|  | /* memcontrol.c - Memory Controller | 
|  | * | 
|  | * Copyright IBM Corporation, 2007 | 
|  | * Author Balbir Singh <balbir@linux.vnet.ibm.com> | 
|  | * | 
|  | * Copyright 2007 OpenVZ SWsoft Inc | 
|  | * Author: Pavel Emelianov <xemul@openvz.org> | 
|  | * | 
|  | * Memory thresholds | 
|  | * Copyright (C) 2009 Nokia Corporation | 
|  | * Author: Kirill A. Shutemov | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/res_counter.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/bit_spinlock.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/limits.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/eventfd.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/page_cgroup.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/oom.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #include <trace/events/vmscan.h> | 
|  |  | 
|  | struct cgroup_subsys mem_cgroup_subsys __read_mostly; | 
|  | #define MEM_CGROUP_RECLAIM_RETRIES	5 | 
|  | struct mem_cgroup *root_mem_cgroup __read_mostly; | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 
|  | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ | 
|  | int do_swap_account __read_mostly; | 
|  | static int really_do_swap_account __initdata = 1; /* for remember boot option*/ | 
|  | #else | 
|  | #define do_swap_account		(0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Per memcg event counter is incremented at every pagein/pageout. This counter | 
|  | * is used for trigger some periodic events. This is straightforward and better | 
|  | * than using jiffies etc. to handle periodic memcg event. | 
|  | * | 
|  | * These values will be used as !((event) & ((1 <<(thresh)) - 1)) | 
|  | */ | 
|  | #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */ | 
|  | #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */ | 
|  |  | 
|  | /* | 
|  | * Statistics for memory cgroup. | 
|  | */ | 
|  | enum mem_cgroup_stat_index { | 
|  | /* | 
|  | * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. | 
|  | */ | 
|  | MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */ | 
|  | MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */ | 
|  | MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */ | 
|  | MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */ | 
|  | MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */ | 
|  | MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ | 
|  | MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */ | 
|  |  | 
|  | MEM_CGROUP_STAT_NSTATS, | 
|  | }; | 
|  |  | 
|  | struct mem_cgroup_stat_cpu { | 
|  | s64 count[MEM_CGROUP_STAT_NSTATS]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * per-zone information in memory controller. | 
|  | */ | 
|  | struct mem_cgroup_per_zone { | 
|  | /* | 
|  | * spin_lock to protect the per cgroup LRU | 
|  | */ | 
|  | struct list_head	lists[NR_LRU_LISTS]; | 
|  | unsigned long		count[NR_LRU_LISTS]; | 
|  |  | 
|  | struct zone_reclaim_stat reclaim_stat; | 
|  | struct rb_node		tree_node;	/* RB tree node */ | 
|  | unsigned long long	usage_in_excess;/* Set to the value by which */ | 
|  | /* the soft limit is exceeded*/ | 
|  | bool			on_tree; | 
|  | struct mem_cgroup	*mem;		/* Back pointer, we cannot */ | 
|  | /* use container_of	   */ | 
|  | }; | 
|  | /* Macro for accessing counter */ | 
|  | #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)]) | 
|  |  | 
|  | struct mem_cgroup_per_node { | 
|  | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | 
|  | }; | 
|  |  | 
|  | struct mem_cgroup_lru_info { | 
|  | struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Cgroups above their limits are maintained in a RB-Tree, independent of | 
|  | * their hierarchy representation | 
|  | */ | 
|  |  | 
|  | struct mem_cgroup_tree_per_zone { | 
|  | struct rb_root rb_root; | 
|  | spinlock_t lock; | 
|  | }; | 
|  |  | 
|  | struct mem_cgroup_tree_per_node { | 
|  | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; | 
|  | }; | 
|  |  | 
|  | struct mem_cgroup_tree { | 
|  | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | 
|  | }; | 
|  |  | 
|  | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | 
|  |  | 
|  | struct mem_cgroup_threshold { | 
|  | struct eventfd_ctx *eventfd; | 
|  | u64 threshold; | 
|  | }; | 
|  |  | 
|  | /* For threshold */ | 
|  | struct mem_cgroup_threshold_ary { | 
|  | /* An array index points to threshold just below usage. */ | 
|  | int current_threshold; | 
|  | /* Size of entries[] */ | 
|  | unsigned int size; | 
|  | /* Array of thresholds */ | 
|  | struct mem_cgroup_threshold entries[0]; | 
|  | }; | 
|  |  | 
|  | struct mem_cgroup_thresholds { | 
|  | /* Primary thresholds array */ | 
|  | struct mem_cgroup_threshold_ary *primary; | 
|  | /* | 
|  | * Spare threshold array. | 
|  | * This is needed to make mem_cgroup_unregister_event() "never fail". | 
|  | * It must be able to store at least primary->size - 1 entries. | 
|  | */ | 
|  | struct mem_cgroup_threshold_ary *spare; | 
|  | }; | 
|  |  | 
|  | /* for OOM */ | 
|  | struct mem_cgroup_eventfd_list { | 
|  | struct list_head list; | 
|  | struct eventfd_ctx *eventfd; | 
|  | }; | 
|  |  | 
|  | static void mem_cgroup_threshold(struct mem_cgroup *mem); | 
|  | static void mem_cgroup_oom_notify(struct mem_cgroup *mem); | 
|  |  | 
|  | /* | 
|  | * The memory controller data structure. The memory controller controls both | 
|  | * page cache and RSS per cgroup. We would eventually like to provide | 
|  | * statistics based on the statistics developed by Rik Van Riel for clock-pro, | 
|  | * to help the administrator determine what knobs to tune. | 
|  | * | 
|  | * TODO: Add a water mark for the memory controller. Reclaim will begin when | 
|  | * we hit the water mark. May be even add a low water mark, such that | 
|  | * no reclaim occurs from a cgroup at it's low water mark, this is | 
|  | * a feature that will be implemented much later in the future. | 
|  | */ | 
|  | struct mem_cgroup { | 
|  | struct cgroup_subsys_state css; | 
|  | /* | 
|  | * the counter to account for memory usage | 
|  | */ | 
|  | struct res_counter res; | 
|  | /* | 
|  | * the counter to account for mem+swap usage. | 
|  | */ | 
|  | struct res_counter memsw; | 
|  | /* | 
|  | * Per cgroup active and inactive list, similar to the | 
|  | * per zone LRU lists. | 
|  | */ | 
|  | struct mem_cgroup_lru_info info; | 
|  |  | 
|  | /* | 
|  | protect against reclaim related member. | 
|  | */ | 
|  | spinlock_t reclaim_param_lock; | 
|  |  | 
|  | /* | 
|  | * While reclaiming in a hierarchy, we cache the last child we | 
|  | * reclaimed from. | 
|  | */ | 
|  | int last_scanned_child; | 
|  | /* | 
|  | * Should the accounting and control be hierarchical, per subtree? | 
|  | */ | 
|  | bool use_hierarchy; | 
|  | atomic_t	oom_lock; | 
|  | atomic_t	refcnt; | 
|  |  | 
|  | unsigned int	swappiness; | 
|  | /* OOM-Killer disable */ | 
|  | int		oom_kill_disable; | 
|  |  | 
|  | /* set when res.limit == memsw.limit */ | 
|  | bool		memsw_is_minimum; | 
|  |  | 
|  | /* protect arrays of thresholds */ | 
|  | struct mutex thresholds_lock; | 
|  |  | 
|  | /* thresholds for memory usage. RCU-protected */ | 
|  | struct mem_cgroup_thresholds thresholds; | 
|  |  | 
|  | /* thresholds for mem+swap usage. RCU-protected */ | 
|  | struct mem_cgroup_thresholds memsw_thresholds; | 
|  |  | 
|  | /* For oom notifier event fd */ | 
|  | struct list_head oom_notify; | 
|  |  | 
|  | /* | 
|  | * Should we move charges of a task when a task is moved into this | 
|  | * mem_cgroup ? And what type of charges should we move ? | 
|  | */ | 
|  | unsigned long 	move_charge_at_immigrate; | 
|  | /* | 
|  | * percpu counter. | 
|  | */ | 
|  | struct mem_cgroup_stat_cpu *stat; | 
|  | }; | 
|  |  | 
|  | /* Stuffs for move charges at task migration. */ | 
|  | /* | 
|  | * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a | 
|  | * left-shifted bitmap of these types. | 
|  | */ | 
|  | enum move_type { | 
|  | MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */ | 
|  | MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */ | 
|  | NR_MOVE_TYPE, | 
|  | }; | 
|  |  | 
|  | /* "mc" and its members are protected by cgroup_mutex */ | 
|  | static struct move_charge_struct { | 
|  | spinlock_t	  lock; /* for from, to, moving_task */ | 
|  | struct mem_cgroup *from; | 
|  | struct mem_cgroup *to; | 
|  | unsigned long precharge; | 
|  | unsigned long moved_charge; | 
|  | unsigned long moved_swap; | 
|  | struct task_struct *moving_task;	/* a task moving charges */ | 
|  | wait_queue_head_t waitq;		/* a waitq for other context */ | 
|  | } mc = { | 
|  | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), | 
|  | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), | 
|  | }; | 
|  |  | 
|  | static bool move_anon(void) | 
|  | { | 
|  | return test_bit(MOVE_CHARGE_TYPE_ANON, | 
|  | &mc.to->move_charge_at_immigrate); | 
|  | } | 
|  |  | 
|  | static bool move_file(void) | 
|  | { | 
|  | return test_bit(MOVE_CHARGE_TYPE_FILE, | 
|  | &mc.to->move_charge_at_immigrate); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | 
|  | * limit reclaim to prevent infinite loops, if they ever occur. | 
|  | */ | 
|  | #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100) | 
|  | #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2) | 
|  |  | 
|  | enum charge_type { | 
|  | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 
|  | MEM_CGROUP_CHARGE_TYPE_MAPPED, | 
|  | MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */ | 
|  | MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */ | 
|  | MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */ | 
|  | MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */ | 
|  | NR_CHARGE_TYPE, | 
|  | }; | 
|  |  | 
|  | /* only for here (for easy reading.) */ | 
|  | #define PCGF_CACHE	(1UL << PCG_CACHE) | 
|  | #define PCGF_USED	(1UL << PCG_USED) | 
|  | #define PCGF_LOCK	(1UL << PCG_LOCK) | 
|  | /* Not used, but added here for completeness */ | 
|  | #define PCGF_ACCT	(1UL << PCG_ACCT) | 
|  |  | 
|  | /* for encoding cft->private value on file */ | 
|  | #define _MEM			(0) | 
|  | #define _MEMSWAP		(1) | 
|  | #define _OOM_TYPE		(2) | 
|  | #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val)) | 
|  | #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff) | 
|  | #define MEMFILE_ATTR(val)	((val) & 0xffff) | 
|  | /* Used for OOM nofiier */ | 
|  | #define OOM_CONTROL		(0) | 
|  |  | 
|  | /* | 
|  | * Reclaim flags for mem_cgroup_hierarchical_reclaim | 
|  | */ | 
|  | #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0 | 
|  | #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) | 
|  | #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1 | 
|  | #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) | 
|  | #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2 | 
|  | #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT) | 
|  |  | 
|  | static void mem_cgroup_get(struct mem_cgroup *mem); | 
|  | static void mem_cgroup_put(struct mem_cgroup *mem); | 
|  | static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); | 
|  | static void drain_all_stock_async(void); | 
|  |  | 
|  | static struct mem_cgroup_per_zone * | 
|  | mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) | 
|  | { | 
|  | return &mem->info.nodeinfo[nid]->zoneinfo[zid]; | 
|  | } | 
|  |  | 
|  | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem) | 
|  | { | 
|  | return &mem->css; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_per_zone * | 
|  | page_cgroup_zoneinfo(struct page_cgroup *pc) | 
|  | { | 
|  | struct mem_cgroup *mem = pc->mem_cgroup; | 
|  | int nid = page_cgroup_nid(pc); | 
|  | int zid = page_cgroup_zid(pc); | 
|  |  | 
|  | if (!mem) | 
|  | return NULL; | 
|  |  | 
|  | return mem_cgroup_zoneinfo(mem, nid, zid); | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_tree_per_zone * | 
|  | soft_limit_tree_node_zone(int nid, int zid) | 
|  | { | 
|  | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_tree_per_zone * | 
|  | soft_limit_tree_from_page(struct page *page) | 
|  | { | 
|  | int nid = page_to_nid(page); | 
|  | int zid = page_zonenum(page); | 
|  |  | 
|  | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | 
|  | } | 
|  |  | 
|  | static void | 
|  | __mem_cgroup_insert_exceeded(struct mem_cgroup *mem, | 
|  | struct mem_cgroup_per_zone *mz, | 
|  | struct mem_cgroup_tree_per_zone *mctz, | 
|  | unsigned long long new_usage_in_excess) | 
|  | { | 
|  | struct rb_node **p = &mctz->rb_root.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct mem_cgroup_per_zone *mz_node; | 
|  |  | 
|  | if (mz->on_tree) | 
|  | return; | 
|  |  | 
|  | mz->usage_in_excess = new_usage_in_excess; | 
|  | if (!mz->usage_in_excess) | 
|  | return; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, | 
|  | tree_node); | 
|  | if (mz->usage_in_excess < mz_node->usage_in_excess) | 
|  | p = &(*p)->rb_left; | 
|  | /* | 
|  | * We can't avoid mem cgroups that are over their soft | 
|  | * limit by the same amount | 
|  | */ | 
|  | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | 
|  | p = &(*p)->rb_right; | 
|  | } | 
|  | rb_link_node(&mz->tree_node, parent, p); | 
