|  | /**************************************************************************** | 
|  | * Driver for Solarflare network controllers and boards | 
|  | * Copyright 2011-2013 Solarflare Communications Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published | 
|  | * by the Free Software Foundation, incorporated herein by reference. | 
|  | */ | 
|  |  | 
|  | /* Theory of operation: | 
|  | * | 
|  | * PTP support is assisted by firmware running on the MC, which provides | 
|  | * the hardware timestamping capabilities.  Both transmitted and received | 
|  | * PTP event packets are queued onto internal queues for subsequent processing; | 
|  | * this is because the MC operations are relatively long and would block | 
|  | * block NAPI/interrupt operation. | 
|  | * | 
|  | * Receive event processing: | 
|  | *	The event contains the packet's UUID and sequence number, together | 
|  | *	with the hardware timestamp.  The PTP receive packet queue is searched | 
|  | *	for this UUID/sequence number and, if found, put on a pending queue. | 
|  | *	Packets not matching are delivered without timestamps (MCDI events will | 
|  | *	always arrive after the actual packet). | 
|  | *	It is important for the operation of the PTP protocol that the ordering | 
|  | *	of packets between the event and general port is maintained. | 
|  | * | 
|  | * Work queue processing: | 
|  | *	If work waiting, synchronise host/hardware time | 
|  | * | 
|  | *	Transmit: send packet through MC, which returns the transmission time | 
|  | *	that is converted to an appropriate timestamp. | 
|  | * | 
|  | *	Receive: the packet's reception time is converted to an appropriate | 
|  | *	timestamp. | 
|  | */ | 
|  | #include <linux/ip.h> | 
|  | #include <linux/udp.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/net_tstamp.h> | 
|  | #include <linux/pps_kernel.h> | 
|  | #include <linux/ptp_clock_kernel.h> | 
|  | #include "net_driver.h" | 
|  | #include "efx.h" | 
|  | #include "mcdi.h" | 
|  | #include "mcdi_pcol.h" | 
|  | #include "io.h" | 
|  | #include "farch_regs.h" | 
|  | #include "nic.h" | 
|  |  | 
|  | /* Maximum number of events expected to make up a PTP event */ | 
|  | #define	MAX_EVENT_FRAGS			3 | 
|  |  | 
|  | /* Maximum delay, ms, to begin synchronisation */ | 
|  | #define	MAX_SYNCHRONISE_WAIT_MS		2 | 
|  |  | 
|  | /* How long, at most, to spend synchronising */ | 
|  | #define	SYNCHRONISE_PERIOD_NS		250000 | 
|  |  | 
|  | /* How often to update the shared memory time */ | 
|  | #define	SYNCHRONISATION_GRANULARITY_NS	200 | 
|  |  | 
|  | /* Minimum permitted length of a (corrected) synchronisation time */ | 
|  | #define	MIN_SYNCHRONISATION_NS		120 | 
|  |  | 
|  | /* Maximum permitted length of a (corrected) synchronisation time */ | 
|  | #define	MAX_SYNCHRONISATION_NS		1000 | 
|  |  | 
|  | /* How many (MC) receive events that can be queued */ | 
|  | #define	MAX_RECEIVE_EVENTS		8 | 
|  |  | 
|  | /* Length of (modified) moving average. */ | 
|  | #define	AVERAGE_LENGTH			16 | 
|  |  | 
|  | /* How long an unmatched event or packet can be held */ | 
|  | #define PKT_EVENT_LIFETIME_MS		10 | 
|  |  | 
|  | /* Offsets into PTP packet for identification.  These offsets are from the | 
|  | * start of the IP header, not the MAC header.  Note that neither PTP V1 nor | 
|  | * PTP V2 permit the use of IPV4 options. | 
|  | */ | 
|  | #define PTP_DPORT_OFFSET	22 | 
|  |  | 
|  | #define PTP_V1_VERSION_LENGTH	2 | 
|  | #define PTP_V1_VERSION_OFFSET	28 | 
|  |  | 
|  | #define PTP_V1_UUID_LENGTH	6 | 
|  | #define PTP_V1_UUID_OFFSET	50 | 
|  |  | 
|  | #define PTP_V1_SEQUENCE_LENGTH	2 | 
|  | #define PTP_V1_SEQUENCE_OFFSET	58 | 
|  |  | 
|  | /* The minimum length of a PTP V1 packet for offsets, etc. to be valid: | 
|  | * includes IP header. | 
|  | */ | 
|  | #define	PTP_V1_MIN_LENGTH	64 | 
|  |  | 
|  | #define PTP_V2_VERSION_LENGTH	1 | 
|  | #define PTP_V2_VERSION_OFFSET	29 | 
|  |  | 
|  | #define PTP_V2_UUID_LENGTH	8 | 
|  | #define PTP_V2_UUID_OFFSET	48 | 
|  |  | 
|  | /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2), | 
|  | * the MC only captures the last six bytes of the clock identity. These values | 
|  | * reflect those, not the ones used in the standard.  The standard permits | 
|  | * mapping of V1 UUIDs to V2 UUIDs with these same values. | 
|  | */ | 
|  | #define PTP_V2_MC_UUID_LENGTH	6 | 
|  | #define PTP_V2_MC_UUID_OFFSET	50 | 
|  |  | 
|  | #define PTP_V2_SEQUENCE_LENGTH	2 | 
|  | #define PTP_V2_SEQUENCE_OFFSET	58 | 
|  |  | 
|  | /* The minimum length of a PTP V2 packet for offsets, etc. to be valid: | 
|  | * includes IP header. | 
|  | */ | 
|  | #define	PTP_V2_MIN_LENGTH	63 | 
|  |  | 
|  | #define	PTP_MIN_LENGTH		63 | 
|  |  | 
|  | #define PTP_ADDRESS		0xe0000181	/* 224.0.1.129 */ | 
|  | #define PTP_EVENT_PORT		319 | 
|  | #define PTP_GENERAL_PORT	320 | 
|  |  | 
|  | /* Annoyingly the format of the version numbers are different between | 
|  | * versions 1 and 2 so it isn't possible to simply look for 1 or 2. | 
|  | */ | 
|  | #define	PTP_VERSION_V1		1 | 
|  |  | 
|  | #define	PTP_VERSION_V2		2 | 
|  | #define	PTP_VERSION_V2_MASK	0x0f | 
|  |  | 
|  | enum ptp_packet_state { | 
|  | PTP_PACKET_STATE_UNMATCHED = 0, | 
|  | PTP_PACKET_STATE_MATCHED, | 
|  | PTP_PACKET_STATE_TIMED_OUT, | 
|  | PTP_PACKET_STATE_MATCH_UNWANTED | 
|  | }; | 
|  |  | 
|  | /* NIC synchronised with single word of time only comprising | 
|  | * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. | 
|  | */ | 
|  | #define	MC_NANOSECOND_BITS	30 | 
|  | #define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1) | 
|  | #define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1) | 
|  |  | 
|  | /* Maximum parts-per-billion adjustment that is acceptable */ | 
|  | #define MAX_PPB			1000000 | 
|  |  | 
|  | /* Number of bits required to hold the above */ | 
|  | #define	MAX_PPB_BITS		20 | 
|  |  | 
|  | /* Number of extra bits allowed when calculating fractional ns. | 
|  | * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should | 
|  | * be less than 63. | 
|  | */ | 
|  | #define	PPB_EXTRA_BITS		2 | 
|  |  | 
|  | /* Precalculate scale word to avoid long long division at runtime */ | 
|  | #define	PPB_SCALE_WORD	((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\ | 
|  | MAX_PPB_BITS)) / 1000000000LL) | 
|  |  | 
|  | #define PTP_SYNC_ATTEMPTS	4 | 
