
|  | if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ | 
|  | list_del(&cl->alist); | 
|  | else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) { | 
|  | cl->deficit += agg->lmax; | 
|  | list_move_tail(&cl->alist, &agg->active); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, | 
|  | struct qfq_class **cl, | 
|  | unsigned int *len) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | *cl = list_first_entry(&agg->active, struct qfq_class, alist); | 
|  | skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); | 
|  | if (skb == NULL) | 
|  | WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); | 
|  | else | 
|  | *len = qdisc_pkt_len(skb); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* Update F according to the actual service received by the aggregate. */ | 
|  | static inline void charge_actual_service(struct qfq_aggregate *agg) | 
|  | { | 
|  | /* Compute the service received by the aggregate, taking into | 
|  | * account that, after decreasing the number of classes in | 
|  | * agg, it may happen that | 
|  | * agg->initial_budget - agg->budget > agg->bugdetmax | 
|  | */ | 
|  | u32 service_received = min(agg->budgetmax, | 
|  | agg->initial_budget - agg->budget); | 
|  |  | 
|  | agg->F = agg->S + (u64)service_received * agg->inv_w; | 
|  | } | 
|  |  | 
|  | /* Assign a reasonable start time for a new aggregate in group i. | 
|  | * Admissible values for \hat(F) are multiples of \sigma_i | 
|  | * no greater than V+\sigma_i . Larger values mean that | 
|  | * we had a wraparound so we consider the timestamp to be stale. | 
|  | * | 
|  | * If F is not stale and F >= V then we set S = F. | 
|  | * Otherwise we should assign S = V, but this may violate | 
|  | * the ordering in EB (see [2]). So, if we have groups in ER, | 
|  | * set S to the F_j of the first group j which would be blocking us. | 
|  | * We are guaranteed not to move S backward because | 
|  | * otherwise our group i would still be blocked. | 
|  | */ | 
|  | static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) | 
|  | { | 
|  | unsigned long mask; | 
|  | u64 limit, roundedF; | 
|  | int slot_shift = agg->grp->slot_shift; | 
|  |  | 
|  | roundedF = qfq_round_down(agg->F, slot_shift); | 
|  | limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); | 
|  |  | 
|  | if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { | 
|  | /* timestamp was stale */ | 
|  | mask = mask_from(q->bitmaps[ER], agg->grp->index); | 
|  | if (mask) { | 
|  | struct qfq_group *next = qfq_ffs(q, mask); | 
|  | if (qfq_gt(roundedF, next->F)) { | 
|  | if (qfq_gt(limit, next->F)) | 
|  | agg->S = next->F; | 
|  | else /* preserve timestamp correctness */ | 
|  | agg->S = limit; | 
|  | return; | 
|  | } | 
|  | } | 
|  | agg->S = q->V; | 
|  | } else  /* timestamp is not stale */ | 
|  | agg->S = agg->F; | 
|  | } | 
|  |  | 
|  | /* Update the timestamps of agg before scheduling/rescheduling it for | 
|  | * service.  In particular, assign to agg->F its maximum possible | 
|  | * value, i.e., the virtual finish time with which the aggregate | 
|  | * should be labeled if it used all its budget once in service. | 
|  | */ | 
|  | static inline void | 
|  | qfq_update_agg_ts(struct qfq_sched *q, | 
|  | struct qfq_aggregate *agg, enum update_reason reason) | 
|  | { | 
|  | if (reason != requeue) | 
|  | qfq_update_start(q, agg); | 
|  | else /* just charge agg for the service received */ | 
|  | agg->S = agg->F; | 
|  |  | 
|  | agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; | 
|  | } | 
|  |  | 
|  | static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg); | 
|  |  | 
|  | static struct sk_buff *qfq_dequeue(struct Qdisc *sch) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  | struct qfq_aggregate *in_serv_agg = q->in_serv_agg; | 