|  | rb_insert_color(&mz->tree_node, &mctz->rb_root); | 
|  | mz->on_tree = true; | 
|  | } | 
|  |  | 
|  | static void | 
|  | __mem_cgroup_remove_exceeded(struct mem_cgroup *mem, | 
|  | struct mem_cgroup_per_zone *mz, | 
|  | struct mem_cgroup_tree_per_zone *mctz) | 
|  | { | 
|  | if (!mz->on_tree) | 
|  | return; | 
|  | rb_erase(&mz->tree_node, &mctz->rb_root); | 
|  | mz->on_tree = false; | 
|  | } | 
|  |  | 
|  | static void | 
|  | mem_cgroup_remove_exceeded(struct mem_cgroup *mem, | 
|  | struct mem_cgroup_per_zone *mz, | 
|  | struct mem_cgroup_tree_per_zone *mctz) | 
|  | { | 
|  | spin_lock(&mctz->lock); | 
|  | __mem_cgroup_remove_exceeded(mem, mz, mctz); | 
|  | spin_unlock(&mctz->lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page) | 
|  | { | 
|  | unsigned long long excess; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | struct mem_cgroup_tree_per_zone *mctz; | 
|  | int nid = page_to_nid(page); | 
|  | int zid = page_zonenum(page); | 
|  | mctz = soft_limit_tree_from_page(page); | 
|  |  | 
|  | /* | 
|  | * Necessary to update all ancestors when hierarchy is used. | 
|  | * because their event counter is not touched. | 
|  | */ | 
|  | for (; mem; mem = parent_mem_cgroup(mem)) { | 
|  | mz = mem_cgroup_zoneinfo(mem, nid, zid); | 
|  | excess = res_counter_soft_limit_excess(&mem->res); | 
|  | /* | 
|  | * We have to update the tree if mz is on RB-tree or | 
|  | * mem is over its softlimit. | 
|  | */ | 
|  | if (excess || mz->on_tree) { | 
|  | spin_lock(&mctz->lock); | 
|  | /* if on-tree, remove it */ | 
|  | if (mz->on_tree) | 
|  | __mem_cgroup_remove_exceeded(mem, mz, mctz); | 
|  | /* | 
|  | * Insert again. mz->usage_in_excess will be updated. | 
|  | * If excess is 0, no tree ops. | 
|  | */ | 
|  | __mem_cgroup_insert_exceeded(mem, mz, mctz, excess); | 
|  | spin_unlock(&mctz->lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem) | 
|  | { | 
|  | int node, zone; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | struct mem_cgroup_tree_per_zone *mctz; | 
|  |  | 
|  | for_each_node_state(node, N_POSSIBLE) { | 
|  | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
|  | mz = mem_cgroup_zoneinfo(mem, node, zone); | 
|  | mctz = soft_limit_tree_node_zone(node, zone); | 
|  | mem_cgroup_remove_exceeded(mem, mz, mctz); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem) | 
|  | { | 
|  | return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_per_zone * | 
|  | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | 
|  | { | 
|  | struct rb_node *rightmost = NULL; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  |  | 
|  | retry: | 
|  | mz = NULL; | 
|  | rightmost = rb_last(&mctz->rb_root); | 
|  | if (!rightmost) | 
|  | goto done;		/* Nothing to reclaim from */ | 
|  |  | 
|  | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); | 
|  | /* | 
|  | * Remove the node now but someone else can add it back, | 
|  | * we will to add it back at the end of reclaim to its correct | 
|  | * position in the tree. | 
|  | */ | 
|  | __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); | 
|  | if (!res_counter_soft_limit_excess(&mz->mem->res) || | 
|  | !css_tryget(&mz->mem->css)) | 
|  | goto retry; | 
|  | done: | 
|  | return mz; | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup_per_zone * | 
|  | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | 
|  | { | 
|  | struct mem_cgroup_per_zone *mz; | 
|  |  | 
|  | spin_lock(&mctz->lock); | 
|  | mz = __mem_cgroup_largest_soft_limit_node(mctz); | 
|  | spin_unlock(&mctz->lock); | 
|  | return mz; | 
|  | } | 
|  |  | 
|  | static s64 mem_cgroup_read_stat(struct mem_cgroup *mem, | 
|  | enum mem_cgroup_stat_index idx) | 
|  | { | 
|  | int cpu; | 
|  | s64 val = 0; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | val += per_cpu(mem->stat->count[idx], cpu); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static s64 mem_cgroup_local_usage(struct mem_cgroup *mem) | 
|  | { | 
|  | s64 ret; | 
|  |  | 
|  | ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); | 
|  | ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_swap_statistics(struct mem_cgroup *mem, | 
|  | bool charge) | 
|  | { | 
|  | int val = (charge) ? 1 : -1; | 
|  | this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, | 
|  | struct page_cgroup *pc, | 
|  | bool charge) | 
|  | { | 
|  | int val = (charge) ? 1 : -1; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | if (PageCgroupCache(pc)) | 
|  | __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val); | 
|  | else | 
|  | __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val); | 
|  |  | 
|  | if (charge) | 
|  | __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]); | 
|  | else | 
|  | __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]); | 
|  | __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, | 
|  | enum lru_list idx) | 
|  | { | 
|  | int nid, zid; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | u64 total = 0; | 
|  |  | 
|  | for_each_online_node(nid) | 
|  | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | mz = mem_cgroup_zoneinfo(mem, nid, zid); | 
|  | total += MEM_CGROUP_ZSTAT(mz, idx); | 
|  | } | 
|  | return total; | 
|  | } | 
|  |  | 
|  | static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift) | 
|  | { | 
|  | s64 val; | 
|  |  | 
|  | val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]); | 
|  |  | 
|  | return !(val & ((1 << event_mask_shift) - 1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check events in order. | 
|  | * | 
|  | */ | 
|  | static void memcg_check_events(struct mem_cgroup *mem, struct page *page) | 
|  | { | 
|  | /* threshold event is triggered in finer grain than soft limit */ | 
|  | if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) { | 
|  | mem_cgroup_threshold(mem); | 
|  | if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH))) | 
|  | mem_cgroup_update_tree(mem, page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) | 
|  | { | 
|  | return container_of(cgroup_subsys_state(cont, | 
|  | mem_cgroup_subsys_id), struct mem_cgroup, | 
|  | css); | 
|  | } | 
|  |  | 
|  | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * mm_update_next_owner() may clear mm->owner to NULL | 
|  | * if it races with swapoff, page migration, etc. | 
|  | * So this can be called with p == NULL. | 
|  | */ | 
|  | if (unlikely(!p)) | 
|  | return NULL; | 
|  |  | 
|  | return container_of(task_subsys_state(p, mem_cgroup_subsys_id), | 
|  | struct mem_cgroup, css); | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) | 
|  | { | 
|  | struct mem_cgroup *mem = NULL; | 
|  |  | 
|  | if (!mm) | 
|  | return NULL; | 
|  | /* | 
|  | * Because we have no locks, mm->owner's may be being moved to other | 
|  | * cgroup. We use css_tryget() here even if this looks | 
|  | * pessimistic (rather than adding locks here). | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 
|  | if (unlikely(!mem)) | 
|  | break; | 
|  | } while (!css_tryget(&mem->css)); | 
|  | rcu_read_unlock(); | 
|  | return mem; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call callback function against all cgroup under hierarchy tree. | 
|  | */ | 
|  | static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data, | 
|  | int (*func)(struct mem_cgroup *, void *)) | 
|  | { | 
|  | int found, ret, nextid; | 
|  | struct cgroup_subsys_state *css; | 
|  | struct mem_cgroup *mem; | 
|  |  | 
|  | if (!root->use_hierarchy) | 
|  | return (*func)(root, data); | 
|  |  | 
|  | nextid = 1; | 
|  | do { | 
|  | ret = 0; | 
|  | mem = NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | css = css_get_next(&mem_cgroup_subsys, nextid, &root->css, | 
|  | &found); | 
|  | if (css && css_tryget(css)) | 
|  | mem = container_of(css, struct mem_cgroup, css); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (mem) { | 
|  | ret = (*func)(mem, data); | 
|  | css_put(&mem->css); | 
|  | } | 
|  | nextid = found + 1; | 
|  | } while (!ret && css); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline bool mem_cgroup_is_root(struct mem_cgroup *mem) | 
|  | { | 
|  | return (mem == root_mem_cgroup); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Following LRU functions are allowed to be used without PCG_LOCK. | 
|  | * Operations are called by routine of global LRU independently from memcg. | 
|  | * What we have to take care of here is validness of pc->mem_cgroup. | 
|  | * | 
|  | * Changes to pc->mem_cgroup happens when | 
|  | * 1. charge | 
|  | * 2. moving account | 
|  | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. | 
|  | * It is added to LRU before charge. | 
|  | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. | 
|  | * When moving account, the page is not on LRU. It's isolated. | 
|  | */ | 
|  |  | 
|  | void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) | 
|  | { | 
|  | struct page_cgroup *pc; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  | pc = lookup_page_cgroup(page); | 
|  | /* can happen while we handle swapcache. */ | 
|  | if (!TestClearPageCgroupAcctLRU(pc)) | 
|  | return; | 
|  | VM_BUG_ON(!pc->mem_cgroup); | 
|  | /* | 
|  | * We don't check PCG_USED bit. It's cleared when the "page" is finally | 
|  | * removed from global LRU. | 
|  | */ | 
|  | mz = page_cgroup_zoneinfo(pc); | 
|  | MEM_CGROUP_ZSTAT(mz, lru) -= 1; | 
|  | if (mem_cgroup_is_root(pc->mem_cgroup)) | 
|  | return; | 
|  | VM_BUG_ON(list_empty(&pc->lru)); | 
|  | list_del_init(&pc->lru); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void mem_cgroup_del_lru(struct page *page) | 
|  | { | 
|  | mem_cgroup_del_lru_list(page, page_lru(page)); | 
|  | } | 
|  |  | 
|  | void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) | 
|  | { | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | struct page_cgroup *pc; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  |  | 
|  | pc = lookup_page_cgroup(page); | 
|  | /* | 
|  | * Used bit is set without atomic ops but after smp_wmb(). | 
|  | * For making pc->mem_cgroup visible, insert smp_rmb() here. | 
|  | */ | 
|  | smp_rmb(); | 
|  | /* unused or root page is not rotated. */ | 
|  | if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup)) | 
|  | return; | 
|  | mz = page_cgroup_zoneinfo(pc); | 
|  | list_move(&pc->lru, &mz->lists[lru]); | 
|  | } | 
|  |  | 
|  | void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) | 
|  | { | 
|  | struct page_cgroup *pc; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  | pc = lookup_page_cgroup(page); | 
|  | VM_BUG_ON(PageCgroupAcctLRU(pc)); | 
|  | /* | 
|  | * Used bit is set without atomic ops but after smp_wmb(). | 
|  | * For making pc->mem_cgroup visible, insert smp_rmb() here. | 
|  | */ | 
|  | smp_rmb(); | 
|  | if (!PageCgroupUsed(pc)) | 
|  | return; | 
|  |  | 
|  | mz = page_cgroup_zoneinfo(pc); | 
|  | MEM_CGROUP_ZSTAT(mz, lru) += 1; | 
|  | SetPageCgroupAcctLRU(pc); | 
|  | if (mem_cgroup_is_root(pc->mem_cgroup)) | 
|  | return; | 
|  | list_add(&pc->lru, &mz->lists[lru]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to | 
|  | * lru because the page may.be reused after it's fully uncharged (because of | 
|  | * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge | 
|  | * it again. This function is only used to charge SwapCache. It's done under | 
|  | * lock_page and expected that zone->lru_lock is never held. | 
|  | */ | 
|  | static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct zone *zone = page_zone(page); | 
|  | struct page_cgroup *pc = lookup_page_cgroup(page); | 
|  |  | 
|  | spin_lock_irqsave(&zone->lru_lock, flags); | 
|  | /* | 
|  | * Forget old LRU when this page_cgroup is *not* used. This Used bit | 
|  | * is guarded by lock_page() because the page is SwapCache. | 
|  | */ | 
|  | if (!PageCgroupUsed(pc)) | 
|  | mem_cgroup_del_lru_list(page, page_lru(page)); | 
|  | spin_unlock_irqrestore(&zone->lru_lock, flags); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct zone *zone = page_zone(page); | 
|  | struct page_cgroup *pc = lookup_page_cgroup(page); | 
|  |  | 
|  | spin_lock_irqsave(&zone->lru_lock, flags); | 
|  | /* link when the page is linked to LRU but page_cgroup isn't */ | 
|  | if (PageLRU(page) && !PageCgroupAcctLRU(pc)) | 
|  | mem_cgroup_add_lru_list(page, page_lru(page)); | 
|  | spin_unlock_irqrestore(&zone->lru_lock, flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | void mem_cgroup_move_lists(struct page *page, | 
|  | enum lru_list from, enum lru_list to) | 
|  | { | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  | mem_cgroup_del_lru_list(page, from); | 
|  | mem_cgroup_add_lru_list(page, to); | 
|  | } | 
|  |  | 
|  | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | 
|  | { | 
|  | int ret; | 
|  | struct mem_cgroup *curr = NULL; | 
|  | struct task_struct *p; | 
|  |  | 
|  | p = find_lock_task_mm(task); | 
|  | if (!p) | 
|  | return 0; | 
|  | curr = try_get_mem_cgroup_from_mm(p->mm); | 
|  | task_unlock(p); | 
|  | if (!curr) | 
|  | return 0; | 
|  | /* | 
|  | * We should check use_hierarchy of "mem" not "curr". Because checking | 
|  | * use_hierarchy of "curr" here make this function true if hierarchy is | 
|  | * enabled in "curr" and "curr" is a child of "mem" in *cgroup* | 