|  |  | 
|  | /** | 
|  | * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. | 
|  | * @words: UUID and (partial) sequence number | 
|  | * @expiry: Time after which the packet should be delivered irrespective of | 
|  | *            event arrival. | 
|  | * @state: The state of the packet - whether it is ready for processing or | 
|  | *         whether that is of no interest. | 
|  | */ | 
|  | struct efx_ptp_match { | 
|  | u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)]; | 
|  | unsigned long expiry; | 
|  | enum ptp_packet_state state; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct efx_ptp_event_rx - A PTP receive event (from MC) | 
|  | * @seq0: First part of (PTP) UUID | 
|  | * @seq1: Second part of (PTP) UUID and sequence number | 
|  | * @hwtimestamp: Event timestamp | 
|  | */ | 
|  | struct efx_ptp_event_rx { | 
|  | struct list_head link; | 
|  | u32 seq0; | 
|  | u32 seq1; | 
|  | ktime_t hwtimestamp; | 
|  | unsigned long expiry; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct efx_ptp_timeset - Synchronisation between host and MC | 
|  | * @host_start: Host time immediately before hardware timestamp taken | 
|  | * @seconds: Hardware timestamp, seconds | 
|  | * @nanoseconds: Hardware timestamp, nanoseconds | 
|  | * @host_end: Host time immediately after hardware timestamp taken | 
|  | * @waitns: Number of nanoseconds between hardware timestamp being read and | 
|  | *          host end time being seen | 
|  | * @window: Difference of host_end and host_start | 
|  | * @valid: Whether this timeset is valid | 
|  | */ | 
|  | struct efx_ptp_timeset { | 
|  | u32 host_start; | 
|  | u32 seconds; | 
|  | u32 nanoseconds; | 
|  | u32 host_end; | 
|  | u32 waitns; | 
|  | u32 window;	/* Derived: end - start, allowing for wrap */ | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct efx_ptp_data - Precision Time Protocol (PTP) state | 
|  | * @channel: The PTP channel | 
|  | * @rxq: Receive queue (awaiting timestamps) | 
|  | * @txq: Transmit queue | 
|  | * @evt_list: List of MC receive events awaiting packets | 
|  | * @evt_free_list: List of free events | 
|  | * @evt_lock: Lock for manipulating evt_list and evt_free_list | 
|  | * @rx_evts: Instantiated events (on evt_list and evt_free_list) | 
|  | * @workwq: Work queue for processing pending PTP operations | 
|  | * @work: Work task | 
|  | * @reset_required: A serious error has occurred and the PTP task needs to be | 
|  | *                  reset (disable, enable). | 
|  | * @rxfilter_event: Receive filter when operating | 
|  | * @rxfilter_general: Receive filter when operating | 
|  | * @config: Current timestamp configuration | 
|  | * @enabled: PTP operation enabled | 
|  | * @mode: Mode in which PTP operating (PTP version) | 
|  | * @evt_frags: Partly assembled PTP events | 
|  | * @evt_frag_idx: Current fragment number | 
|  | * @evt_code: Last event code | 
|  | * @start: Address at which MC indicates ready for synchronisation | 
|  | * @host_time_pps: Host time at last PPS | 
|  | * @last_sync_ns: Last number of nanoseconds between readings when synchronising | 
|  | * @base_sync_ns: Number of nanoseconds for last synchronisation. | 
|  | * @base_sync_valid: Whether base_sync_time is valid. | 
|  | * @current_adjfreq: Current ppb adjustment. | 
|  | * @phc_clock: Pointer to registered phc device | 
|  | * @phc_clock_info: Registration structure for phc device | 
|  | * @pps_work: pps work task for handling pps events | 
|  | * @pps_workwq: pps work queue | 
|  | * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled | 
|  | * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids | 
|  | *         allocations in main data path). | 
|  | * @debug_ptp_dir: PTP debugfs directory | 
|  | * @missed_rx_sync: Number of packets received without syncrhonisation. | 
|  | * @good_syncs: Number of successful synchronisations. | 
|  | * @no_time_syncs: Number of synchronisations with no good times. | 
|  | * @bad_sync_durations: Number of synchronisations with bad durations. | 
|  | * @bad_syncs: Number of failed synchronisations. | 
|  | * @last_sync_time: Number of nanoseconds for last synchronisation. | 
|  | * @sync_timeouts: Number of synchronisation timeouts | 
|  | * @fast_syncs: Number of synchronisations requiring short delay | 
|  | * @min_sync_delta: Minimum time between event and synchronisation | 
|  | * @max_sync_delta: Maximum time between event and synchronisation | 
|  | * @average_sync_delta: Average time between event and synchronisation. | 
|  | *                      Modified moving average. | 
|  | * @last_sync_delta: Last time between event and synchronisation | 
|  | * @mc_stats: Context value for MC statistics | 
|  | * @timeset: Last set of synchronisation statistics. | 
|  | */ | 
|  | struct efx_ptp_data { | 
|  | struct efx_channel *channel; | 
|  | struct sk_buff_head rxq; | 
|  | struct sk_buff_head txq; | 
|  | struct list_head evt_list; | 
|  | struct list_head evt_free_list; | 
|  | spinlock_t evt_lock; | 
|  | struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS]; | 
|  | struct workqueue_struct *workwq; | 
|  | struct work_struct work; | 
|  | bool reset_required; | 
|  | u32 rxfilter_event; | 
|  | u32 rxfilter_general; | 
|  | bool rxfilter_installed; | 
|  | struct hwtstamp_config config; | 
|  | bool enabled; | 
|  | unsigned int mode; | 
|  | efx_qword_t evt_frags[MAX_EVENT_FRAGS]; | 
|  | int evt_frag_idx; | 
|  | int evt_code; | 
|  | struct efx_buffer start; | 
|  | struct pps_event_time host_time_pps; | 
|  | unsigned last_sync_ns; | 
|  | unsigned base_sync_ns; | 
|  | bool base_sync_valid; | 
|  | s64 current_adjfreq; | 
|  | struct ptp_clock *phc_clock; | 
|  | struct ptp_clock_info phc_clock_info; | 
|  | struct work_struct pps_work; | 
|  | struct workqueue_struct *pps_workwq; | 
|  | bool nic_ts_enabled; | 
|  | MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX); | 
|  | struct efx_ptp_timeset | 
|  | timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; | 
|  | }; | 
|  |  | 
|  | static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta); | 
|  | static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); | 
|  | static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts); | 
|  | static int efx_phc_settime(struct ptp_clock_info *ptp, | 
|  | const struct timespec *e_ts); | 