|  | struct qfq_class *cl; | 
|  | struct sk_buff *skb = NULL; | 
|  | /* next-packet len, 0 means no more active classes in in-service agg */ | 
|  | unsigned int len = 0; | 
|  |  | 
|  | if (in_serv_agg == NULL) | 
|  | return NULL; | 
|  |  | 
|  | if (!list_empty(&in_serv_agg->active)) | 
|  | skb = qfq_peek_skb(in_serv_agg, &cl, &len); | 
|  |  | 
|  | /* | 
|  | * If there are no active classes in the in-service aggregate, | 
|  | * or if the aggregate has not enough budget to serve its next | 
|  | * class, then choose the next aggregate to serve. | 
|  | */ | 
|  | if (len == 0 || in_serv_agg->budget < len) { | 
|  | charge_actual_service(in_serv_agg); | 
|  |  | 
|  | /* recharge the budget of the aggregate */ | 
|  | in_serv_agg->initial_budget = in_serv_agg->budget = | 
|  | in_serv_agg->budgetmax; | 
|  |  | 
|  | if (!list_empty(&in_serv_agg->active)) { | 
|  | /* | 
|  | * Still active: reschedule for | 
|  | * service. Possible optimization: if no other | 
|  | * aggregate is active, then there is no point | 
|  | * in rescheduling this aggregate, and we can | 
|  | * just keep it as the in-service one. This | 
|  | * should be however a corner case, and to | 
|  | * handle it, we would need to maintain an | 
|  | * extra num_active_aggs field. | 
|  | */ | 
|  | qfq_update_agg_ts(q, in_serv_agg, requeue); | 
|  | qfq_schedule_agg(q, in_serv_agg); | 
|  | } else if (sch->q.qlen == 0) { /* no aggregate to serve */ | 
|  | q->in_serv_agg = NULL; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we get here, there are other aggregates queued: | 
|  | * choose the new aggregate to serve. | 
|  | */ | 
|  | in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); | 
|  | skb = qfq_peek_skb(in_serv_agg, &cl, &len); | 
|  | } | 
|  | if (!skb) | 
|  | return NULL; | 
|  |  | 
|  | sch->q.qlen--; | 
|  | qdisc_bstats_update(sch, skb); | 
|  |  | 
|  | agg_dequeue(in_serv_agg, cl, len); | 
|  | /* If lmax is lowered, through qfq_change_class, for a class | 
|  | * owning pending packets with larger size than the new value | 
|  | * of lmax, then the following condition may hold. | 
|  | */ | 
|  | if (unlikely(in_serv_agg->budget < len)) | 
|  | in_serv_agg->budget = 0; | 
|  | else | 
|  | in_serv_agg->budget -= len; | 
|  |  | 
|  | q->V += (u64)len * q->iwsum; | 
|  | pr_debug("qfq dequeue: len %u F %lld now %lld\n", | 
|  | len, (unsigned long long) in_serv_agg->F, | 
|  | (unsigned long long) q->V); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) | 
|  | { | 
|  | struct qfq_group *grp; | 
|  | struct qfq_aggregate *agg, *new_front_agg; | 
|  | u64 old_F; | 
|  |  | 
|  | qfq_update_eligible(q); | 
|  | q->oldV = q->V; | 
|  |  | 
|  | if (!q->bitmaps[ER]) | 
|  | return NULL; | 
|  |  | 
|  | grp = qfq_ffs(q, q->bitmaps[ER]); | 
|  | old_F = grp->F; | 
|  |  | 
|  | agg = qfq_slot_head(grp); | 
|  |  | 
|  | /* agg starts to be served, remove it from schedule */ | 
|  | qfq_front_slot_remove(grp); | 
|  |  | 
|  | new_front_agg = qfq_slot_scan(grp); | 
|  |  | 
|  | if (new_front_agg == NULL) /* group is now inactive, remove from ER */ | 
|  | __clear_bit(grp->index, &q->bitmaps[ER]); | 
|  | else { | 
|  | u64 roundedS = qfq_round_down(new_front_agg->S, | 
|  | grp->slot_shift); | 
|  | unsigned int s; | 
|  |  | 
|  | if (grp->S == roundedS) | 
|  | return agg; | 
|  | grp->S = roundedS; | 
|  | grp->F = roundedS + (2ULL << grp->slot_shift); | 
|  | __clear_bit(grp->index, &q->bitmaps[ER]); | 
|  | s = qfq_calc_state(q, grp); | 
|  | __set_bit(grp->index, &q->bitmaps[s]); | 
|  | } | 
|  |  | 
|  | qfq_unblock_groups(q, grp->index, old_F); | 
|  |  | 
|  | return agg; | 
|  | } | 
|  |  | 