|  | * hierarchy(even if use_hierarchy is disabled in "mem"). | 
|  | */ | 
|  | if (mem->use_hierarchy) | 
|  | ret = css_is_ancestor(&curr->css, &mem->css); | 
|  | else | 
|  | ret = (curr == mem); | 
|  | css_put(&curr->css); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) | 
|  | { | 
|  | unsigned long active; | 
|  | unsigned long inactive; | 
|  | unsigned long gb; | 
|  | unsigned long inactive_ratio; | 
|  |  | 
|  | inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); | 
|  | active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); | 
|  |  | 
|  | gb = (inactive + active) >> (30 - PAGE_SHIFT); | 
|  | if (gb) | 
|  | inactive_ratio = int_sqrt(10 * gb); | 
|  | else | 
|  | inactive_ratio = 1; | 
|  |  | 
|  | if (present_pages) { | 
|  | present_pages[0] = inactive; | 
|  | present_pages[1] = active; | 
|  | } | 
|  |  | 
|  | return inactive_ratio; | 
|  | } | 
|  |  | 
|  | int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) | 
|  | { | 
|  | unsigned long active; | 
|  | unsigned long inactive; | 
|  | unsigned long present_pages[2]; | 
|  | unsigned long inactive_ratio; | 
|  |  | 
|  | inactive_ratio = calc_inactive_ratio(memcg, present_pages); | 
|  |  | 
|  | inactive = present_pages[0]; | 
|  | active = present_pages[1]; | 
|  |  | 
|  | if (inactive * inactive_ratio < active) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg) | 
|  | { | 
|  | unsigned long active; | 
|  | unsigned long inactive; | 
|  |  | 
|  | inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE); | 
|  | active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE); | 
|  |  | 
|  | return (active > inactive); | 
|  | } | 
|  |  | 
|  | unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, | 
|  | struct zone *zone, | 
|  | enum lru_list lru) | 
|  | { | 
|  | int nid = zone_to_nid(zone); | 
|  | int zid = zone_idx(zone); | 
|  | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 
|  |  | 
|  | return MEM_CGROUP_ZSTAT(mz, lru); | 
|  | } | 
|  |  | 
|  | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, | 
|  | struct zone *zone) | 
|  | { | 
|  | int nid = zone_to_nid(zone); | 
|  | int zid = zone_idx(zone); | 
|  | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 
|  |  | 
|  | return &mz->reclaim_stat; | 
|  | } | 
|  |  | 
|  | struct zone_reclaim_stat * | 
|  | mem_cgroup_get_reclaim_stat_from_page(struct page *page) | 
|  | { | 
|  | struct page_cgroup *pc; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return NULL; | 
|  |  | 
|  | pc = lookup_page_cgroup(page); | 
|  | /* | 
|  | * Used bit is set without atomic ops but after smp_wmb(). | 
|  | * For making pc->mem_cgroup visible, insert smp_rmb() here. | 
|  | */ | 
|  | smp_rmb(); | 
|  | if (!PageCgroupUsed(pc)) | 
|  | return NULL; | 
|  |  | 
|  | mz = page_cgroup_zoneinfo(pc); | 
|  | if (!mz) | 
|  | return NULL; | 
|  |  | 
|  | return &mz->reclaim_stat; | 
|  | } | 
|  |  | 
|  | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | 
|  | struct list_head *dst, | 
|  | unsigned long *scanned, int order, | 
|  | int mode, struct zone *z, | 
|  | struct mem_cgroup *mem_cont, | 
|  | int active, int file) | 
|  | { | 
|  | unsigned long nr_taken = 0; | 
|  | struct page *page; | 
|  | unsigned long scan; | 
|  | LIST_HEAD(pc_list); | 
|  | struct list_head *src; | 
|  | struct page_cgroup *pc, *tmp; | 
|  | int nid = zone_to_nid(z); | 
|  | int zid = zone_idx(z); | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | int lru = LRU_FILE * file + active; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(!mem_cont); | 
|  | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | 
|  | src = &mz->lists[lru]; | 
|  |  | 
|  | scan = 0; | 
|  | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { | 
|  | if (scan >= nr_to_scan) | 
|  | break; | 
|  |  | 
|  | page = pc->page; | 
|  | if (unlikely(!PageCgroupUsed(pc))) | 
|  | continue; | 
|  | if (unlikely(!PageLRU(page))) | 
|  | continue; | 
|  |  | 
|  | scan++; | 
|  | ret = __isolate_lru_page(page, mode, file); | 
|  | switch (ret) { | 
|  | case 0: | 
|  | list_move(&page->lru, dst); | 
|  | mem_cgroup_del_lru(page); | 
|  | nr_taken++; | 
|  | break; | 
|  | case -EBUSY: | 
|  | /* we don't affect global LRU but rotate in our LRU */ | 
|  | mem_cgroup_rotate_lru_list(page, page_lru(page)); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | *scanned = scan; | 
|  |  | 
|  | trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken, | 
|  | 0, 0, 0, mode); | 
|  |  | 
|  | return nr_taken; | 
|  | } | 
|  |  | 
|  | #define mem_cgroup_from_res_counter(counter, member)	\ | 
|  | container_of(counter, struct mem_cgroup, member) | 
|  |  | 
|  | static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) | 
|  | { | 
|  | if (do_swap_account) { | 
|  | if (res_counter_check_under_limit(&mem->res) && | 
|  | res_counter_check_under_limit(&mem->memsw)) | 
|  | return true; | 
|  | } else | 
|  | if (res_counter_check_under_limit(&mem->res)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static unsigned int get_swappiness(struct mem_cgroup *memcg) | 
|  | { | 
|  | struct cgroup *cgrp = memcg->css.cgroup; | 
|  | unsigned int swappiness; | 
|  |  | 
|  | /* root ? */ | 
|  | if (cgrp->parent == NULL) | 
|  | return vm_swappiness; | 
|  |  | 
|  | spin_lock(&memcg->reclaim_param_lock); | 
|  | swappiness = memcg->swappiness; | 
|  | spin_unlock(&memcg->reclaim_param_lock); | 
|  |  | 
|  | return swappiness; | 
|  | } | 
|  |  | 
|  | /* A routine for testing mem is not under move_account */ | 
|  |  | 
|  | static bool mem_cgroup_under_move(struct mem_cgroup *mem) | 
|  | { | 
|  | struct mem_cgroup *from; | 
|  | struct mem_cgroup *to; | 
|  | bool ret = false; | 
|  | /* | 
|  | * Unlike task_move routines, we access mc.to, mc.from not under | 
|  | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | 
|  | */ | 
|  | spin_lock(&mc.lock); | 
|  | from = mc.from; | 
|  | to = mc.to; | 
|  | if (!from) | 
|  | goto unlock; | 
|  | if (from == mem || to == mem | 
|  | || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css)) | 
|  | || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css))) | 
|  | ret = true; | 
|  | unlock: | 
|  | spin_unlock(&mc.lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem) | 
|  | { | 
|  | if (mc.moving_task && current != mc.moving_task) { | 
|  | if (mem_cgroup_under_move(mem)) { | 
|  | DEFINE_WAIT(wait); | 
|  | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | 
|  | /* moving charge context might have finished. */ | 
|  | if (mc.moving_task) | 
|  | schedule(); | 
|  | finish_wait(&mc.waitq, &wait); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) | 
|  | { | 
|  | int *val = data; | 
|  | (*val)++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. | 
|  | * @memcg: The memory cgroup that went over limit | 
|  | * @p: Task that is going to be killed | 
|  | * | 
|  | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | 
|  | * enabled | 
|  | */ | 
|  | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | 
|  | { | 
|  | struct cgroup *task_cgrp; | 
|  | struct cgroup *mem_cgrp; | 
|  | /* | 
|  | * Need a buffer in BSS, can't rely on allocations. The code relies | 
|  | * on the assumption that OOM is serialized for memory controller. | 
|  | * If this assumption is broken, revisit this code. | 
|  | */ | 
|  | static char memcg_name[PATH_MAX]; | 
|  | int ret; | 
|  |  | 
|  | if (!memcg || !p) | 
|  | return; | 
|  |  | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | mem_cgrp = memcg->css.cgroup; | 
|  | task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); | 
|  |  | 
|  | ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); | 
|  | if (ret < 0) { | 
|  | /* | 
|  | * Unfortunately, we are unable to convert to a useful name | 
|  | * But we'll still print out the usage information | 
|  | */ | 
|  | rcu_read_unlock(); | 
|  | goto done; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | printk(KERN_INFO "Task in %s killed", memcg_name); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); | 
|  | if (ret < 0) { | 
|  | rcu_read_unlock(); | 
|  | goto done; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * Continues from above, so we don't need an KERN_ level | 
|  | */ | 
|  | printk(KERN_CONT " as a result of limit of %s\n", memcg_name); | 
|  | done: | 
|  |  | 
|  | printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", | 
|  | res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, | 
|  | res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, | 
|  | res_counter_read_u64(&memcg->res, RES_FAILCNT)); | 
|  | printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " | 
|  | "failcnt %llu\n", | 
|  | res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, | 
|  | res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, | 
|  | res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function returns the number of memcg under hierarchy tree. Returns | 
|  | * 1(self count) if no children. | 
|  | */ | 
|  | static int mem_cgroup_count_children(struct mem_cgroup *mem) | 
|  | { | 
|  | int num = 0; | 
|  | mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb); | 
|  | return num; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the memory (and swap, if configured) limit for a memcg. | 
|  | */ | 
|  | u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) | 
|  | { | 
|  | u64 limit; | 
|  | u64 memsw; | 
|  |  | 
|  | limit = res_counter_read_u64(&memcg->res, RES_LIMIT) + | 
|  | total_swap_pages; | 
|  | memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 
|  | /* | 
|  | * If memsw is finite and limits the amount of swap space available | 
|  | * to this memcg, return that limit. | 
|  | */ | 
|  | return min(limit, memsw); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Visit the first child (need not be the first child as per the ordering | 
|  | * of the cgroup list, since we track last_scanned_child) of @mem and use | 
|  | * that to reclaim free pages from. | 
|  | */ | 
|  | static struct mem_cgroup * | 
|  | mem_cgroup_select_victim(struct mem_cgroup *root_mem) | 
|  | { | 
|  | struct mem_cgroup *ret = NULL; | 
|  | struct cgroup_subsys_state *css; | 
|  | int nextid, found; | 
|  |  | 
|  | if (!root_mem->use_hierarchy) { | 
|  | css_get(&root_mem->css); | 
|  | ret = root_mem; | 
|  | } | 
|  |  | 
|  | while (!ret) { | 
|  | rcu_read_lock(); | 
|  | nextid = root_mem->last_scanned_child + 1; | 
|  | css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, | 
|  | &found); | 
|  | if (css && css_tryget(css)) | 
|  | ret = container_of(css, struct mem_cgroup, css); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | /* Updates scanning parameter */ | 
|  | spin_lock(&root_mem->reclaim_param_lock); | 
|  | if (!css) { | 
|  | /* this means start scan from ID:1 */ | 
|  | root_mem->last_scanned_child = 0; | 
|  | } else | 
|  | root_mem->last_scanned_child = found; | 
|  | spin_unlock(&root_mem->reclaim_param_lock); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan the hierarchy if needed to reclaim memory. We remember the last child | 
|  | * we reclaimed from, so that we don't end up penalizing one child extensively | 
|  | * based on its position in the children list. | 
|  | * | 
|  | * root_mem is the original ancestor that we've been reclaim from. | 
|  | * | 
|  | * We give up and return to the caller when we visit root_mem twice. | 
|  | * (other groups can be removed while we're walking....) | 
|  | * | 
|  | * If shrink==true, for avoiding to free too much, this returns immedieately. | 
|  | */ | 
|  | static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, | 
|  | struct zone *zone, | 
|  | gfp_t gfp_mask, | 
|  | unsigned long reclaim_options) | 
|  | { | 
|  | struct mem_cgroup *victim; | 
|  | int ret, total = 0; | 
|  | int loop = 0; | 
|  | bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP; | 
|  | bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK; | 
|  | bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT; | 
|  | unsigned long excess = mem_cgroup_get_excess(root_mem); | 
|  |  | 
|  | /* If memsw_is_minimum==1, swap-out is of-no-use. */ | 
|  | if (root_mem->memsw_is_minimum) | 
|  | noswap = true; | 
|  |  | 
|  | while (1) { | 
|  | victim = mem_cgroup_select_victim(root_mem); | 
|  | if (victim == root_mem) { | 
|  | loop++; | 
|  | if (loop >= 1) | 
|  | drain_all_stock_async(); | 
|  | if (loop >= 2) { | 
|  | /* | 
|  | * If we have not been able to reclaim | 
|  | * anything, it might because there are | 
|  | * no reclaimable pages under this hierarchy | 
|  | */ | 
|  | if (!check_soft || !total) { | 
|  | css_put(&victim->css); | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * We want to do more targetted reclaim. | 
|  | * excess >> 2 is not to excessive so as to | 
|  | * reclaim too much, nor too less that we keep | 
|  | * coming back to reclaim from this cgroup | 
|  | */ | 
|  | if (total >= (excess >> 2) || | 
|  | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) { | 
|  | css_put(&victim->css); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!mem_cgroup_local_usage(victim)) { | 
|  | /* this cgroup's local usage == 0 */ | 
|  | css_put(&victim->css); | 
|  | continue; | 
|  | } | 