|  | static int efx_phc_enable(struct ptp_clock_info *ptp, | 
|  | struct ptp_clock_request *request, int on); | 
|  |  | 
|  | /* Enable MCDI PTP support. */ | 
|  | static int efx_ptp_enable(struct efx_nic *efx) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN); | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, | 
|  | efx->ptp_data->channel->channel); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); | 
|  |  | 
|  | return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | } | 
|  |  | 
|  | /* Disable MCDI PTP support. | 
|  | * | 
|  | * Note that this function should never rely on the presence of ptp_data - | 
|  | * may be called before that exists. | 
|  | */ | 
|  | static int efx_ptp_disable(struct efx_nic *efx) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN); | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); | 
|  | return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | } | 
|  |  | 
|  | static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | while ((skb = skb_dequeue(q))) { | 
|  | local_bh_disable(); | 
|  | netif_receive_skb(skb); | 
|  | local_bh_enable(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void efx_ptp_handle_no_channel(struct efx_nic *efx) | 
|  | { | 
|  | netif_err(efx, drv, efx->net_dev, | 
|  | "ERROR: PTP requires MSI-X and 1 additional interrupt" | 
|  | "vector. PTP disabled\n"); | 
|  | } | 
|  |  | 
|  | /* Repeatedly send the host time to the MC which will capture the hardware | 
|  | * time. | 
|  | */ | 
|  | static void efx_ptp_send_times(struct efx_nic *efx, | 
|  | struct pps_event_time *last_time) | 
|  | { | 
|  | struct pps_event_time now; | 
|  | struct timespec limit; | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | struct timespec start; | 
|  | int *mc_running = ptp->start.addr; | 
|  |  | 
|  | pps_get_ts(&now); | 
|  | start = now.ts_real; | 
|  | limit = now.ts_real; | 
|  | timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS); | 
|  |  | 
|  | /* Write host time for specified period or until MC is done */ | 
|  | while ((timespec_compare(&now.ts_real, &limit) < 0) && | 
|  | ACCESS_ONCE(*mc_running)) { | 
|  | struct timespec update_time; | 
|  | unsigned int host_time; | 
|  |  | 
|  | /* Don't update continuously to avoid saturating the PCIe bus */ | 
|  | update_time = now.ts_real; | 
|  | timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); | 
|  | do { | 
|  | pps_get_ts(&now); | 
|  | } while ((timespec_compare(&now.ts_real, &update_time) < 0) && | 
|  | ACCESS_ONCE(*mc_running)); | 
|  |  | 
|  | /* Synchronise NIC with single word of time only */ | 
|  | host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | | 
|  | now.ts_real.tv_nsec); | 
|  | /* Update host time in NIC memory */ | 
|  | efx->type->ptp_write_host_time(efx, host_time); | 
|  | } | 
|  | *last_time = now; | 
|  | } | 
|  |  | 
|  | /* Read a timeset from the MC's results and partial process. */ | 
|  | static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data), | 
|  | struct efx_ptp_timeset *timeset) | 
|  | { | 
|  | unsigned start_ns, end_ns; | 
|  |  | 
|  | timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); | 
|  | timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS); | 
|  | timeset->nanoseconds = MCDI_DWORD(data, | 
|  | PTP_OUT_SYNCHRONIZE_NANOSECONDS); | 
|  | timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND), | 
|  | timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); | 
|  |  | 
|  | /* Ignore seconds */ | 
|  | start_ns = timeset->host_start & MC_NANOSECOND_MASK; | 
|  | end_ns = timeset->host_end & MC_NANOSECOND_MASK; | 
|  | /* Allow for rollover */ | 
|  | if (end_ns < start_ns) | 
|  | end_ns += NSEC_PER_SEC; | 
|  | /* Determine duration of operation */ | 
|  | timeset->window = end_ns - start_ns; | 
|  | } | 
|  |  | 
|  | /* Process times received from MC. | 
|  | * | 
|  | * Extract times from returned results, and establish the minimum value | 
|  | * seen.  The minimum value represents the "best" possible time and events | 
|  | * too much greater than this are rejected - the machine is, perhaps, too | 
|  | * busy. A number of readings are taken so that, hopefully, at least one good | 
|  | * synchronisation will be seen in the results. | 
|  | */ | 
|  | static int | 
|  | efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf), | 
|  | size_t response_length, | 
|  | const struct pps_event_time *last_time) | 
|  | { | 
|  | unsigned number_readings = | 
|  | MCDI_VAR_ARRAY_LEN(response_length, | 
|  | PTP_OUT_SYNCHRONIZE_TIMESET); | 
|  | unsigned i; | 
|  | unsigned total; | 
|  | unsigned ngood = 0; | 
|  | unsigned last_good = 0; | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | u32 last_sec; | 
|  | u32 start_sec; | 
|  | struct timespec delta; | 
|  |  | 
|  | if (number_readings == 0) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* Read the set of results and increment stats for any results that | 
|  | * appera to be erroneous. | 
|  | */ | 
|  | for (i = 0; i < number_readings; i++) { | 
|  | efx_ptp_read_timeset( | 
|  | MCDI_ARRAY_STRUCT_PTR(synch_buf, | 
|  | PTP_OUT_SYNCHRONIZE_TIMESET, i), | 
|  | &ptp->timeset[i]); | 
|  | } | 
|  |  | 
|  | /* Find the last good host-MC synchronization result. The MC times | 
|  | * when it finishes reading the host time so the corrected window time | 
|  | * should be fairly constant for a given platform. | 
|  | */ | 
|  | total = 0; | 
|  | for (i = 0; i < number_readings; i++) | 
|  | if (ptp->timeset[i].window > ptp->timeset[i].waitns) { | 
|  | unsigned win; | 
|  |  | 
|  | win = ptp->timeset[i].window - ptp->timeset[i].waitns; | 
|  | if (win >= MIN_SYNCHRONISATION_NS && | 
|  | win < MAX_SYNCHRONISATION_NS) { | 
|  | total += ptp->timeset[i].window; | 
|  | ngood++; | 
|  | last_good = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ngood == 0) { | 
|  | netif_warn(efx, drv, efx->net_dev, | 
|  | "PTP no suitable synchronisations %dns\n", | 
|  | ptp->base_sync_ns); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* Average minimum this synchronisation */ | 
|  | ptp->last_sync_ns = DIV_ROUND_UP(total, ngood); | 
|  | if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) { | 
|  | ptp->base_sync_valid = true; | 
|  | ptp->base_sync_ns = ptp->last_sync_ns; | 
|  | } | 
|  |  | 
|  | /* Calculate delay from actual PPS to last_time */ | 
|  | delta.tv_nsec = | 