|  | static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  | struct qfq_class *cl; | 
|  | struct qfq_aggregate *agg; | 
|  | int err = 0; | 
|  |  | 
|  | cl = qfq_classify(skb, sch, &err); | 
|  | if (cl == NULL) { | 
|  | if (err & __NET_XMIT_BYPASS) | 
|  | sch->qstats.drops++; | 
|  | kfree_skb(skb); | 
|  | return err; | 
|  | } | 
|  | pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); | 
|  |  | 
|  | if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) { | 
|  | pr_debug("qfq: increasing maxpkt from %u to %u for class %u", | 
|  | cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid); | 
|  | err = qfq_change_agg(sch, cl, cl->agg->class_weight, | 
|  | qdisc_pkt_len(skb)); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = qdisc_enqueue(skb, cl->qdisc); | 
|  | if (unlikely(err != NET_XMIT_SUCCESS)) { | 
|  | pr_debug("qfq_enqueue: enqueue failed %d\n", err); | 
|  | if (net_xmit_drop_count(err)) { | 
|  | cl->qstats.drops++; | 
|  | sch->qstats.drops++; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | bstats_update(&cl->bstats, skb); | 
|  | ++sch->q.qlen; | 
|  |  | 
|  | agg = cl->agg; | 
|  | /* if the queue was not empty, then done here */ | 
|  | if (cl->qdisc->q.qlen != 1) { | 
|  | if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && | 
|  | list_first_entry(&agg->active, struct qfq_class, alist) | 
|  | == cl && cl->deficit < qdisc_pkt_len(skb)) | 
|  | list_move_tail(&cl->alist, &agg->active); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* schedule class for service within the aggregate */ | 
|  | cl->deficit = agg->lmax; | 
|  | list_add_tail(&cl->alist, &agg->active); | 
|  |  | 
|  | if (list_first_entry(&agg->active, struct qfq_class, alist) != cl || | 
|  | q->in_serv_agg == agg) | 
|  | return err; /* non-empty or in service, nothing else to do */ | 
|  |  | 
|  | qfq_activate_agg(q, agg, enqueue); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Schedule aggregate according to its timestamps. | 
|  | */ | 
|  | static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) | 
|  | { | 
|  | struct qfq_group *grp = agg->grp; | 
|  | u64 roundedS; | 
|  | int s; | 
|  |  | 
|  | roundedS = qfq_round_down(agg->S, grp->slot_shift); | 
|  |  | 
|  | /* | 
|  | * Insert agg in the correct bucket. | 
|  | * If agg->S >= grp->S we don't need to adjust the | 
|  | * bucket list and simply go to the insertion phase. | 
|  | * Otherwise grp->S is decreasing, we must make room | 
|  | * in the bucket list, and also recompute the group state. | 
|  | * Finally, if there were no flows in this group and nobody | 
|  | * was in ER make sure to adjust V. | 
|  | */ | 
|  | if (grp->full_slots) { | 
|  | if (!qfq_gt(grp->S, agg->S)) | 
|  | goto skip_update; | 
|  |  | 
|  | /* create a slot for this agg->S */ | 
|  | qfq_slot_rotate(grp, roundedS); | 
|  | /* group was surely ineligible, remove */ | 
|  | __clear_bit(grp->index, &q->bitmaps[IR]); | 
|  | __clear_bit(grp->index, &q->bitmaps[IB]); | 
|  | } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) && | 
|  | q->in_serv_agg == NULL) | 
|  | q->V = roundedS; | 
|  |  | 
|  | grp->S = roundedS; | 
|  | grp->F = roundedS + (2ULL << grp->slot_shift); | 
|  | s = qfq_calc_state(q, grp); | 
|  | __set_bit(grp->index, &q->bitmaps[s]); | 
|  |  | 
|  | pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", | 
|  | s, q->bitmaps[s], | 
|  | (unsigned long long) agg->S, | 
|  | (unsigned long long) agg->F, | 
|  | (unsigned long long) q->V); | 
|  |  | 
|  | skip_update: | 
|  | qfq_slot_insert(grp, agg, roundedS); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Update agg ts and schedule agg for service */ | 
|  | static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, | 