|  | /* we use swappiness of local cgroup */ | 
|  | if (check_soft) | 
|  | ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, | 
|  | noswap, get_swappiness(victim), zone); | 
|  | else | 
|  | ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, | 
|  | noswap, get_swappiness(victim)); | 
|  | css_put(&victim->css); | 
|  | /* | 
|  | * At shrinking usage, we can't check we should stop here or | 
|  | * reclaim more. It's depends on callers. last_scanned_child | 
|  | * will work enough for keeping fairness under tree. | 
|  | */ | 
|  | if (shrink) | 
|  | return ret; | 
|  | total += ret; | 
|  | if (check_soft) { | 
|  | if (res_counter_check_under_soft_limit(&root_mem->res)) | 
|  | return total; | 
|  | } else if (mem_cgroup_check_under_limit(root_mem)) | 
|  | return 1 + total; | 
|  | } | 
|  | return total; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data) | 
|  | { | 
|  | int *val = (int *)data; | 
|  | int x; | 
|  | /* | 
|  | * Logically, we can stop scanning immediately when we find | 
|  | * a memcg is already locked. But condidering unlock ops and | 
|  | * creation/removal of memcg, scan-all is simple operation. | 
|  | */ | 
|  | x = atomic_inc_return(&mem->oom_lock); | 
|  | *val = max(x, *val); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Check OOM-Killer is already running under our hierarchy. | 
|  | * If someone is running, return false. | 
|  | */ | 
|  | static bool mem_cgroup_oom_lock(struct mem_cgroup *mem) | 
|  | { | 
|  | int lock_count = 0; | 
|  |  | 
|  | mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb); | 
|  |  | 
|  | if (lock_count == 1) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data) | 
|  | { | 
|  | /* | 
|  | * When a new child is created while the hierarchy is under oom, | 
|  | * mem_cgroup_oom_lock() may not be called. We have to use | 
|  | * atomic_add_unless() here. | 
|  | */ | 
|  | atomic_add_unless(&mem->oom_lock, -1, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_oom_unlock(struct mem_cgroup *mem) | 
|  | { | 
|  | mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb); | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(memcg_oom_mutex); | 
|  | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | 
|  |  | 
|  | struct oom_wait_info { | 
|  | struct mem_cgroup *mem; | 
|  | wait_queue_t	wait; | 
|  | }; | 
|  |  | 
|  | static int memcg_oom_wake_function(wait_queue_t *wait, | 
|  | unsigned mode, int sync, void *arg) | 
|  | { | 
|  | struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg; | 
|  | struct oom_wait_info *oom_wait_info; | 
|  |  | 
|  | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | 
|  |  | 
|  | if (oom_wait_info->mem == wake_mem) | 
|  | goto wakeup; | 
|  | /* if no hierarchy, no match */ | 
|  | if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy) | 
|  | return 0; | 
|  | /* | 
|  | * Both of oom_wait_info->mem and wake_mem are stable under us. | 
|  | * Then we can use css_is_ancestor without taking care of RCU. | 
|  | */ | 
|  | if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) && | 
|  | !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css)) | 
|  | return 0; | 
|  |  | 
|  | wakeup: | 
|  | return autoremove_wake_function(wait, mode, sync, arg); | 
|  | } | 
|  |  | 
|  | static void memcg_wakeup_oom(struct mem_cgroup *mem) | 
|  | { | 
|  | /* for filtering, pass "mem" as argument. */ | 
|  | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem); | 
|  | } | 
|  |  | 
|  | static void memcg_oom_recover(struct mem_cgroup *mem) | 
|  | { | 
|  | if (mem && atomic_read(&mem->oom_lock)) | 
|  | memcg_wakeup_oom(mem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * try to call OOM killer. returns false if we should exit memory-reclaim loop. | 
|  | */ | 
|  | bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask) | 
|  | { | 
|  | struct oom_wait_info owait; | 
|  | bool locked, need_to_kill; | 
|  |  | 
|  | owait.mem = mem; | 
|  | owait.wait.flags = 0; | 
|  | owait.wait.func = memcg_oom_wake_function; | 
|  | owait.wait.private = current; | 
|  | INIT_LIST_HEAD(&owait.wait.task_list); | 
|  | need_to_kill = true; | 
|  | /* At first, try to OOM lock hierarchy under mem.*/ | 
|  | mutex_lock(&memcg_oom_mutex); | 
|  | locked = mem_cgroup_oom_lock(mem); | 
|  | /* | 
|  | * Even if signal_pending(), we can't quit charge() loop without | 
|  | * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL | 
|  | * under OOM is always welcomed, use TASK_KILLABLE here. | 
|  | */ | 
|  | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); | 
|  | if (!locked || mem->oom_kill_disable) | 
|  | need_to_kill = false; | 
|  | if (locked) | 
|  | mem_cgroup_oom_notify(mem); | 
|  | mutex_unlock(&memcg_oom_mutex); | 
|  |  | 
|  | if (need_to_kill) { | 
|  | finish_wait(&memcg_oom_waitq, &owait.wait); | 
|  | mem_cgroup_out_of_memory(mem, mask); | 
|  | } else { | 
|  | schedule(); | 
|  | finish_wait(&memcg_oom_waitq, &owait.wait); | 
|  | } | 
|  | mutex_lock(&memcg_oom_mutex); | 
|  | mem_cgroup_oom_unlock(mem); | 
|  | memcg_wakeup_oom(mem); | 
|  | mutex_unlock(&memcg_oom_mutex); | 
|  |  | 
|  | if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) | 
|  | return false; | 
|  | /* Give chance to dying process */ | 
|  | schedule_timeout(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Currently used to update mapped file statistics, but the routine can be | 
|  | * generalized to update other statistics as well. | 
|  | */ | 
|  | void mem_cgroup_update_file_mapped(struct page *page, int val) | 
|  | { | 
|  | struct mem_cgroup *mem; | 
|  | struct page_cgroup *pc; | 
|  |  | 
|  | pc = lookup_page_cgroup(page); | 
|  | if (unlikely(!pc)) | 
|  | return; | 
|  |  | 
|  | lock_page_cgroup(pc); | 
|  | mem = pc->mem_cgroup; | 
|  | if (!mem || !PageCgroupUsed(pc)) | 
|  | goto done; | 
|  |  | 
|  | /* | 
|  | * Preemption is already disabled. We can use __this_cpu_xxx | 
|  | */ | 
|  | if (val > 0) { | 
|  | __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | 
|  | SetPageCgroupFileMapped(pc); | 
|  | } else { | 
|  | __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | 
|  | ClearPageCgroupFileMapped(pc); | 
|  | } | 
|  |  | 
|  | done: | 
|  | unlock_page_cgroup(pc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * size of first charge trial. "32" comes from vmscan.c's magic value. | 
|  | * TODO: maybe necessary to use big numbers in big irons. | 
|  | */ | 
|  | #define CHARGE_SIZE	(32 * PAGE_SIZE) | 
|  | struct memcg_stock_pcp { | 
|  | struct mem_cgroup *cached; /* this never be root cgroup */ | 
|  | int charge; | 
|  | struct work_struct work; | 
|  | }; | 
|  | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | 
|  | static atomic_t memcg_drain_count; | 
|  |  | 
|  | /* | 
|  | * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed | 
|  | * from local stock and true is returned. If the stock is 0 or charges from a | 
|  | * cgroup which is not current target, returns false. This stock will be | 
|  | * refilled. | 
|  | */ | 
|  | static bool consume_stock(struct mem_cgroup *mem) | 
|  | { | 
|  | struct memcg_stock_pcp *stock; | 
|  | bool ret = true; | 
|  |  | 
|  | stock = &get_cpu_var(memcg_stock); | 
|  | if (mem == stock->cached && stock->charge) | 
|  | stock->charge -= PAGE_SIZE; | 
|  | else /* need to call res_counter_charge */ | 
|  | ret = false; | 
|  | put_cpu_var(memcg_stock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns stocks cached in percpu to res_counter and reset cached information. | 
|  | */ | 
|  | static void drain_stock(struct memcg_stock_pcp *stock) | 
|  | { | 
|  | struct mem_cgroup *old = stock->cached; | 
|  |  | 
|  | if (stock->charge) { | 
|  | res_counter_uncharge(&old->res, stock->charge); | 
|  | if (do_swap_account) | 
|  | res_counter_uncharge(&old->memsw, stock->charge); | 
|  | } | 
|  | stock->cached = NULL; | 
|  | stock->charge = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must be called under preempt disabled or must be called by | 
|  | * a thread which is pinned to local cpu. | 
|  | */ | 
|  | static void drain_local_stock(struct work_struct *dummy) | 
|  | { | 
|  | struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); | 
|  | drain_stock(stock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cache charges(val) which is from res_counter, to local per_cpu area. | 
|  | * This will be consumed by consume_stock() function, later. | 
|  | */ | 
|  | static void refill_stock(struct mem_cgroup *mem, int val) | 
|  | { | 
|  | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); | 
|  |  | 
|  | if (stock->cached != mem) { /* reset if necessary */ | 
|  | drain_stock(stock); | 
|  | stock->cached = mem; | 
|  | } | 
|  | stock->charge += val; | 
|  | put_cpu_var(memcg_stock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tries to drain stocked charges in other cpus. This function is asynchronous | 
|  | * and just put a work per cpu for draining localy on each cpu. Caller can | 
|  | * expects some charges will be back to res_counter later but cannot wait for | 
|  | * it. | 
|  | */ | 
|  | static void drain_all_stock_async(void) | 
|  | { | 
|  | int cpu; | 
|  | /* This function is for scheduling "drain" in asynchronous way. | 
|  | * The result of "drain" is not directly handled by callers. Then, | 
|  | * if someone is calling drain, we don't have to call drain more. | 
|  | * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if | 
|  | * there is a race. We just do loose check here. | 
|  | */ | 
|  | if (atomic_read(&memcg_drain_count)) | 
|  | return; | 
|  | /* Notify other cpus that system-wide "drain" is running */ | 
|  | atomic_inc(&memcg_drain_count); | 
|  | get_online_cpus(); | 
|  | for_each_online_cpu(cpu) { | 
|  | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | 
|  | schedule_work_on(cpu, &stock->work); | 
|  | } | 
|  | put_online_cpus(); | 
|  | atomic_dec(&memcg_drain_count); | 
|  | /* We don't wait for flush_work */ | 
|  | } | 
|  |  | 
|  | /* This is a synchronous drain interface. */ | 
|  | static void drain_all_stock_sync(void) | 
|  | { | 
|  | /* called when force_empty is called */ | 
|  | atomic_inc(&memcg_drain_count); | 
|  | schedule_on_each_cpu(drain_local_stock); | 
|  | atomic_dec(&memcg_drain_count); | 
|  | } | 
|  |  | 
|  | static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb, | 
|  | unsigned long action, | 
|  | void *hcpu) | 
|  | { | 
|  | int cpu = (unsigned long)hcpu; | 
|  | struct memcg_stock_pcp *stock; | 
|  |  | 
|  | if (action != CPU_DEAD) | 
|  | return NOTIFY_OK; | 
|  | stock = &per_cpu(memcg_stock, cpu); | 
|  | drain_stock(stock); | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* See __mem_cgroup_try_charge() for details */ | 
|  | enum { | 
|  | CHARGE_OK,		/* success */ | 
|  | CHARGE_RETRY,		/* need to retry but retry is not bad */ | 
|  | CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */ | 
|  | CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */ | 
|  | CHARGE_OOM_DIE,		/* the current is killed because of OOM */ | 
|  | }; | 
|  |  | 
|  | static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, | 
|  | int csize, bool oom_check) | 
|  | { | 
|  | struct mem_cgroup *mem_over_limit; | 
|  | struct res_counter *fail_res; | 
|  | unsigned long flags = 0; | 
|  | int ret; | 
|  |  | 
|  | ret = res_counter_charge(&mem->res, csize, &fail_res); | 
|  |  | 
|  | if (likely(!ret)) { | 
|  | if (!do_swap_account) | 
|  | return CHARGE_OK; | 
|  | ret = res_counter_charge(&mem->memsw, csize, &fail_res); | 
|  | if (likely(!ret)) | 
|  | return CHARGE_OK; | 
|  |  | 
|  | mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); | 
|  | flags |= MEM_CGROUP_RECLAIM_NOSWAP; | 
|  | } else | 
|  | mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); | 
|  |  | 
|  | if (csize > PAGE_SIZE) /* change csize and retry */ | 
|  | return CHARGE_RETRY; | 
|  |  | 
|  | if (!(gfp_mask & __GFP_WAIT)) | 
|  | return CHARGE_WOULDBLOCK; | 
|  |  | 
|  | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, | 
|  | gfp_mask, flags); | 
|  | /* | 
|  | * try_to_free_mem_cgroup_pages() might not give us a full | 
|  | * picture of reclaim. Some pages are reclaimed and might be | 
|  | * moved to swap cache or just unmapped from the cgroup. | 
|  | * Check the limit again to see if the reclaim reduced the | 
|  | * current usage of the cgroup before giving up | 
|  | */ | 
|  | if (ret || mem_cgroup_check_under_limit(mem_over_limit)) | 
|  | return CHARGE_RETRY; | 
|  |  | 
|  | /* | 
|  | * At task move, charge accounts can be doubly counted. So, it's | 
|  | * better to wait until the end of task_move if something is going on. | 
|  | */ | 
|  | if (mem_cgroup_wait_acct_move(mem_over_limit)) | 
|  | return CHARGE_RETRY; | 
|  |  | 
|  | /* If we don't need to call oom-killer at el, return immediately */ | 
|  | if (!oom_check) | 
|  | return CHARGE_NOMEM; | 
|  | /* check OOM */ | 
|  | if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) | 
|  | return CHARGE_OOM_DIE; | 
|  |  | 
|  | return CHARGE_RETRY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlike exported interface, "oom" parameter is added. if oom==true, | 
|  | * oom-killer can be invoked. | 
|  | */ | 