|  | ptp->timeset[last_good].nanoseconds + | 
|  | last_time->ts_real.tv_nsec - | 
|  | (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); | 
|  |  | 
|  | /* It is possible that the seconds rolled over between taking | 
|  | * the start reading and the last value written by the host.  The | 
|  | * timescales are such that a gap of more than one second is never | 
|  | * expected. | 
|  | */ | 
|  | start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; | 
|  | last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; | 
|  | if (start_sec != last_sec) { | 
|  | if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) { | 
|  | netif_warn(efx, hw, efx->net_dev, | 
|  | "PTP bad synchronisation seconds\n"); | 
|  | return -EAGAIN; | 
|  | } else { | 
|  | delta.tv_sec = 1; | 
|  | } | 
|  | } else { | 
|  | delta.tv_sec = 0; | 
|  | } | 
|  |  | 
|  | ptp->host_time_pps = *last_time; | 
|  | pps_sub_ts(&ptp->host_time_pps, delta); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Synchronize times between the host and the MC */ | 
|  | static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX); | 
|  | size_t response_length; | 
|  | int rc; | 
|  | unsigned long timeout; | 
|  | struct pps_event_time last_time = {}; | 
|  | unsigned int loops = 0; | 
|  | int *start = ptp->start.addr; | 
|  |  | 
|  | MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); | 
|  | MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0); | 
|  | MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, | 
|  | num_readings); | 
|  | MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR, | 
|  | ptp->start.dma_addr); | 
|  |  | 
|  | /* Clear flag that signals MC ready */ | 
|  | ACCESS_ONCE(*start) = 0; | 
|  | rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, | 
|  | MC_CMD_PTP_IN_SYNCHRONIZE_LEN); | 
|  | EFX_BUG_ON_PARANOID(rc); | 
|  |  | 
|  | /* Wait for start from MCDI (or timeout) */ | 
|  | timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); | 
|  | while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) { | 
|  | udelay(20);	/* Usually start MCDI execution quickly */ | 
|  | loops++; | 
|  | } | 
|  |  | 
|  | if (ACCESS_ONCE(*start)) | 
|  | efx_ptp_send_times(efx, &last_time); | 
|  |  | 
|  | /* Collect results */ | 
|  | rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP, | 
|  | MC_CMD_PTP_IN_SYNCHRONIZE_LEN, | 
|  | synch_buf, sizeof(synch_buf), | 
|  | &response_length); | 
|  | if (rc == 0) | 
|  | rc = efx_ptp_process_times(efx, synch_buf, response_length, | 
|  | &last_time); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Transmit a PTP packet, via the MCDI interface, to the wire. */ | 
|  | static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb) | 
|  | { | 
|  | struct efx_ptp_data *ptp_data = efx->ptp_data; | 
|  | struct skb_shared_hwtstamps timestamps; | 
|  | int rc = -EIO; | 
|  | MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN); | 
|  | size_t len; | 
|  |  | 
|  | MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); | 
|  | MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0); | 
|  | MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); | 
|  | if (skb_shinfo(skb)->nr_frags != 0) { | 
|  | rc = skb_linearize(skb); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | rc = skb_checksum_help(skb); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  | } | 
|  | skb_copy_from_linear_data(skb, | 
|  | MCDI_PTR(ptp_data->txbuf, | 
|  | PTP_IN_TRANSMIT_PACKET), | 
|  | skb->len); | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_PTP, | 
|  | ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), | 
|  | txtime, sizeof(txtime), &len); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  |  | 
|  | memset(×tamps, 0, sizeof(timestamps)); | 
|  | timestamps.hwtstamp = ktime_set( | 
|  | MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS), | 
|  | MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS)); | 
|  |  | 
|  | skb_tstamp_tx(skb, ×tamps); | 
|  |  | 
|  | rc = 0; | 
|  |  | 
|  | fail: | 
|  | dev_kfree_skb(skb); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void efx_ptp_drop_time_expired_events(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | struct list_head *cursor; | 
|  | struct list_head *next; | 
|  |  | 
|  | /* Drop time-expired events */ | 
|  | spin_lock_bh(&ptp->evt_lock); | 
|  | if (!list_empty(&ptp->evt_list)) { | 
|  | list_for_each_safe(cursor, next, &ptp->evt_list) { | 
|  | struct efx_ptp_event_rx *evt; | 
|  |  | 
|  | evt = list_entry(cursor, struct efx_ptp_event_rx, | 
|  | link); | 
|  | if (time_after(jiffies, evt->expiry)) { | 
|  | list_move(&evt->link, &ptp->evt_free_list); | 
|  | netif_warn(efx, hw, efx->net_dev, | 
|  | "PTP rx event dropped\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock_bh(&ptp->evt_lock); | 
|  | } | 
|  |  | 
|  | static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | bool evts_waiting; | 
|  | struct list_head *cursor; | 
|  | struct list_head *next; | 
|  | struct efx_ptp_match *match; | 
|  | enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED; | 
|  |  | 
|  | spin_lock_bh(&ptp->evt_lock); | 
|  | evts_waiting = !list_empty(&ptp->evt_list); | 
|  | spin_unlock_bh(&ptp->evt_lock); | 
|  |  | 
|  | if (!evts_waiting) | 
|  | return PTP_PACKET_STATE_UNMATCHED; | 
|  |  | 
|  | match = (struct efx_ptp_match *)skb->cb; | 
|  | /* Look for a matching timestamp in the event queue */ | 
|  | spin_lock_bh(&ptp->evt_lock); | 
|  | list_for_each_safe(cursor, next, &ptp->evt_list) { | 
|  | struct efx_ptp_event_rx *evt; | 
|  |  | 
|  | evt = list_entry(cursor, struct efx_ptp_event_rx, link); | 
|  | if ((evt->seq0 == match->words[0]) && | 
|  | (evt->seq1 == match->words[1])) { | 
|  | struct skb_shared_hwtstamps *timestamps; | 
|  |  | 
|  | /* Match - add in hardware timestamp */ | 
|  | timestamps = skb_hwtstamps(skb); | 
|  | timestamps->hwtstamp = evt->hwtimestamp; | 
|  |  | 
|  | match->state = PTP_PACKET_STATE_MATCHED; | 
|  | rc = PTP_PACKET_STATE_MATCHED; | 
|  | list_move(&evt->link, &ptp->evt_free_list); | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock_bh(&ptp->evt_lock); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Process any queued receive events and corresponding packets | 
|  | * | 
|  | * q is returned with all the packets that are ready for delivery. | 