|  | enum update_reason reason) | 
|  | { | 
|  | agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */ | 
|  |  | 
|  | qfq_update_agg_ts(q, agg, reason); | 
|  | if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */ | 
|  | q->in_serv_agg = agg; /* start serving this aggregate */ | 
|  | /* update V: to be in service, agg must be eligible */ | 
|  | q->oldV = q->V = agg->S; | 
|  | } else if (agg != q->in_serv_agg) | 
|  | qfq_schedule_agg(q, agg); | 
|  | } | 
|  |  | 
|  | static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, | 
|  | struct qfq_aggregate *agg) | 
|  | { | 
|  | unsigned int i, offset; | 
|  | u64 roundedS; | 
|  |  | 
|  | roundedS = qfq_round_down(agg->S, grp->slot_shift); | 
|  | offset = (roundedS - grp->S) >> grp->slot_shift; | 
|  |  | 
|  | i = (grp->front + offset) % QFQ_MAX_SLOTS; | 
|  |  | 
|  | hlist_del(&agg->next); | 
|  | if (hlist_empty(&grp->slots[i])) | 
|  | __clear_bit(offset, &grp->full_slots); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called to forcibly deschedule an aggregate.  If the aggregate is | 
|  | * not in the front bucket, or if the latter has other aggregates in | 
|  | * the front bucket, we can simply remove the aggregate with no other | 
|  | * side effects. | 
|  | * Otherwise we must propagate the event up. | 
|  | */ | 
|  | static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) | 
|  | { | 
|  | struct qfq_group *grp = agg->grp; | 
|  | unsigned long mask; | 
|  | u64 roundedS; | 
|  | int s; | 
|  |  | 
|  | if (agg == q->in_serv_agg) { | 
|  | charge_actual_service(agg); | 
|  | q->in_serv_agg = qfq_choose_next_agg(q); | 
|  | return; | 
|  | } | 
|  |  | 
|  | agg->F = agg->S; | 
|  | qfq_slot_remove(q, grp, agg); | 
|  |  | 
|  | if (!grp->full_slots) { | 
|  | __clear_bit(grp->index, &q->bitmaps[IR]); | 
|  | __clear_bit(grp->index, &q->bitmaps[EB]); | 
|  | __clear_bit(grp->index, &q->bitmaps[IB]); | 
|  |  | 
|  | if (test_bit(grp->index, &q->bitmaps[ER]) && | 
|  | !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { | 
|  | mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); | 
|  | if (mask) | 
|  | mask = ~((1UL << __fls(mask)) - 1); | 
|  | else | 
|  | mask = ~0UL; | 
|  | qfq_move_groups(q, mask, EB, ER); | 
|  | qfq_move_groups(q, mask, IB, IR); | 
|  | } | 
|  | __clear_bit(grp->index, &q->bitmaps[ER]); | 
|  | } else if (hlist_empty(&grp->slots[grp->front])) { | 
|  | agg = qfq_slot_scan(grp); | 
|  | roundedS = qfq_round_down(agg->S, grp->slot_shift); | 
|  | if (grp->S != roundedS) { | 
|  | __clear_bit(grp->index, &q->bitmaps[ER]); | 
|  | __clear_bit(grp->index, &q->bitmaps[IR]); | 
|  | __clear_bit(grp->index, &q->bitmaps[EB]); | 
|  | __clear_bit(grp->index, &q->bitmaps[IB]); | 
|  | grp->S = roundedS; | 
|  | grp->F = roundedS + (2ULL << grp->slot_shift); | 
|  | s = qfq_calc_state(q, grp); | 
|  | __set_bit(grp->index, &q->bitmaps[s]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  | struct qfq_class *cl = (struct qfq_class *)arg; | 
|  |  | 
|  | if (cl->qdisc->q.qlen == 0) | 
|  | qfq_deactivate_class(q, cl); | 
|  | } | 
|  |  | 
|  | static unsigned int qfq_drop_from_slot(struct qfq_sched *q, | 
|  | struct hlist_head *slot) | 
|  | { | 
|  | struct qfq_aggregate *agg; | 
|  | struct qfq_class *cl; | 
|  | unsigned int len; | 
|  |  | 
|  | hlist_for_each_entry(agg, slot, next) { | 
|  | list_for_each_entry(cl, &agg->active, alist) { | 
|  |  | 
|  | if (!cl->qdisc->ops->drop) | 
|  | continue; | 
|  |  | 
|  | len = cl->qdisc->ops->drop(cl->qdisc); | 
|  | if (len > 0) { | 
|  | if (cl->qdisc->q.qlen == 0) | 
|  | qfq_deactivate_class(q, cl); | 
|  |  | 