|  | static int __mem_cgroup_try_charge(struct mm_struct *mm, | 
|  | gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom) | 
|  | { | 
|  | int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
|  | struct mem_cgroup *mem = NULL; | 
|  | int ret; | 
|  | int csize = CHARGE_SIZE; | 
|  |  | 
|  | /* | 
|  | * Unlike gloval-vm's OOM-kill, we're not in memory shortage | 
|  | * in system level. So, allow to go ahead dying process in addition to | 
|  | * MEMDIE process. | 
|  | */ | 
|  | if (unlikely(test_thread_flag(TIF_MEMDIE) | 
|  | || fatal_signal_pending(current))) | 
|  | goto bypass; | 
|  |  | 
|  | /* | 
|  | * We always charge the cgroup the mm_struct belongs to. | 
|  | * The mm_struct's mem_cgroup changes on task migration if the | 
|  | * thread group leader migrates. It's possible that mm is not | 
|  | * set, if so charge the init_mm (happens for pagecache usage). | 
|  | */ | 
|  | if (!*memcg && !mm) | 
|  | goto bypass; | 
|  | again: | 
|  | if (*memcg) { /* css should be a valid one */ | 
|  | mem = *memcg; | 
|  | VM_BUG_ON(css_is_removed(&mem->css)); | 
|  | if (mem_cgroup_is_root(mem)) | 
|  | goto done; | 
|  | if (consume_stock(mem)) | 
|  | goto done; | 
|  | css_get(&mem->css); | 
|  | } else { | 
|  | struct task_struct *p; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = rcu_dereference(mm->owner); | 
|  | VM_BUG_ON(!p); | 
|  | /* | 
|  | * because we don't have task_lock(), "p" can exit while | 
|  | * we're here. In that case, "mem" can point to root | 
|  | * cgroup but never be NULL. (and task_struct itself is freed | 
|  | * by RCU, cgroup itself is RCU safe.) Then, we have small | 
|  | * risk here to get wrong cgroup. But such kind of mis-account | 
|  | * by race always happens because we don't have cgroup_mutex(). | 
|  | * It's overkill and we allow that small race, here. | 
|  | */ | 
|  | mem = mem_cgroup_from_task(p); | 
|  | VM_BUG_ON(!mem); | 
|  | if (mem_cgroup_is_root(mem)) { | 
|  | rcu_read_unlock(); | 
|  | goto done; | 
|  | } | 
|  | if (consume_stock(mem)) { | 
|  | /* | 
|  | * It seems dagerous to access memcg without css_get(). | 
|  | * But considering how consume_stok works, it's not | 
|  | * necessary. If consume_stock success, some charges | 
|  | * from this memcg are cached on this cpu. So, we | 
|  | * don't need to call css_get()/css_tryget() before | 
|  | * calling consume_stock(). | 
|  | */ | 
|  | rcu_read_unlock(); | 
|  | goto done; | 
|  | } | 
|  | /* after here, we may be blocked. we need to get refcnt */ | 
|  | if (!css_tryget(&mem->css)) { | 
|  | rcu_read_unlock(); | 
|  | goto again; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | do { | 
|  | bool oom_check; | 
|  |  | 
|  | /* If killed, bypass charge */ | 
|  | if (fatal_signal_pending(current)) { | 
|  | css_put(&mem->css); | 
|  | goto bypass; | 
|  | } | 
|  |  | 
|  | oom_check = false; | 
|  | if (oom && !nr_oom_retries) { | 
|  | oom_check = true; | 
|  | nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
|  | } | 
|  |  | 
|  | ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check); | 
|  |  | 
|  | switch (ret) { | 
|  | case CHARGE_OK: | 
|  | break; | 
|  | case CHARGE_RETRY: /* not in OOM situation but retry */ | 
|  | csize = PAGE_SIZE; | 
|  | css_put(&mem->css); | 
|  | mem = NULL; | 
|  | goto again; | 
|  | case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ | 
|  | css_put(&mem->css); | 
|  | goto nomem; | 
|  | case CHARGE_NOMEM: /* OOM routine works */ | 
|  | if (!oom) { | 
|  | css_put(&mem->css); | 
|  | goto nomem; | 
|  | } | 
|  | /* If oom, we never return -ENOMEM */ | 
|  | nr_oom_retries--; | 
|  | break; | 
|  | case CHARGE_OOM_DIE: /* Killed by OOM Killer */ | 
|  | css_put(&mem->css); | 
|  | goto bypass; | 
|  | } | 
|  | } while (ret != CHARGE_OK); | 
|  |  | 
|  | if (csize > PAGE_SIZE) | 
|  | refill_stock(mem, csize - PAGE_SIZE); | 
|  | css_put(&mem->css); | 
|  | done: | 
|  | *memcg = mem; | 
|  | return 0; | 
|  | nomem: | 
|  | *memcg = NULL; | 
|  | return -ENOMEM; | 
|  | bypass: | 
|  | *memcg = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Somemtimes we have to undo a charge we got by try_charge(). | 
|  | * This function is for that and do uncharge, put css's refcnt. | 
|  | * gotten by try_charge(). | 
|  | */ | 
|  | static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem, | 
|  | unsigned long count) | 
|  | { | 
|  | if (!mem_cgroup_is_root(mem)) { | 
|  | res_counter_uncharge(&mem->res, PAGE_SIZE * count); | 
|  | if (do_swap_account) | 
|  | res_counter_uncharge(&mem->memsw, PAGE_SIZE * count); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_cancel_charge(struct mem_cgroup *mem) | 
|  | { | 
|  | __mem_cgroup_cancel_charge(mem, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A helper function to get mem_cgroup from ID. must be called under | 
|  | * rcu_read_lock(). The caller must check css_is_removed() or some if | 
|  | * it's concern. (dropping refcnt from swap can be called against removed | 
|  | * memcg.) | 
|  | */ | 
|  | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) | 
|  | { | 
|  | struct cgroup_subsys_state *css; | 
|  |  | 
|  | /* ID 0 is unused ID */ | 
|  | if (!id) | 
|  | return NULL; | 
|  | css = css_lookup(&mem_cgroup_subsys, id); | 
|  | if (!css) | 
|  | return NULL; | 
|  | return container_of(css, struct mem_cgroup, css); | 
|  | } | 
|  |  | 
|  | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) | 
|  | { | 
|  | struct mem_cgroup *mem = NULL; | 
|  | struct page_cgroup *pc; | 
|  | unsigned short id; | 
|  | swp_entry_t ent; | 
|  |  | 
|  | VM_BUG_ON(!PageLocked(page)); | 
|  |  | 
|  | pc = lookup_page_cgroup(page); | 
|  | lock_page_cgroup(pc); | 
|  | if (PageCgroupUsed(pc)) { | 
|  | mem = pc->mem_cgroup; | 
|  | if (mem && !css_tryget(&mem->css)) | 
|  | mem = NULL; | 
|  | } else if (PageSwapCache(page)) { | 
|  | ent.val = page_private(page); | 
|  | id = lookup_swap_cgroup(ent); | 
|  | rcu_read_lock(); | 
|  | mem = mem_cgroup_lookup(id); | 
|  | if (mem && !css_tryget(&mem->css)) | 
|  | mem = NULL; | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | unlock_page_cgroup(pc); | 
|  | return mem; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be | 
|  | * USED state. If already USED, uncharge and return. | 
|  | */ | 
|  |  | 
|  | static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, | 
|  | struct page_cgroup *pc, | 
|  | enum charge_type ctype) | 
|  | { | 
|  | /* try_charge() can return NULL to *memcg, taking care of it. */ | 
|  | if (!mem) | 
|  | return; | 
|  |  | 
|  | lock_page_cgroup(pc); | 
|  | if (unlikely(PageCgroupUsed(pc))) { | 
|  | unlock_page_cgroup(pc); | 
|  | mem_cgroup_cancel_charge(mem); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pc->mem_cgroup = mem; | 
|  | /* | 
|  | * We access a page_cgroup asynchronously without lock_page_cgroup(). | 
|  | * Especially when a page_cgroup is taken from a page, pc->mem_cgroup | 
|  | * is accessed after testing USED bit. To make pc->mem_cgroup visible | 
|  | * before USED bit, we need memory barrier here. | 
|  | * See mem_cgroup_add_lru_list(), etc. | 
|  | */ | 
|  | smp_wmb(); | 
|  | switch (ctype) { | 
|  | case MEM_CGROUP_CHARGE_TYPE_CACHE: | 
|  | case MEM_CGROUP_CHARGE_TYPE_SHMEM: | 
|  | SetPageCgroupCache(pc); | 
|  | SetPageCgroupUsed(pc); | 
|  | break; | 
|  | case MEM_CGROUP_CHARGE_TYPE_MAPPED: | 
|  | ClearPageCgroupCache(pc); | 
|  | SetPageCgroupUsed(pc); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | mem_cgroup_charge_statistics(mem, pc, true); | 
|  |  | 
|  | unlock_page_cgroup(pc); | 
|  | /* | 
|  | * "charge_statistics" updated event counter. Then, check it. | 
|  | * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. | 
|  | * if they exceeds softlimit. | 
|  | */ | 
|  | memcg_check_events(mem, pc->page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __mem_cgroup_move_account - move account of the page | 
|  | * @pc:	page_cgroup of the page. | 
|  | * @from: mem_cgroup which the page is moved from. | 
|  | * @to:	mem_cgroup which the page is moved to. @from != @to. | 
|  | * @uncharge: whether we should call uncharge and css_put against @from. | 
|  | * | 
|  | * The caller must confirm following. | 
|  | * - page is not on LRU (isolate_page() is useful.) | 
|  | * - the pc is locked, used, and ->mem_cgroup points to @from. | 
|  | * | 
|  | * This function doesn't do "charge" nor css_get to new cgroup. It should be | 
|  | * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is | 
|  | * true, this function does "uncharge" from old cgroup, but it doesn't if | 
|  | * @uncharge is false, so a caller should do "uncharge". | 
|  | */ | 
|  |  | 
|  | static void __mem_cgroup_move_account(struct page_cgroup *pc, | 
|  | struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge) | 
|  | { | 
|  | VM_BUG_ON(from == to); | 
|  | VM_BUG_ON(PageLRU(pc->page)); | 
|  | VM_BUG_ON(!PageCgroupLocked(pc)); | 
|  | VM_BUG_ON(!PageCgroupUsed(pc)); | 
|  | VM_BUG_ON(pc->mem_cgroup != from); | 
|  |  | 
|  | if (PageCgroupFileMapped(pc)) { | 
|  | /* Update mapped_file data for mem_cgroup */ | 
|  | preempt_disable(); | 
|  | __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | 
|  | __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | 
|  | preempt_enable(); | 
|  | } | 
|  | mem_cgroup_charge_statistics(from, pc, false); | 
|  | if (uncharge) | 
|  | /* This is not "cancel", but cancel_charge does all we need. */ | 
|  | mem_cgroup_cancel_charge(from); | 
|  |  | 
|  | /* caller should have done css_get */ | 
|  | pc->mem_cgroup = to; | 
|  | mem_cgroup_charge_statistics(to, pc, true); | 
|  | /* | 
|  | * We charges against "to" which may not have any tasks. Then, "to" | 
|  | * can be under rmdir(). But in current implementation, caller of | 
|  | * this function is just force_empty() and move charge, so it's | 
|  | * garanteed that "to" is never removed. So, we don't check rmdir | 
|  | * status here. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check whether the @pc is valid for moving account and call | 
|  | * __mem_cgroup_move_account() | 
|  | */ | 
|  | static int mem_cgroup_move_account(struct page_cgroup *pc, | 
|  | struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | lock_page_cgroup(pc); | 
|  | if (PageCgroupUsed(pc) && pc->mem_cgroup == from) { | 
|  | __mem_cgroup_move_account(pc, from, to, uncharge); | 
|  | ret = 0; | 
|  | } | 
|  | unlock_page_cgroup(pc); | 
|  | /* | 
|  | * check events | 
|  | */ | 
|  | memcg_check_events(to, pc->page); | 
|  | memcg_check_events(from, pc->page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * move charges to its parent. | 
|  | */ | 
|  |  | 
|  | static int mem_cgroup_move_parent(struct page_cgroup *pc, | 
|  | struct mem_cgroup *child, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct page *page = pc->page; | 
|  | struct cgroup *cg = child->css.cgroup; | 
|  | struct cgroup *pcg = cg->parent; | 
|  | struct mem_cgroup *parent; | 
|  | int ret; | 
|  |  | 
|  | /* Is ROOT ? */ | 
|  | if (!pcg) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = -EBUSY; | 
|  | if (!get_page_unless_zero(page)) | 
|  | goto out; | 
|  | if (isolate_lru_page(page)) | 
|  | goto put; | 
|  |  | 
|  | parent = mem_cgroup_from_cont(pcg); | 
|  | ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false); | 
|  | if (ret || !parent) | 
|  | goto put_back; | 
|  |  | 
|  | ret = mem_cgroup_move_account(pc, child, parent, true); | 
|  | if (ret) | 
|  | mem_cgroup_cancel_charge(parent); | 
|  | put_back: | 
|  | putback_lru_page(page); | 
|  | put: | 
|  | put_page(page); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Charge the memory controller for page usage. | 
|  | * Return | 
|  | * 0 if the charge was successful | 
|  | * < 0 if the cgroup is over its limit | 
|  | */ | 
|  | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 
|  | gfp_t gfp_mask, enum charge_type ctype) | 
|  | { | 
|  | struct mem_cgroup *mem = NULL; | 
|  | struct page_cgroup *pc; | 
|  | int ret; | 
|  |  | 
|  | pc = lookup_page_cgroup(page); | 
|  | /* can happen at boot */ | 
|  | if (unlikely(!pc)) | 
|  | return 0; | 
|  | prefetchw(pc); | 
|  |  | 
|  | ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); | 
|  | if (ret || !mem) | 
|  | return ret; | 
|  |  | 
|  | __mem_cgroup_commit_charge(mem, pc, ctype); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int mem_cgroup_newpage_charge(struct page *page, | 
|  | struct mm_struct *mm, gfp_t gfp_mask) | 
|  | { | 
|  | if (mem_cgroup_disabled()) | 
|  | return 0; | 
|  | if (PageCompound(page)) | 
|  | return 0; | 
|  | /* | 
|  | * If already mapped, we don't have to account. | 
|  | * If page cache, page->mapping has address_space. | 
|  | * But page->mapping may have out-of-use anon_vma pointer, | 
|  | * detecit it by PageAnon() check. newly-mapped-anon's page->mapping | 
|  | * is NULL. | 
|  | */ | 
|  | if (page_mapped(page) || (page->mapping && !PageAnon(page))) | 
|  | return 0; | 
|  | if (unlikely(!mm)) | 
|  | mm = &init_mm; | 
|  | return mem_cgroup_charge_common(page, mm, gfp_mask, | 
|  | MEM_CGROUP_CHARGE_TYPE_MAPPED); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, | 
|  | enum charge_type ctype); | 