|  | * true is returned if at least one of those packets requires | 
|  | * synchronisation. | 
|  | */ | 
|  | static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | bool rc = false; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | while ((skb = skb_dequeue(&ptp->rxq))) { | 
|  | struct efx_ptp_match *match; | 
|  |  | 
|  | match = (struct efx_ptp_match *)skb->cb; | 
|  | if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { | 
|  | __skb_queue_tail(q, skb); | 
|  | } else if (efx_ptp_match_rx(efx, skb) == | 
|  | PTP_PACKET_STATE_MATCHED) { | 
|  | rc = true; | 
|  | __skb_queue_tail(q, skb); | 
|  | } else if (time_after(jiffies, match->expiry)) { | 
|  | match->state = PTP_PACKET_STATE_TIMED_OUT; | 
|  | netif_warn(efx, rx_err, efx->net_dev, | 
|  | "PTP packet - no timestamp seen\n"); | 
|  | __skb_queue_tail(q, skb); | 
|  | } else { | 
|  | /* Replace unprocessed entry and stop */ | 
|  | skb_queue_head(&ptp->rxq, skb); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Complete processing of a received packet */ | 
|  | static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) | 
|  | { | 
|  | local_bh_disable(); | 
|  | netif_receive_skb(skb); | 
|  | local_bh_enable(); | 
|  | } | 
|  |  | 
|  | static int efx_ptp_start(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | struct efx_filter_spec rxfilter; | 
|  | int rc; | 
|  |  | 
|  | ptp->reset_required = false; | 
|  |  | 
|  | /* Must filter on both event and general ports to ensure | 
|  | * that there is no packet re-ordering. | 
|  | */ | 
|  | efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, | 
|  | efx_rx_queue_index( | 
|  | efx_channel_get_rx_queue(ptp->channel))); | 
|  | rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, | 
|  | htonl(PTP_ADDRESS), | 
|  | htons(PTP_EVENT_PORT)); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | rc = efx_filter_insert_filter(efx, &rxfilter, true); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | ptp->rxfilter_event = rc; | 
|  |  | 
|  | efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, | 
|  | efx_rx_queue_index( | 
|  | efx_channel_get_rx_queue(ptp->channel))); | 
|  | rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, | 
|  | htonl(PTP_ADDRESS), | 
|  | htons(PTP_GENERAL_PORT)); | 
|  | if (rc != 0) | 
|  | goto fail; | 
|  |  | 
|  | rc = efx_filter_insert_filter(efx, &rxfilter, true); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  | ptp->rxfilter_general = rc; | 
|  |  | 
|  | rc = efx_ptp_enable(efx); | 
|  | if (rc != 0) | 
|  | goto fail2; | 
|  |  | 
|  | ptp->evt_frag_idx = 0; | 
|  | ptp->current_adjfreq = 0; | 
|  | ptp->rxfilter_installed = true; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail2: | 
|  | efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, | 
|  | ptp->rxfilter_general); | 
|  | fail: | 
|  | efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, | 
|  | ptp->rxfilter_event); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int efx_ptp_stop(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | int rc = efx_ptp_disable(efx); | 
|  | struct list_head *cursor; | 
|  | struct list_head *next; | 
|  |  | 
|  | if (ptp->rxfilter_installed) { | 
|  | efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, | 
|  | ptp->rxfilter_general); | 
|  | efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, | 
|  | ptp->rxfilter_event); | 
|  | ptp->rxfilter_installed = false; | 
|  | } | 
|  |  | 
|  | /* Make sure RX packets are really delivered */ | 
|  | efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); | 
|  | skb_queue_purge(&efx->ptp_data->txq); | 
|  |  | 
|  | /* Drop any pending receive events */ | 
|  | spin_lock_bh(&efx->ptp_data->evt_lock); | 
|  | list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) { | 
|  | list_move(cursor, &efx->ptp_data->evt_free_list); | 
|  | } | 
|  | spin_unlock_bh(&efx->ptp_data->evt_lock); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void efx_ptp_pps_worker(struct work_struct *work) | 
|  | { | 
|  | struct efx_ptp_data *ptp = | 
|  | container_of(work, struct efx_ptp_data, pps_work); | 
|  | struct efx_nic *efx = ptp->channel->efx; | 
|  | struct ptp_clock_event ptp_evt; | 
|  |  | 
|  | if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) | 
|  | return; | 
|  |  | 
|  | ptp_evt.type = PTP_CLOCK_PPSUSR; | 
|  | ptp_evt.pps_times = ptp->host_time_pps; | 
|  | ptp_clock_event(ptp->phc_clock, &ptp_evt); | 
|  | } | 
|  |  | 
|  | /* Process any pending transmissions and timestamp any received packets. | 
|  | */ | 
|  | static void efx_ptp_worker(struct work_struct *work) | 
|  | { | 
|  | struct efx_ptp_data *ptp_data = | 
|  | container_of(work, struct efx_ptp_data, work); | 
|  | struct efx_nic *efx = ptp_data->channel->efx; | 
|  | struct sk_buff *skb; | 
|  | struct sk_buff_head tempq; | 
|  |  | 
|  | if (ptp_data->reset_required) { | 
|  | efx_ptp_stop(efx); | 
|  | efx_ptp_start(efx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | efx_ptp_drop_time_expired_events(efx); | 
|  |  | 
|  | __skb_queue_head_init(&tempq); | 
|  | if (efx_ptp_process_events(efx, &tempq) || | 
|  | !skb_queue_empty(&ptp_data->txq)) { | 
|  |  | 
|  | while ((skb = skb_dequeue(&ptp_data->txq))) | 
|  | efx_ptp_xmit_skb(efx, skb); | 
|  | } | 
|  |  | 
|  | while ((skb = __skb_dequeue(&tempq))) | 
|  | efx_ptp_process_rx(efx, skb); | 
|  | } | 
|  |  | 
|  | /* Initialise PTP channel and state. | 
|  | * | 
|  | * Setting core_index to zero causes the queue to be initialised and doesn't | 
|  | * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. | 
|  | */ | 
|  | static int efx_ptp_probe_channel(struct efx_channel *channel) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct efx_ptp_data *ptp; | 
|  | int rc = 0; | 
|  | unsigned int pos; | 
|  |  | 
|  | channel->irq_moderation = 0; | 
|  | channel->rx_queue.core_index = 0; | 
|  |  | 
|  | ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); | 
|  | efx->ptp_data = ptp; | 
|  | if (!efx->ptp_data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL); | 
|  | if (rc != 0) | 
|  | goto fail1; | 
|  |  | 
|  | ptp->channel = channel; | 
|  | skb_queue_head_init(&ptp->rxq); | 
|  | skb_queue_head_init(&ptp->txq); | 
|  | ptp->workwq = create_singlethread_workqueue("sfc_ptp"); | 
|  | if (!ptp->workwq) { | 
|  | rc = -ENOMEM; | 
|  | goto fail2; | 
|  | } | 
|  |  | 