|  | return len; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int qfq_drop(struct Qdisc *sch) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  | struct qfq_group *grp; | 
|  | unsigned int i, j, len; | 
|  |  | 
|  | for (i = 0; i <= QFQ_MAX_INDEX; i++) { | 
|  | grp = &q->groups[i]; | 
|  | for (j = 0; j < QFQ_MAX_SLOTS; j++) { | 
|  | len = qfq_drop_from_slot(q, &grp->slots[j]); | 
|  | if (len > 0) { | 
|  | sch->q.qlen--; | 
|  | return len; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  | struct qfq_group *grp; | 
|  | int i, j, err; | 
|  | u32 max_cl_shift, maxbudg_shift, max_classes; | 
|  |  | 
|  | err = qdisc_class_hash_init(&q->clhash); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES) | 
|  | max_classes = QFQ_MAX_AGG_CLASSES; | 
|  | else | 
|  | max_classes = qdisc_dev(sch)->tx_queue_len + 1; | 
|  | /* max_cl_shift = floor(log_2(max_classes)) */ | 
|  | max_cl_shift = __fls(max_classes); | 
|  | q->max_agg_classes = 1<<max_cl_shift; | 
|  |  | 
|  | /* maxbudg_shift = log2(max_len * max_classes_per_agg) */ | 
|  | maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; | 
|  | q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; | 
|  |  | 
|  | for (i = 0; i <= QFQ_MAX_INDEX; i++) { | 
|  | grp = &q->groups[i]; | 
|  | grp->index = i; | 
|  | grp->slot_shift = q->min_slot_shift + i; | 
|  | for (j = 0; j < QFQ_MAX_SLOTS; j++) | 
|  | INIT_HLIST_HEAD(&grp->slots[j]); | 
|  | } | 
|  |  | 
|  | INIT_HLIST_HEAD(&q->nonfull_aggs); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void qfq_reset_qdisc(struct Qdisc *sch) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  | struct qfq_class *cl; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < q->clhash.hashsize; i++) { | 
|  | hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { | 
|  | if (cl->qdisc->q.qlen > 0) | 
|  | qfq_deactivate_class(q, cl); | 
|  |  | 
|  | qdisc_reset(cl->qdisc); | 
|  | } | 
|  | } | 
|  | sch->q.qlen = 0; | 
|  | } | 
|  |  | 
|  | static void qfq_destroy_qdisc(struct Qdisc *sch) | 
|  | { | 
|  | struct qfq_sched *q = qdisc_priv(sch); | 
|  | struct qfq_class *cl; | 
|  | struct hlist_node *next; | 
|  | unsigned int i; | 
|  |  | 
|  | tcf_destroy_chain(&q->filter_list); | 
|  |  | 
|  | for (i = 0; i < q->clhash.hashsize; i++) { | 
|  | hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], | 
|  | common.hnode) { | 
|  | qfq_destroy_class(sch, cl); | 
|  | } | 
|  | } | 
|  | qdisc_class_hash_destroy(&q->clhash); | 
|  | } | 
|  |  | 
|  | static const struct Qdisc_class_ops qfq_class_ops = { | 
|  | .change		= qfq_change_class, | 
|  | .delete		= qfq_delete_class, | 
|  | .get		= qfq_get_class, | 
|  | .put		= qfq_put_class, | 
|  | .tcf_chain	= qfq_tcf_chain, | 
|  | .bind_tcf	= qfq_bind_tcf, | 
|  | .unbind_tcf	= qfq_unbind_tcf, | 
|  | .graft		= qfq_graft_class, | 
|  | .leaf		= qfq_class_leaf, | 
|  | .qlen_notify	= qfq_qlen_notify, | 
|  | .dump		= qfq_dump_class, | 
|  | .dump_stats	= qfq_dump_class_stats, | 
|  | .walk		= qfq_walk, | 
|  | }; | 
|  |  | 
|  | static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { | 
|  | .cl_ops		= &qfq_class_ops, | 
|  | .id		= "qfq", | 
|  | .priv_size	= sizeof(struct qfq_sched), | 
|  | .enqueue	= qfq_enqueue, | 
|  | .dequeue	= qfq_dequeue, | 
|  | .peek		= qdisc_peek_dequeued, | 
|  | .drop		= qfq_drop, | 
|  | .init		= qfq_init_qdisc, | 
|  | .reset		= qfq_reset_qdisc, | 
|  | .destroy	= qfq_destroy_qdisc, | 
|  | .owner		= THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init qfq_init(void) | 
|  | { | 
|  | return register_qdisc(&qfq_qdisc_ops); | 
|  | } | 
|  |  | 
|  | static void __exit qfq_exit(void) | 
|  | { | 
|  | unregister_qdisc(&qfq_qdisc_ops); | 
|  | } | 
|  |  | 
|  | module_init(qfq_init); | 
|  | module_exit(qfq_exit); | 
|  | MODULE_LICENSE("GPL"); |