|  |  | 
|  | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return 0; | 
|  | if (PageCompound(page)) | 
|  | return 0; | 
|  | /* | 
|  | * Corner case handling. This is called from add_to_page_cache() | 
|  | * in usual. But some FS (shmem) precharges this page before calling it | 
|  | * and call add_to_page_cache() with GFP_NOWAIT. | 
|  | * | 
|  | * For GFP_NOWAIT case, the page may be pre-charged before calling | 
|  | * add_to_page_cache(). (See shmem.c) check it here and avoid to call | 
|  | * charge twice. (It works but has to pay a bit larger cost.) | 
|  | * And when the page is SwapCache, it should take swap information | 
|  | * into account. This is under lock_page() now. | 
|  | */ | 
|  | if (!(gfp_mask & __GFP_WAIT)) { | 
|  | struct page_cgroup *pc; | 
|  |  | 
|  | pc = lookup_page_cgroup(page); | 
|  | if (!pc) | 
|  | return 0; | 
|  | lock_page_cgroup(pc); | 
|  | if (PageCgroupUsed(pc)) { | 
|  | unlock_page_cgroup(pc); | 
|  | return 0; | 
|  | } | 
|  | unlock_page_cgroup(pc); | 
|  | } | 
|  |  | 
|  | if (unlikely(!mm)) | 
|  | mm = &init_mm; | 
|  |  | 
|  | if (page_is_file_cache(page)) | 
|  | return mem_cgroup_charge_common(page, mm, gfp_mask, | 
|  | MEM_CGROUP_CHARGE_TYPE_CACHE); | 
|  |  | 
|  | /* shmem */ | 
|  | if (PageSwapCache(page)) { | 
|  | struct mem_cgroup *mem = NULL; | 
|  |  | 
|  | ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); | 
|  | if (!ret) | 
|  | __mem_cgroup_commit_charge_swapin(page, mem, | 
|  | MEM_CGROUP_CHARGE_TYPE_SHMEM); | 
|  | } else | 
|  | ret = mem_cgroup_charge_common(page, mm, gfp_mask, | 
|  | MEM_CGROUP_CHARGE_TYPE_SHMEM); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While swap-in, try_charge -> commit or cancel, the page is locked. | 
|  | * And when try_charge() successfully returns, one refcnt to memcg without | 
|  | * struct page_cgroup is acquired. This refcnt will be consumed by | 
|  | * "commit()" or removed by "cancel()" | 
|  | */ | 
|  | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, | 
|  | struct page *page, | 
|  | gfp_t mask, struct mem_cgroup **ptr) | 
|  | { | 
|  | struct mem_cgroup *mem; | 
|  | int ret; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return 0; | 
|  |  | 
|  | if (!do_swap_account) | 
|  | goto charge_cur_mm; | 
|  | /* | 
|  | * A racing thread's fault, or swapoff, may have already updated | 
|  | * the pte, and even removed page from swap cache: in those cases | 
|  | * do_swap_page()'s pte_same() test will fail; but there's also a | 
|  | * KSM case which does need to charge the page. | 
|  | */ | 
|  | if (!PageSwapCache(page)) | 
|  | goto charge_cur_mm; | 
|  | mem = try_get_mem_cgroup_from_page(page); | 
|  | if (!mem) | 
|  | goto charge_cur_mm; | 
|  | *ptr = mem; | 
|  | ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); | 
|  | css_put(&mem->css); | 
|  | return ret; | 
|  | charge_cur_mm: | 
|  | if (unlikely(!mm)) | 
|  | mm = &init_mm; | 
|  | return __mem_cgroup_try_charge(mm, mask, ptr, true); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, | 
|  | enum charge_type ctype) | 
|  | { | 
|  | struct page_cgroup *pc; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  | if (!ptr) | 
|  | return; | 
|  | cgroup_exclude_rmdir(&ptr->css); | 
|  | pc = lookup_page_cgroup(page); | 
|  | mem_cgroup_lru_del_before_commit_swapcache(page); | 
|  | __mem_cgroup_commit_charge(ptr, pc, ctype); | 
|  | mem_cgroup_lru_add_after_commit_swapcache(page); | 
|  | /* | 
|  | * Now swap is on-memory. This means this page may be | 
|  | * counted both as mem and swap....double count. | 
|  | * Fix it by uncharging from memsw. Basically, this SwapCache is stable | 
|  | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() | 
|  | * may call delete_from_swap_cache() before reach here. | 
|  | */ | 
|  | if (do_swap_account && PageSwapCache(page)) { | 
|  | swp_entry_t ent = {.val = page_private(page)}; | 
|  | unsigned short id; | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | id = swap_cgroup_record(ent, 0); | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_lookup(id); | 
|  | if (memcg) { | 
|  | /* | 
|  | * This recorded memcg can be obsolete one. So, avoid | 
|  | * calling css_tryget | 
|  | */ | 
|  | if (!mem_cgroup_is_root(memcg)) | 
|  | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | 
|  | mem_cgroup_swap_statistics(memcg, false); | 
|  | mem_cgroup_put(memcg); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | /* | 
|  | * At swapin, we may charge account against cgroup which has no tasks. | 
|  | * So, rmdir()->pre_destroy() can be called while we do this charge. | 
|  | * In that case, we need to call pre_destroy() again. check it here. | 
|  | */ | 
|  | cgroup_release_and_wakeup_rmdir(&ptr->css); | 
|  | } | 
|  |  | 
|  | void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) | 
|  | { | 
|  | __mem_cgroup_commit_charge_swapin(page, ptr, | 
|  | MEM_CGROUP_CHARGE_TYPE_MAPPED); | 
|  | } | 
|  |  | 
|  | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) | 
|  | { | 
|  | if (mem_cgroup_disabled()) | 
|  | return; | 
|  | if (!mem) | 
|  | return; | 
|  | mem_cgroup_cancel_charge(mem); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype) | 
|  | { | 
|  | struct memcg_batch_info *batch = NULL; | 
|  | bool uncharge_memsw = true; | 
|  | /* If swapout, usage of swap doesn't decrease */ | 
|  | if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | 
|  | uncharge_memsw = false; | 
|  |  | 
|  | batch = ¤t->memcg_batch; | 
|  | /* | 
|  | * In usual, we do css_get() when we remember memcg pointer. | 
|  | * But in this case, we keep res->usage until end of a series of | 
|  | * uncharges. Then, it's ok to ignore memcg's refcnt. | 
|  | */ | 
|  | if (!batch->memcg) | 
|  | batch->memcg = mem; | 
|  | /* | 
|  | * do_batch > 0 when unmapping pages or inode invalidate/truncate. | 
|  | * In those cases, all pages freed continously can be expected to be in | 
|  | * the same cgroup and we have chance to coalesce uncharges. | 
|  | * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) | 
|  | * because we want to do uncharge as soon as possible. | 
|  | */ | 
|  |  | 
|  | if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) | 
|  | goto direct_uncharge; | 
|  |  | 
|  | /* | 
|  | * In typical case, batch->memcg == mem. This means we can | 
|  | * merge a series of uncharges to an uncharge of res_counter. | 
|  | * If not, we uncharge res_counter ony by one. | 
|  | */ | 
|  | if (batch->memcg != mem) | 
|  | goto direct_uncharge; | 
|  | /* remember freed charge and uncharge it later */ | 
|  | batch->bytes += PAGE_SIZE; | 
|  | if (uncharge_memsw) | 
|  | batch->memsw_bytes += PAGE_SIZE; | 
|  | return; | 
|  | direct_uncharge: | 
|  | res_counter_uncharge(&mem->res, PAGE_SIZE); | 
|  | if (uncharge_memsw) | 
|  | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | 
|  | if (unlikely(batch->memcg != mem)) | 
|  | memcg_oom_recover(mem); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * uncharge if !page_mapped(page) | 
|  | */ | 
|  | static struct mem_cgroup * | 
|  | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | 
|  | { | 
|  | struct page_cgroup *pc; | 
|  | struct mem_cgroup *mem = NULL; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return NULL; | 
|  |  | 
|  | if (PageSwapCache(page)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Check if our page_cgroup is valid | 
|  | */ | 
|  | pc = lookup_page_cgroup(page); | 
|  | if (unlikely(!pc || !PageCgroupUsed(pc))) | 
|  | return NULL; | 
|  |  | 
|  | lock_page_cgroup(pc); | 
|  |  | 
|  | mem = pc->mem_cgroup; | 
|  |  | 
|  | if (!PageCgroupUsed(pc)) | 
|  | goto unlock_out; | 
|  |  | 
|  | switch (ctype) { | 
|  | case MEM_CGROUP_CHARGE_TYPE_MAPPED: | 
|  | case MEM_CGROUP_CHARGE_TYPE_DROP: | 
|  | /* See mem_cgroup_prepare_migration() */ | 
|  | if (page_mapped(page) || PageCgroupMigration(pc)) | 
|  | goto unlock_out; | 
|  | break; | 
|  | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: | 
|  | if (!PageAnon(page)) {	/* Shared memory */ | 
|  | if (page->mapping && !page_is_file_cache(page)) | 
|  | goto unlock_out; | 
|  | } else if (page_mapped(page)) /* Anon */ | 
|  | goto unlock_out; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | mem_cgroup_charge_statistics(mem, pc, false); | 
|  |  | 
|  | ClearPageCgroupUsed(pc); | 
|  | /* | 
|  | * pc->mem_cgroup is not cleared here. It will be accessed when it's | 
|  | * freed from LRU. This is safe because uncharged page is expected not | 
|  | * to be reused (freed soon). Exception is SwapCache, it's handled by | 
|  | * special functions. | 
|  | */ | 
|  |  | 
|  | unlock_page_cgroup(pc); | 
|  | /* | 
|  | * even after unlock, we have mem->res.usage here and this memcg | 
|  | * will never be freed. | 
|  | */ | 
|  | memcg_check_events(mem, page); | 
|  | if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { | 
|  | mem_cgroup_swap_statistics(mem, true); | 
|  | mem_cgroup_get(mem); | 
|  | } | 
|  | if (!mem_cgroup_is_root(mem)) | 
|  | __do_uncharge(mem, ctype); | 
|  |  | 
|  | return mem; | 
|  |  | 
|  | unlock_out: | 
|  | unlock_page_cgroup(pc); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void mem_cgroup_uncharge_page(struct page *page) | 
|  | { | 
|  | /* early check. */ | 
|  | if (page_mapped(page)) | 
|  | return; | 
|  | if (page->mapping && !PageAnon(page)) | 
|  | return; | 
|  | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); | 
|  | } | 
|  |  | 
|  | void mem_cgroup_uncharge_cache_page(struct page *page) | 
|  | { | 
|  | VM_BUG_ON(page_mapped(page)); | 
|  | VM_BUG_ON(page->mapping); | 
|  | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. | 
|  | * In that cases, pages are freed continuously and we can expect pages | 
|  | * are in the same memcg. All these calls itself limits the number of | 
|  | * pages freed at once, then uncharge_start/end() is called properly. | 
|  | * This may be called prural(2) times in a context, | 
|  | */ | 
|  |  | 
|  | void mem_cgroup_uncharge_start(void) | 
|  | { | 
|  | current->memcg_batch.do_batch++; | 
|  | /* We can do nest. */ | 
|  | if (current->memcg_batch.do_batch == 1) { | 
|  | current->memcg_batch.memcg = NULL; | 
|  | current->memcg_batch.bytes = 0; | 
|  | current->memcg_batch.memsw_bytes = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void mem_cgroup_uncharge_end(void) | 
|  | { | 
|  | struct memcg_batch_info *batch = ¤t->memcg_batch; | 
|  |  | 
|  | if (!batch->do_batch) | 
|  | return; | 
|  |  | 
|  | batch->do_batch--; | 
|  | if (batch->do_batch) /* If stacked, do nothing. */ | 
|  | return; | 
|  |  | 
|  | if (!batch->memcg) | 
|  | return; | 
|  | /* | 
|  | * This "batch->memcg" is valid without any css_get/put etc... | 
|  | * bacause we hide charges behind us. | 
|  | */ | 
|  | if (batch->bytes) | 
|  | res_counter_uncharge(&batch->memcg->res, batch->bytes); | 
|  | if (batch->memsw_bytes) | 
|  | res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes); | 
|  | memcg_oom_recover(batch->memcg); | 
|  | /* forget this pointer (for sanity check) */ | 
|  | batch->memcg = NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SWAP | 
|  | /* | 
|  | * called after __delete_from_swap_cache() and drop "page" account. | 
|  | * memcg information is recorded to swap_cgroup of "ent" | 
|  | */ | 
|  | void | 
|  | mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; | 
|  |  | 
|  | if (!swapout) /* this was a swap cache but the swap is unused ! */ | 
|  | ctype = MEM_CGROUP_CHARGE_TYPE_DROP; | 
|  |  | 
|  | memcg = __mem_cgroup_uncharge_common(page, ctype); | 
|  |  | 
|  | /* | 
|  | * record memcg information,  if swapout && memcg != NULL, | 
|  | * mem_cgroup_get() was called in uncharge(). | 
|  | */ | 
|  | if (do_swap_account && swapout && memcg) | 
|  | swap_cgroup_record(ent, css_id(&memcg->css)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 
|  | /* | 
|  | * called from swap_entry_free(). remove record in swap_cgroup and | 
|  | * uncharge "memsw" account. | 
|  | */ | 
|  | void mem_cgroup_uncharge_swap(swp_entry_t ent) | 
|  | { | 
|  | struct mem_cgroup *memcg; | 
|  | unsigned short id; | 
|  |  | 
|  | if (!do_swap_account) | 
|  | return; | 
|  |  | 
|  | id = swap_cgroup_record(ent, 0); | 
|  | rcu_read_lock(); | 
|  | memcg = mem_cgroup_lookup(id); | 
|  | if (memcg) { | 
|  | /* | 
|  | * We uncharge this because swap is freed. | 
|  | * This memcg can be obsolete one. We avoid calling css_tryget | 
|  | */ | 
|  | if (!mem_cgroup_is_root(memcg)) | 
|  | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | 
|  | mem_cgroup_swap_statistics(memcg, false); | 
|  | mem_cgroup_put(memcg); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | 
|  | * @entry: swap entry to be moved | 
|  | * @from:  mem_cgroup which the entry is moved from | 
|  | * @to:  mem_cgroup which the entry is moved to | 
|  | * @need_fixup: whether we should fixup res_counters and refcounts. | 
|  | * | 
|  | * It succeeds only when the swap_cgroup's record for this entry is the same | 
|  | * as the mem_cgroup's id of @from. | 
|  | * | 
|  | * Returns 0 on success, -EINVAL on failure. | 
|  | * | 
|  | * The caller must have charged to @to, IOW, called res_counter_charge() about | 