|  | INIT_WORK(&ptp->work, efx_ptp_worker); | 
|  | ptp->config.flags = 0; | 
|  | ptp->config.tx_type = HWTSTAMP_TX_OFF; | 
|  | ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; | 
|  | INIT_LIST_HEAD(&ptp->evt_list); | 
|  | INIT_LIST_HEAD(&ptp->evt_free_list); | 
|  | spin_lock_init(&ptp->evt_lock); | 
|  | for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++) | 
|  | list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list); | 
|  |  | 
|  | ptp->phc_clock_info.owner = THIS_MODULE; | 
|  | snprintf(ptp->phc_clock_info.name, | 
|  | sizeof(ptp->phc_clock_info.name), | 
|  | "%pm", efx->net_dev->perm_addr); | 
|  | ptp->phc_clock_info.max_adj = MAX_PPB; | 
|  | ptp->phc_clock_info.n_alarm = 0; | 
|  | ptp->phc_clock_info.n_ext_ts = 0; | 
|  | ptp->phc_clock_info.n_per_out = 0; | 
|  | ptp->phc_clock_info.pps = 1; | 
|  | ptp->phc_clock_info.adjfreq = efx_phc_adjfreq; | 
|  | ptp->phc_clock_info.adjtime = efx_phc_adjtime; | 
|  | ptp->phc_clock_info.gettime = efx_phc_gettime; | 
|  | ptp->phc_clock_info.settime = efx_phc_settime; | 
|  | ptp->phc_clock_info.enable = efx_phc_enable; | 
|  |  | 
|  | ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info, | 
|  | &efx->pci_dev->dev); | 
|  | if (IS_ERR(ptp->phc_clock)) { | 
|  | rc = PTR_ERR(ptp->phc_clock); | 
|  | goto fail3; | 
|  | } | 
|  |  | 
|  | INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); | 
|  | ptp->pps_workwq = create_singlethread_workqueue("sfc_pps"); | 
|  | if (!ptp->pps_workwq) { | 
|  | rc = -ENOMEM; | 
|  | goto fail4; | 
|  | } | 
|  | ptp->nic_ts_enabled = false; | 
|  |  | 
|  | return 0; | 
|  | fail4: | 
|  | ptp_clock_unregister(efx->ptp_data->phc_clock); | 
|  |  | 
|  | fail3: | 
|  | destroy_workqueue(efx->ptp_data->workwq); | 
|  |  | 
|  | fail2: | 
|  | efx_nic_free_buffer(efx, &ptp->start); | 
|  |  | 
|  | fail1: | 
|  | kfree(efx->ptp_data); | 
|  | efx->ptp_data = NULL; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void efx_ptp_remove_channel(struct efx_channel *channel) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  |  | 
|  | if (!efx->ptp_data) | 
|  | return; | 
|  |  | 
|  | (void)efx_ptp_disable(channel->efx); | 
|  |  | 
|  | cancel_work_sync(&efx->ptp_data->work); | 
|  | cancel_work_sync(&efx->ptp_data->pps_work); | 
|  |  | 
|  | skb_queue_purge(&efx->ptp_data->rxq); | 
|  | skb_queue_purge(&efx->ptp_data->txq); | 
|  |  | 
|  | ptp_clock_unregister(efx->ptp_data->phc_clock); | 
|  |  | 
|  | destroy_workqueue(efx->ptp_data->workwq); | 
|  | destroy_workqueue(efx->ptp_data->pps_workwq); | 
|  |  | 
|  | efx_nic_free_buffer(efx, &efx->ptp_data->start); | 
|  | kfree(efx->ptp_data); | 
|  | } | 
|  |  | 
|  | static void efx_ptp_get_channel_name(struct efx_channel *channel, | 
|  | char *buf, size_t len) | 
|  | { | 
|  | snprintf(buf, len, "%s-ptp", channel->efx->name); | 
|  | } | 
|  |  | 
|  | /* Determine whether this packet should be processed by the PTP module | 
|  | * or transmitted conventionally. | 
|  | */ | 
|  | bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) | 
|  | { | 
|  | return efx->ptp_data && | 
|  | efx->ptp_data->enabled && | 
|  | skb->len >= PTP_MIN_LENGTH && | 
|  | skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && | 
|  | likely(skb->protocol == htons(ETH_P_IP)) && | 
|  | ip_hdr(skb)->protocol == IPPROTO_UDP && | 
|  | udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); | 
|  | } | 
|  |  | 
|  | /* Receive a PTP packet.  Packets are queued until the arrival of | 
|  | * the receive timestamp from the MC - this will probably occur after the | 
|  | * packet arrival because of the processing in the MC. | 
|  | */ | 
|  | static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; | 
|  | u8 *match_data_012, *match_data_345; | 
|  | unsigned int version; | 
|  |  | 
|  | match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); | 
|  |  | 
|  | /* Correct version? */ | 
|  | if (ptp->mode == MC_CMD_PTP_MODE_V1) { | 
|  | if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) { | 
|  | return false; | 
|  | } | 
|  | version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]); | 
|  | if (version != PTP_VERSION_V1) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* PTP V1 uses all six bytes of the UUID to match the packet | 
|  | * to the timestamp | 
|  | */ | 
|  | match_data_012 = skb->data + PTP_V1_UUID_OFFSET; | 
|  | match_data_345 = skb->data + PTP_V1_UUID_OFFSET + 3; | 
|  | } else { | 
|  | if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) { | 
|  | return false; | 
|  | } | 
|  | version = skb->data[PTP_V2_VERSION_OFFSET]; | 
|  | if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* The original V2 implementation uses bytes 2-7 of | 
|  | * the UUID to match the packet to the timestamp. This | 
|  | * discards two of the bytes of the MAC address used | 
|  | * to create the UUID (SF bug 33070).  The PTP V2 | 
|  | * enhanced mode fixes this issue and uses bytes 0-2 | 
|  | * and byte 5-7 of the UUID. | 
|  | */ | 
|  | match_data_345 = skb->data + PTP_V2_UUID_OFFSET + 5; | 
|  | if (ptp->mode == MC_CMD_PTP_MODE_V2) { | 
|  | match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 2; | 
|  | } else { | 
|  | match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 0; | 
|  | BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Does this packet require timestamping? */ | 
|  | if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { | 
|  | struct skb_shared_hwtstamps *timestamps; | 
|  |  | 
|  | match->state = PTP_PACKET_STATE_UNMATCHED; | 
|  |  | 
|  | /* Clear all timestamps held: filled in later */ | 
|  | timestamps = skb_hwtstamps(skb); | 
|  | memset(timestamps, 0, sizeof(*timestamps)); | 
|  |  | 
|  | /* We expect the sequence number to be in the same position in | 
|  | * the packet for PTP V1 and V2 | 
|  | */ | 
|  | BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); | 
|  | BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); | 
|  |  | 
|  | /* Extract UUID/Sequence information */ | 
|  | match->words[0] = (match_data_012[0]         | | 
|  | (match_data_012[1] << 8)  | | 
|  | (match_data_012[2] << 16) | | 
|  | (match_data_345[0] << 24)); | 
|  | match->words[1] = (match_data_345[1]         | | 
|  | (match_data_345[2] << 8)  | | 
|  | (skb->data[PTP_V1_SEQUENCE_OFFSET + | 
|  | PTP_V1_SEQUENCE_LENGTH - 1] << | 
|  | 16)); | 
|  | } else { | 