|  | * both res and memsw, and called css_get(). | 
|  | */ | 
|  | static int mem_cgroup_move_swap_account(swp_entry_t entry, | 
|  | struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) | 
|  | { | 
|  | unsigned short old_id, new_id; | 
|  |  | 
|  | old_id = css_id(&from->css); | 
|  | new_id = css_id(&to->css); | 
|  |  | 
|  | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | 
|  | mem_cgroup_swap_statistics(from, false); | 
|  | mem_cgroup_swap_statistics(to, true); | 
|  | /* | 
|  | * This function is only called from task migration context now. | 
|  | * It postpones res_counter and refcount handling till the end | 
|  | * of task migration(mem_cgroup_clear_mc()) for performance | 
|  | * improvement. But we cannot postpone mem_cgroup_get(to) | 
|  | * because if the process that has been moved to @to does | 
|  | * swap-in, the refcount of @to might be decreased to 0. | 
|  | */ | 
|  | mem_cgroup_get(to); | 
|  | if (need_fixup) { | 
|  | if (!mem_cgroup_is_root(from)) | 
|  | res_counter_uncharge(&from->memsw, PAGE_SIZE); | 
|  | mem_cgroup_put(from); | 
|  | /* | 
|  | * we charged both to->res and to->memsw, so we should | 
|  | * uncharge to->res. | 
|  | */ | 
|  | if (!mem_cgroup_is_root(to)) | 
|  | res_counter_uncharge(&to->res, PAGE_SIZE); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  | #else | 
|  | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | 
|  | struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old | 
|  | * page belongs to. | 
|  | */ | 
|  | int mem_cgroup_prepare_migration(struct page *page, | 
|  | struct page *newpage, struct mem_cgroup **ptr) | 
|  | { | 
|  | struct page_cgroup *pc; | 
|  | struct mem_cgroup *mem = NULL; | 
|  | enum charge_type ctype; | 
|  | int ret = 0; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return 0; | 
|  |  | 
|  | pc = lookup_page_cgroup(page); | 
|  | lock_page_cgroup(pc); | 
|  | if (PageCgroupUsed(pc)) { | 
|  | mem = pc->mem_cgroup; | 
|  | css_get(&mem->css); | 
|  | /* | 
|  | * At migrating an anonymous page, its mapcount goes down | 
|  | * to 0 and uncharge() will be called. But, even if it's fully | 
|  | * unmapped, migration may fail and this page has to be | 
|  | * charged again. We set MIGRATION flag here and delay uncharge | 
|  | * until end_migration() is called | 
|  | * | 
|  | * Corner Case Thinking | 
|  | * A) | 
|  | * When the old page was mapped as Anon and it's unmap-and-freed | 
|  | * while migration was ongoing. | 
|  | * If unmap finds the old page, uncharge() of it will be delayed | 
|  | * until end_migration(). If unmap finds a new page, it's | 
|  | * uncharged when it make mapcount to be 1->0. If unmap code | 
|  | * finds swap_migration_entry, the new page will not be mapped | 
|  | * and end_migration() will find it(mapcount==0). | 
|  | * | 
|  | * B) | 
|  | * When the old page was mapped but migraion fails, the kernel | 
|  | * remaps it. A charge for it is kept by MIGRATION flag even | 
|  | * if mapcount goes down to 0. We can do remap successfully | 
|  | * without charging it again. | 
|  | * | 
|  | * C) | 
|  | * The "old" page is under lock_page() until the end of | 
|  | * migration, so, the old page itself will not be swapped-out. | 
|  | * If the new page is swapped out before end_migraton, our | 
|  | * hook to usual swap-out path will catch the event. | 
|  | */ | 
|  | if (PageAnon(page)) | 
|  | SetPageCgroupMigration(pc); | 
|  | } | 
|  | unlock_page_cgroup(pc); | 
|  | /* | 
|  | * If the page is not charged at this point, | 
|  | * we return here. | 
|  | */ | 
|  | if (!mem) | 
|  | return 0; | 
|  |  | 
|  | *ptr = mem; | 
|  | ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false); | 
|  | css_put(&mem->css);/* drop extra refcnt */ | 
|  | if (ret || *ptr == NULL) { | 
|  | if (PageAnon(page)) { | 
|  | lock_page_cgroup(pc); | 
|  | ClearPageCgroupMigration(pc); | 
|  | unlock_page_cgroup(pc); | 
|  | /* | 
|  | * The old page may be fully unmapped while we kept it. | 
|  | */ | 
|  | mem_cgroup_uncharge_page(page); | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  | /* | 
|  | * We charge new page before it's used/mapped. So, even if unlock_page() | 
|  | * is called before end_migration, we can catch all events on this new | 
|  | * page. In the case new page is migrated but not remapped, new page's | 
|  | * mapcount will be finally 0 and we call uncharge in end_migration(). | 
|  | */ | 
|  | pc = lookup_page_cgroup(newpage); | 
|  | if (PageAnon(page)) | 
|  | ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | 
|  | else if (page_is_file_cache(page)) | 
|  | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | 
|  | else | 
|  | ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; | 
|  | __mem_cgroup_commit_charge(mem, pc, ctype); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* remove redundant charge if migration failed*/ | 
|  | void mem_cgroup_end_migration(struct mem_cgroup *mem, | 
|  | struct page *oldpage, struct page *newpage) | 
|  | { | 
|  | struct page *used, *unused; | 
|  | struct page_cgroup *pc; | 
|  |  | 
|  | if (!mem) | 
|  | return; | 
|  | /* blocks rmdir() */ | 
|  | cgroup_exclude_rmdir(&mem->css); | 
|  | /* at migration success, oldpage->mapping is NULL. */ | 
|  | if (oldpage->mapping) { | 
|  | used = oldpage; | 
|  | unused = newpage; | 
|  | } else { | 
|  | used = newpage; | 
|  | unused = oldpage; | 
|  | } | 
|  | /* | 
|  | * We disallowed uncharge of pages under migration because mapcount | 
|  | * of the page goes down to zero, temporarly. | 
|  | * Clear the flag and check the page should be charged. | 
|  | */ | 
|  | pc = lookup_page_cgroup(oldpage); | 
|  | lock_page_cgroup(pc); | 
|  | ClearPageCgroupMigration(pc); | 
|  | unlock_page_cgroup(pc); | 
|  |  | 
|  | __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); | 
|  |  | 
|  | /* | 
|  | * If a page is a file cache, radix-tree replacement is very atomic | 
|  | * and we can skip this check. When it was an Anon page, its mapcount | 
|  | * goes down to 0. But because we added MIGRATION flage, it's not | 
|  | * uncharged yet. There are several case but page->mapcount check | 
|  | * and USED bit check in mem_cgroup_uncharge_page() will do enough | 
|  | * check. (see prepare_charge() also) | 
|  | */ | 
|  | if (PageAnon(used)) | 
|  | mem_cgroup_uncharge_page(used); | 
|  | /* | 
|  | * At migration, we may charge account against cgroup which has no | 
|  | * tasks. | 
|  | * So, rmdir()->pre_destroy() can be called while we do this charge. | 
|  | * In that case, we need to call pre_destroy() again. check it here. | 
|  | */ | 
|  | cgroup_release_and_wakeup_rmdir(&mem->css); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A call to try to shrink memory usage on charge failure at shmem's swapin. | 
|  | * Calling hierarchical_reclaim is not enough because we should update | 
|  | * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM. | 
|  | * Moreover considering hierarchy, we should reclaim from the mem_over_limit, | 
|  | * not from the memcg which this page would be charged to. | 
|  | * try_charge_swapin does all of these works properly. | 
|  | */ | 
|  | int mem_cgroup_shmem_charge_fallback(struct page *page, | 
|  | struct mm_struct *mm, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct mem_cgroup *mem = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (mem_cgroup_disabled()) | 
|  | return 0; | 
|  |  | 
|  | ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); | 
|  | if (!ret) | 
|  | mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */ | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(set_limit_mutex); | 
|  |  | 
|  | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, | 
|  | unsigned long long val) | 
|  | { | 
|  | int retry_count; | 
|  | u64 memswlimit, memlimit; | 
|  | int ret = 0; | 
|  | int children = mem_cgroup_count_children(memcg); | 
|  | u64 curusage, oldusage; | 
|  | int enlarge; | 
|  |  | 
|  | /* | 
|  | * For keeping hierarchical_reclaim simple, how long we should retry | 
|  | * is depends on callers. We set our retry-count to be function | 
|  | * of # of children which we should visit in this loop. | 
|  | */ | 
|  | retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; | 
|  |  | 
|  | oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); | 
|  |  | 
|  | enlarge = 0; | 
|  | while (retry_count) { | 
|  | if (signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Rather than hide all in some function, I do this in | 
|  | * open coded manner. You see what this really does. | 
|  | * We have to guarantee mem->res.limit < mem->memsw.limit. | 
|  | */ | 
|  | mutex_lock(&set_limit_mutex); | 
|  | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 
|  | if (memswlimit < val) { | 
|  | ret = -EINVAL; | 
|  | mutex_unlock(&set_limit_mutex); | 
|  | break; | 
|  | } | 
|  |  | 
|  | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | 
|  | if (memlimit < val) | 
|  | enlarge = 1; | 
|  |  | 
|  | ret = res_counter_set_limit(&memcg->res, val); | 
|  | if (!ret) { | 
|  | if (memswlimit == val) | 
|  | memcg->memsw_is_minimum = true; | 
|  | else | 
|  | memcg->memsw_is_minimum = false; | 
|  | } | 
|  | mutex_unlock(&set_limit_mutex); | 
|  |  | 
|  | if (!ret) | 
|  | break; | 
|  |  | 
|  | mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, | 
|  | MEM_CGROUP_RECLAIM_SHRINK); | 
|  | curusage = res_counter_read_u64(&memcg->res, RES_USAGE); | 
|  | /* Usage is reduced ? */ | 
|  | if (curusage >= oldusage) | 
|  | retry_count--; | 
|  | else | 
|  | oldusage = curusage; | 
|  | } | 
|  | if (!ret && enlarge) | 
|  | memcg_oom_recover(memcg); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | 
|  | unsigned long long val) | 
|  | { | 
|  | int retry_count; | 
|  | u64 memlimit, memswlimit, oldusage, curusage; | 
|  | int children = mem_cgroup_count_children(memcg); | 
|  | int ret = -EBUSY; | 
|  | int enlarge = 0; | 
|  |  | 
|  | /* see mem_cgroup_resize_res_limit */ | 
|  | retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; | 
|  | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | 
|  | while (retry_count) { | 
|  | if (signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Rather than hide all in some function, I do this in | 
|  | * open coded manner. You see what this really does. | 
|  | * We have to guarantee mem->res.limit < mem->memsw.limit. | 
|  | */ | 
|  | mutex_lock(&set_limit_mutex); | 
|  | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | 
|  | if (memlimit > val) { | 
|  | ret = -EINVAL; | 
|  | mutex_unlock(&set_limit_mutex); | 
|  | break; | 
|  | } | 
|  | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 
|  | if (memswlimit < val) | 
|  | enlarge = 1; | 
|  | ret = res_counter_set_limit(&memcg->memsw, val); | 
|  | if (!ret) { | 
|  | if (memlimit == val) | 
|  | memcg->memsw_is_minimum = true; | 
|  | else | 
|  | memcg->memsw_is_minimum = false; | 
|  | } | 
|  | mutex_unlock(&set_limit_mutex); | 
|  |  | 
|  | if (!ret) | 
|  | break; | 
|  |  | 
|  | mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, | 
|  | MEM_CGROUP_RECLAIM_NOSWAP | | 
|  | MEM_CGROUP_RECLAIM_SHRINK); | 
|  | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | 
|  | /* Usage is reduced ? */ | 
|  | if (curusage >= oldusage) | 
|  | retry_count--; | 
|  | else | 
|  | oldusage = curusage; | 
|  | } | 
|  | if (!ret && enlarge) | 
|  | memcg_oom_recover(memcg); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | unsigned long nr_reclaimed = 0; | 
|  | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | 
|  | unsigned long reclaimed; | 
|  | int loop = 0; | 
|  | struct mem_cgroup_tree_per_zone *mctz; | 
|  | unsigned long long excess; | 
|  |  | 
|  | if (order > 0) | 
|  | return 0; | 
|  |  | 
|  | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); | 
|  | /* | 
|  | * This loop can run a while, specially if mem_cgroup's continuously | 
|  | * keep exceeding their soft limit and putting the system under | 
|  | * pressure | 
|  | */ | 
|  | do { | 
|  | if (next_mz) | 
|  | mz = next_mz; | 
|  | else | 
|  | mz = mem_cgroup_largest_soft_limit_node(mctz); | 
|  | if (!mz) | 
|  | break; | 
|  |  | 
|  | reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone, | 
|  | gfp_mask, | 
|  | MEM_CGROUP_RECLAIM_SOFT); | 
|  | nr_reclaimed += reclaimed; | 
|  | spin_lock(&mctz->lock); | 
|  |  | 
|  | /* | 
|  | * If we failed to reclaim anything from this memory cgroup | 
|  | * it is time to move on to the next cgroup | 
|  | */ | 
|  | next_mz = NULL; | 
|  | if (!reclaimed) { | 
|  | do { | 
|  | /* | 
|  | * Loop until we find yet another one. | 
|  | * | 
|  | * By the time we get the soft_limit lock | 
|  | * again, someone might have aded the | 
|  | * group back on the RB tree. Iterate to | 
|  | * make sure we get a different mem. | 
|  | * mem_cgroup_largest_soft_limit_node returns | 
|  | * NULL if no other cgroup is present on | 
|  | * the tree | 
|  | */ | 
|  | next_mz = | 
|  | __mem_cgroup_largest_soft_limit_node(mctz); | 
|  | if (next_mz == mz) { | 
|  | css_put(&next_mz->mem->css); | 
|  | next_mz = NULL; | 
|  | } else /* next_mz == NULL or other memcg */ | 
|  | break; | 