|  | match->state = PTP_PACKET_STATE_MATCH_UNWANTED; | 
|  | } | 
|  |  | 
|  | skb_queue_tail(&ptp->rxq, skb); | 
|  | queue_work(ptp->workwq, &ptp->work); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Transmit a PTP packet.  This has to be transmitted by the MC | 
|  | * itself, through an MCDI call.  MCDI calls aren't permitted | 
|  | * in the transmit path so defer the actual transmission to a suitable worker. | 
|  | */ | 
|  | int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  |  | 
|  | skb_queue_tail(&ptp->txq, skb); | 
|  |  | 
|  | if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && | 
|  | (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) | 
|  | efx_xmit_hwtstamp_pending(skb); | 
|  | queue_work(ptp->workwq, &ptp->work); | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, | 
|  | unsigned int new_mode) | 
|  | { | 
|  | if ((enable_wanted != efx->ptp_data->enabled) || | 
|  | (enable_wanted && (efx->ptp_data->mode != new_mode))) { | 
|  | int rc; | 
|  |  | 
|  | if (enable_wanted) { | 
|  | /* Change of mode requires disable */ | 
|  | if (efx->ptp_data->enabled && | 
|  | (efx->ptp_data->mode != new_mode)) { | 
|  | efx->ptp_data->enabled = false; | 
|  | rc = efx_ptp_stop(efx); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Set new operating mode and establish | 
|  | * baseline synchronisation, which must | 
|  | * succeed. | 
|  | */ | 
|  | efx->ptp_data->mode = new_mode; | 
|  | rc = efx_ptp_start(efx); | 
|  | if (rc == 0) { | 
|  | rc = efx_ptp_synchronize(efx, | 
|  | PTP_SYNC_ATTEMPTS * 2); | 
|  | if (rc != 0) | 
|  | efx_ptp_stop(efx); | 
|  | } | 
|  | } else { | 
|  | rc = efx_ptp_stop(efx); | 
|  | } | 
|  |  | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | efx->ptp_data->enabled = enable_wanted; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init) | 
|  | { | 
|  | bool enable_wanted = false; | 
|  | unsigned int new_mode; | 
|  | int rc; | 
|  |  | 
|  | if (init->flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((init->tx_type != HWTSTAMP_TX_OFF) && | 
|  | (init->tx_type != HWTSTAMP_TX_ON)) | 
|  | return -ERANGE; | 
|  |  | 
|  | new_mode = efx->ptp_data->mode; | 
|  | /* Determine whether any PTP HW operations are required */ | 
|  | switch (init->rx_filter) { | 
|  | case HWTSTAMP_FILTER_NONE: | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: | 
|  | case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: | 
|  | case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: | 
|  | init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; | 
|  | new_mode = MC_CMD_PTP_MODE_V1; | 
|  | enable_wanted = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: | 
|  | /* Although these three are accepted only IPV4 packets will be | 
|  | * timestamped | 
|  | */ | 
|  | init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; | 
|  | new_mode = MC_CMD_PTP_MODE_V2_ENHANCED; | 
|  | enable_wanted = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V2_EVENT: | 
|  | case HWTSTAMP_FILTER_PTP_V2_SYNC: | 
|  | case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: | 
|  | /* Non-IP + IPv6 timestamping not supported */ | 
|  | return -ERANGE; | 
|  | break; | 
|  | default: | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | if (init->tx_type != HWTSTAMP_TX_OFF) | 
|  | enable_wanted = true; | 
|  |  | 
|  | /* Old versions of the firmware do not support the improved | 
|  | * UUID filtering option (SF bug 33070).  If the firmware does | 
|  | * not accept the enhanced mode, fall back to the standard PTP | 
|  | * v2 UUID filtering. | 
|  | */ | 
|  | rc = efx_ptp_change_mode(efx, enable_wanted, new_mode); | 
|  | if ((rc != 0) && (new_mode == MC_CMD_PTP_MODE_V2_ENHANCED)) | 
|  | rc = efx_ptp_change_mode(efx, enable_wanted, MC_CMD_PTP_MODE_V2); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | efx->ptp_data->config = *init; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  |  | 
|  | if (!ptp) | 
|  | return; | 
|  |  | 
|  | ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | | 
|  | SOF_TIMESTAMPING_RX_HARDWARE | | 
|  | SOF_TIMESTAMPING_RAW_HARDWARE); | 
|  | ts_info->phc_index = ptp_clock_index(ptp->phc_clock); | 
|  | ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; | 
|  | ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE | | 
|  | 1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT | | 
|  | 1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC | | 
|  | 1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ | | 
|  | 1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT | | 
|  | 1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC | | 
|  | 1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ); | 
|  | } | 
|  |  | 
|  | int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | struct hwtstamp_config config; | 
|  | int rc; | 
|  |  | 
|  | /* Not a PTP enabled port */ | 
|  | if (!efx->ptp_data) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) | 
|  | return -EFAULT; | 
|  |  | 
|  | rc = efx_ptp_ts_init(efx, &config); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | return copy_to_user(ifr->ifr_data, &config, sizeof(config)) | 
|  | ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  |  | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "PTP unexpected event length: got %d expected %d\n", | 
|  | ptp->evt_frag_idx, expected_frag_len); | 
|  | ptp->reset_required = true; | 
|  | queue_work(ptp->workwq, &ptp->work); | 
|  | } | 
|  |  | 
|  | /* Process a completed receive event.  Put it on the event queue and | 
|  | * start worker thread.  This is required because event and their | 
|  | * correspoding packets may come in either order. | 
|  | */ | 
|  | static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp) | 
|  | { | 
|  | struct efx_ptp_event_rx *evt = NULL; | 
|  |  | 
|  | if (ptp->evt_frag_idx != 3) { | 
|  | ptp_event_failure(efx, 3); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_bh(&ptp->evt_lock); | 
|  | if (!list_empty(&ptp->evt_free_list)) { | 
|  | evt = list_first_entry(&ptp->evt_free_list, | 
|  | struct efx_ptp_event_rx, link); | 
|  | list_del(&evt->link); | 
|  |  | 
|  | evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA); | 
|  | evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2], | 
|  | MCDI_EVENT_SRC)        | | 
|  | (EFX_QWORD_FIELD(ptp->evt_frags[1], | 
|  | MCDI_EVENT_SRC) << 8) | | 
|  | (EFX_QWORD_FIELD(ptp->evt_frags[0], | 
|  | MCDI_EVENT_SRC) << 16)); | 
|  | evt->hwtimestamp = ktime_set( | 
|  | EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA), | 
|  | EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA)); | 
|  | evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); | 
|  | list_add_tail(&evt->link, &ptp->evt_list); | 
|  |  | 
|  | queue_work(ptp->workwq, &ptp->work); | 
|  | } else { | 
|  | netif_err(efx, rx_err, efx->net_dev, "No free PTP event"); | 
|  | } | 
|  | spin_unlock_bh(&ptp->evt_lock); | 
|  | } | 
|  |  | 
|  | static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) | 
|  | { | 
|  | int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); | 
|  | if (ptp->evt_frag_idx != 1) { | 
|  | ptp_event_failure(efx, 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); | 
|  | } | 
|  |  | 
|  | static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) | 
|  | { | 
|  | if (ptp->nic_ts_enabled) | 
|  | queue_work(ptp->pps_workwq, &ptp->pps_work); | 
|  | } | 
|  |  | 
|  | void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev) | 
|  | { | 
|  | struct efx_ptp_data *ptp = efx->ptp_data; | 
|  | int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); | 
|  |  | 
|  | if (!ptp->enabled) | 
|  | return; | 
|  |  | 
|  | if (ptp->evt_frag_idx == 0) { | 
|  | ptp->evt_code = code; | 
|  | } else if (ptp->evt_code != code) { | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "PTP out of sequence event %d\n", code); | 
|  | ptp->evt_frag_idx = 0; | 
|  | } | 
|  |  | 
|  | ptp->evt_frags[ptp->evt_frag_idx++] = *ev; | 
|  | if (!MCDI_EVENT_FIELD(*ev, CONT)) { | 
|  | /* Process resulting event */ | 
|  | switch (code) { | 
|  | case MCDI_EVENT_CODE_PTP_RX: | 
|  | ptp_event_rx(efx, ptp); | 
|  | break; | 
|  | case MCDI_EVENT_CODE_PTP_FAULT: | 
|  | ptp_event_fault(efx, ptp); | 
|  | break; | 
|  | case MCDI_EVENT_CODE_PTP_PPS: | 
|  | ptp_event_pps(efx, ptp); | 
|  | break; | 
|  | default: | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "PTP unknown event %d\n", code); | 
|  | break; | 
|  | } | 
|  | ptp->evt_frag_idx = 0; | 
|  | } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "PTP too many event fragments\n"); | 
|  | ptp->evt_frag_idx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta) | 
|  | { | 
|  | struct efx_ptp_data *ptp_data = container_of(ptp, | 
|  | struct efx_ptp_data, | 
|  | phc_clock_info); | 
|  | struct efx_nic *efx = ptp_data->channel->efx; | 
|  | MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN); | 
|  | s64 adjustment_ns; | 
|  | int rc; | 
|  |  | 
|  | if (delta > MAX_PPB) | 
|  | delta = MAX_PPB; | 
|  | else if (delta < -MAX_PPB) | 
|  | delta = -MAX_PPB; | 
|  |  | 
|  | /* Convert ppb to fixed point ns. */ | 
|  | adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >> | 
|  | (PPB_EXTRA_BITS + MAX_PPB_BITS)); | 
|  |  | 
|  | MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); | 
|  | MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0); | 
|  | MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns); | 
|  | MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); | 
|  | MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), | 
|  | NULL, 0, NULL); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | ptp_data->current_adjfreq = delta; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) | 
|  | { | 
|  | struct efx_ptp_data *ptp_data = container_of(ptp, | 
|  | struct efx_ptp_data, | 
|  | phc_clock_info); | 
|  | struct efx_nic *efx = ptp_data->channel->efx; | 
|  | struct timespec delta_ts = ns_to_timespec(delta); | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN); | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); | 
|  | MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, 0); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec); | 
|  | return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | } | 
|  |  | 
|  | static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts) | 
|  | { | 
|  | struct efx_ptp_data *ptp_data = container_of(ptp, | 
|  | struct efx_ptp_data, | 
|  | phc_clock_info); | 
|  | struct efx_nic *efx = ptp_data->channel->efx; | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN); | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN); | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); | 
|  | MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), | 
|  | outbuf, sizeof(outbuf), NULL); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS); | 
|  | ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_phc_settime(struct ptp_clock_info *ptp, | 
|  | const struct timespec *e_ts) | 
|  | { | 
|  | /* Get the current NIC time, efx_phc_gettime. | 
|  | * Subtract from the desired time to get the offset | 
|  | * call efx_phc_adjtime with the offset | 
|  | */ | 
|  | int rc; | 
|  | struct timespec time_now; | 
|  | struct timespec delta; | 
|  |  | 
|  | rc = efx_phc_gettime(ptp, &time_now); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | delta = timespec_sub(*e_ts, time_now); | 
|  |  | 
|  | rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta)); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_phc_enable(struct ptp_clock_info *ptp, | 
|  | struct ptp_clock_request *request, | 
|  | int enable) | 
|  | { | 
|  | struct efx_ptp_data *ptp_data = container_of(ptp, | 
|  | struct efx_ptp_data, | 
|  | phc_clock_info); | 
|  | if (request->type != PTP_CLK_REQ_PPS) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ptp_data->nic_ts_enabled = !!enable; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct efx_channel_type efx_ptp_channel_type = { | 
|  | .handle_no_channel	= efx_ptp_handle_no_channel, | 
|  | .pre_probe		= efx_ptp_probe_channel, | 
|  | .post_remove		= efx_ptp_remove_channel, | 
|  | .get_name		= efx_ptp_get_channel_name, | 
|  | /* no copy operation; there is no need to reallocate this channel */ | 
|  | .receive_skb		= efx_ptp_rx, | 
|  | .keep_eventq		= false, | 
|  | }; | 
|  |  | 
|  | void efx_ptp_probe(struct efx_nic *efx) | 
|  | { | 
|  | /* Check whether PTP is implemented on this NIC.  The DISABLE | 
|  | * operation will succeed if and only if it is implemented. | 
|  | */ | 
|  | if (efx_ptp_disable(efx) == 0) | 
|  | efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = | 
|  | &efx_ptp_channel_type; | 
|  | } |