|  | } while (1); | 
|  | } | 
|  | __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); | 
|  | excess = res_counter_soft_limit_excess(&mz->mem->res); | 
|  | /* | 
|  | * One school of thought says that we should not add | 
|  | * back the node to the tree if reclaim returns 0. | 
|  | * But our reclaim could return 0, simply because due | 
|  | * to priority we are exposing a smaller subset of | 
|  | * memory to reclaim from. Consider this as a longer | 
|  | * term TODO. | 
|  | */ | 
|  | /* If excess == 0, no tree ops */ | 
|  | __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess); | 
|  | spin_unlock(&mctz->lock); | 
|  | css_put(&mz->mem->css); | 
|  | loop++; | 
|  | /* | 
|  | * Could not reclaim anything and there are no more | 
|  | * mem cgroups to try or we seem to be looping without | 
|  | * reclaiming anything. | 
|  | */ | 
|  | if (!nr_reclaimed && | 
|  | (next_mz == NULL || | 
|  | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | 
|  | break; | 
|  | } while (!nr_reclaimed); | 
|  | if (next_mz) | 
|  | css_put(&next_mz->mem->css); | 
|  | return nr_reclaimed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine traverse page_cgroup in given list and drop them all. | 
|  | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. | 
|  | */ | 
|  | static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, | 
|  | int node, int zid, enum lru_list lru) | 
|  | { | 
|  | struct zone *zone; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | struct page_cgroup *pc, *busy; | 
|  | unsigned long flags, loop; | 
|  | struct list_head *list; | 
|  | int ret = 0; | 
|  |  | 
|  | zone = &NODE_DATA(node)->node_zones[zid]; | 
|  | mz = mem_cgroup_zoneinfo(mem, node, zid); | 
|  | list = &mz->lists[lru]; | 
|  |  | 
|  | loop = MEM_CGROUP_ZSTAT(mz, lru); | 
|  | /* give some margin against EBUSY etc...*/ | 
|  | loop += 256; | 
|  | busy = NULL; | 
|  | while (loop--) { | 
|  | ret = 0; | 
|  | spin_lock_irqsave(&zone->lru_lock, flags); | 
|  | if (list_empty(list)) { | 
|  | spin_unlock_irqrestore(&zone->lru_lock, flags); | 
|  | break; | 
|  | } | 
|  | pc = list_entry(list->prev, struct page_cgroup, lru); | 
|  | if (busy == pc) { | 
|  | list_move(&pc->lru, list); | 
|  | busy = NULL; | 
|  | spin_unlock_irqrestore(&zone->lru_lock, flags); | 
|  | continue; | 
|  | } | 
|  | spin_unlock_irqrestore(&zone->lru_lock, flags); | 
|  |  | 
|  | ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); | 
|  | if (ret == -ENOMEM) | 
|  | break; | 
|  |  | 
|  | if (ret == -EBUSY || ret == -EINVAL) { | 
|  | /* found lock contention or "pc" is obsolete. */ | 
|  | busy = pc; | 
|  | cond_resched(); | 
|  | } else | 
|  | busy = NULL; | 
|  | } | 
|  |  | 
|  | if (!ret && !list_empty(list)) | 
|  | return -EBUSY; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * make mem_cgroup's charge to be 0 if there is no task. | 
|  | * This enables deleting this mem_cgroup. | 
|  | */ | 
|  | static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) | 
|  | { | 
|  | int ret; | 
|  | int node, zid, shrink; | 
|  | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
|  | struct cgroup *cgrp = mem->css.cgroup; | 
|  |  | 
|  | css_get(&mem->css); | 
|  |  | 
|  | shrink = 0; | 
|  | /* should free all ? */ | 
|  | if (free_all) | 
|  | goto try_to_free; | 
|  | move_account: | 
|  | do { | 
|  | ret = -EBUSY; | 
|  | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) | 
|  | goto out; | 
|  | ret = -EINTR; | 
|  | if (signal_pending(current)) | 
|  | goto out; | 
|  | /* This is for making all *used* pages to be on LRU. */ | 
|  | lru_add_drain_all(); | 
|  | drain_all_stock_sync(); | 
|  | ret = 0; | 
|  | for_each_node_state(node, N_HIGH_MEMORY) { | 
|  | for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { | 
|  | enum lru_list l; | 
|  | for_each_lru(l) { | 
|  | ret = mem_cgroup_force_empty_list(mem, | 
|  | node, zid, l); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | memcg_oom_recover(mem); | 
|  | /* it seems parent cgroup doesn't have enough mem */ | 
|  | if (ret == -ENOMEM) | 
|  | goto try_to_free; | 
|  | cond_resched(); | 
|  | /* "ret" should also be checked to ensure all lists are empty. */ | 
|  | } while (mem->res.usage > 0 || ret); | 
|  | out: | 
|  | css_put(&mem->css); | 
|  | return ret; | 
|  |  | 
|  | try_to_free: | 
|  | /* returns EBUSY if there is a task or if we come here twice. */ | 
|  | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { | 
|  | ret = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  | /* we call try-to-free pages for make this cgroup empty */ | 
|  | lru_add_drain_all(); | 
|  | /* try to free all pages in this cgroup */ | 
|  | shrink = 1; | 
|  | while (nr_retries && mem->res.usage > 0) { | 
|  | int progress; | 
|  |  | 
|  | if (signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | goto out; | 
|  | } | 
|  | progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, | 
|  | false, get_swappiness(mem)); | 
|  | if (!progress) { | 
|  | nr_retries--; | 
|  | /* maybe some writeback is necessary */ | 
|  | congestion_wait(BLK_RW_ASYNC, HZ/10); | 
|  | } | 
|  |  | 
|  | } | 
|  | lru_add_drain(); | 
|  | /* try move_account...there may be some *locked* pages. */ | 
|  | goto move_account; | 
|  | } | 
|  |  | 
|  | int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) | 
|  | { | 
|  | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); | 
|  | } | 
|  |  | 
|  |  | 
|  | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) | 
|  | { | 
|  | return mem_cgroup_from_cont(cont)->use_hierarchy; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, | 
|  | u64 val) | 
|  | { | 
|  | int retval = 0; | 
|  | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 
|  | struct cgroup *parent = cont->parent; | 
|  | struct mem_cgroup *parent_mem = NULL; | 
|  |  | 
|  | if (parent) | 
|  | parent_mem = mem_cgroup_from_cont(parent); | 
|  |  | 
|  | cgroup_lock(); | 
|  | /* | 
|  | * If parent's use_hierarchy is set, we can't make any modifications | 
|  | * in the child subtrees. If it is unset, then the change can | 
|  | * occur, provided the current cgroup has no children. | 
|  | * | 
|  | * For the root cgroup, parent_mem is NULL, we allow value to be | 
|  | * set if there are no children. | 
|  | */ | 
|  | if ((!parent_mem || !parent_mem->use_hierarchy) && | 
|  | (val == 1 || val == 0)) { | 
|  | if (list_empty(&cont->children)) | 
|  | mem->use_hierarchy = val; | 
|  | else | 
|  | retval = -EBUSY; | 
|  | } else | 
|  | retval = -EINVAL; | 
|  | cgroup_unlock(); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | struct mem_cgroup_idx_data { | 
|  | s64 val; | 
|  | enum mem_cgroup_stat_index idx; | 
|  | }; | 
|  |  | 
|  | static int | 
|  | mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data) | 
|  | { | 
|  | struct mem_cgroup_idx_data *d = data; | 
|  | d->val += mem_cgroup_read_stat(mem, d->idx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem, | 
|  | enum mem_cgroup_stat_index idx, s64 *val) | 
|  | { | 
|  | struct mem_cgroup_idx_data d; | 
|  | d.idx = idx; | 
|  | d.val = 0; | 
|  | mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat); | 
|  | *val = d.val; | 
|  | } | 
|  |  | 
|  | static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap) | 
|  | { | 
|  | u64 idx_val, val; | 
|  |  | 
|  | if (!mem_cgroup_is_root(mem)) { | 
|  | if (!swap) | 
|  | return res_counter_read_u64(&mem->res, RES_USAGE); | 
|  | else | 
|  | return res_counter_read_u64(&mem->memsw, RES_USAGE); | 
|  | } | 
|  |  | 
|  | mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val); | 
|  | val = idx_val; | 
|  | mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val); | 
|  | val += idx_val; | 
|  |  | 
|  | if (swap) { | 
|  | mem_cgroup_get_recursive_idx_stat(mem, | 
|  | MEM_CGROUP_STAT_SWAPOUT, &idx_val); | 
|  | val += idx_val; | 
|  | } | 
|  |  | 
|  | return val << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) | 
|  | { | 
|  | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 
|  | u64 val; | 
|  | int type, name; | 
|  |  | 
|  | type = MEMFILE_TYPE(cft->private); | 
|  | name = MEMFILE_ATTR(cft->private); | 
|  | switch (type) { | 
|  | case _MEM: | 
|  | if (name == RES_USAGE) | 
|  | val = mem_cgroup_usage(mem, false); | 
|  | else | 
|  | val = res_counter_read_u64(&mem->res, name); | 
|  | break; | 
|  | case _MEMSWAP: | 
|  | if (name == RES_USAGE) | 
|  | val = mem_cgroup_usage(mem, true); | 
|  | else | 
|  | val = res_counter_read_u64(&mem->memsw, name); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  | return val; | 
|  | } | 
|  | /* | 
|  | * The user of this function is... | 
|  | * RES_LIMIT. | 
|  | */ | 
|  | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | 
|  | const char *buffer) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 
|  | int type, name; | 
|  | unsigned long long val; | 
|  | int ret; | 
|  |  | 
|  | type = MEMFILE_TYPE(cft->private); | 
|  | name = MEMFILE_ATTR(cft->private); | 
|  | switch (name) { | 
|  | case RES_LIMIT: | 
|  | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | /* This function does all necessary parse...reuse it */ | 
|  | ret = res_counter_memparse_write_strategy(buffer, &val); | 
|  | if (ret) | 
|  | break; | 
|  | if (type == _MEM) | 
|  | ret = mem_cgroup_resize_limit(memcg, val); | 
|  | else | 
|  | ret = mem_cgroup_resize_memsw_limit(memcg, val); | 
|  | break; | 
|  | case RES_SOFT_LIMIT: | 
|  | ret = res_counter_memparse_write_strategy(buffer, &val); | 
|  | if (ret) | 
|  | break; | 
|  | /* | 
|  | * For memsw, soft limits are hard to implement in terms | 
|  | * of semantics, for now, we support soft limits for | 
|  | * control without swap | 
|  | */ | 
|  | if (type == _MEM) | 
|  | ret = res_counter_set_soft_limit(&memcg->res, val); | 
|  | else | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; /* should be BUG() ? */ | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, | 
|  | unsigned long long *mem_limit, unsigned long long *memsw_limit) | 
|  | { | 
|  | struct cgroup *cgroup; | 
|  | unsigned long long min_limit, min_memsw_limit, tmp; | 
|  |  | 
|  | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | 
|  | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 
|  | cgroup = memcg->css.cgroup; | 
|  | if (!memcg->use_hierarchy) | 
|  | goto out; | 
|  |  | 
|  | while (cgroup->parent) { | 
|  | cgroup = cgroup->parent; | 
|  | memcg = mem_cgroup_from_cont(cgroup); | 
|  | if (!memcg->use_hierarchy) | 
|  | break; | 
|  | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); | 
|  | min_limit = min(min_limit, tmp); | 
|  | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 
|  | min_memsw_limit = min(min_memsw_limit, tmp); | 
|  | } | 
|  | out: | 
|  | *mem_limit = min_limit; | 
|  | *memsw_limit = min_memsw_limit; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) | 
|  | { | 
|  | struct mem_cgroup *mem; | 
|  | int type, name; | 
|  |  | 
|  | mem = mem_cgroup_from_cont(cont); | 
|  | type = MEMFILE_TYPE(event); | 
|  | name = MEMFILE_ATTR(event); | 
|  | switch (name) { | 
|  | case RES_MAX_USAGE: | 
|  | if (type == _MEM) | 
|  | res_counter_reset_max(&mem->res); | 
|  | else | 
|  | res_counter_reset_max(&mem->memsw); | 
|  | break; | 
|  | case RES_FAILCNT: | 
|  | if (type == _MEM) | 
|  | res_counter_reset_failcnt(&mem->res); | 
|  | else | 
|  | res_counter_reset_failcnt(&mem->memsw); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); | 
|  |  | 
|  | if (val >= (1 << NR_MOVE_TYPE)) | 
|  | return -EINVAL; | 
|  | /* | 
|  | * We check this value several times in both in can_attach() and | 
|  | * attach(), so we need cgroup lock to prevent this value from being | 
|  | * inconsistent. | 
|  | */ | 
|  | cgroup_lock(); | 
|  | mem->move_charge_at_immigrate = val; | 
|  | cgroup_unlock(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* For read statistics */ | 
|  | enum { | 
|  | MCS_CACHE, | 
|  | MCS_RSS, | 
|  | MCS_FILE_MAPPED, | 
|  | MCS_PGPGIN, | 
|  | MCS_PGPGOUT, | 
|  | MCS_SWAP, | 
|  | MCS_INACTIVE_ANON, | 
|  | MCS_ACTIVE_ANON, | 
|  | MCS_INACTIVE_FILE, | 
|  | MCS_ACTIVE_FILE, | 
|  | MCS_UNEVICTABLE, | 
|  | NR_MCS_STAT, | 
|  | }; | 
|  |  | 
|  | struct mcs_total_stat { | 
|  | s64 stat[NR_MCS_STAT]; | 
|  | }; | 
|  |  | 
|  | struct { | 
|  | char *local_name; | 
|  | char *total_name; | 
|  | } memcg_stat_strings[NR_MCS_STAT] = { | 
|  | {"cache", "total_cache"}, | 
|  | {"rss", "total_rss"}, | 
|  | {"mapped_file", "total_mapped_file"}, | 
|  | {"pgpgin", "total_pgpgin"}, | 
|  | {"pgpgout", "total_pgpgout"}, | 
|  | {"swap", "total_swap"}, | 
|  | {"inactive_anon", "total_inactive_anon"}, | 
|  | {"active_anon", "total_active_anon"}, | 
|  | {"inactive_file", "total_inactive_file"}, | 
|  | {"active_file", "total_active_file"}, | 
|  | {"unevictable", "total_unevictable"} | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data) | 
|  | { | 
|  | struct mcs_total_stat *s = data; | 
|  | s64 val; | 
|  |  | 
|  | /* per cpu stat */ | 
|  | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); | 
|  | s->stat[MCS_CACHE] += val * PAGE_SIZE; | 
|  | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); | 
|  | s->stat[MCS_RSS] += val * PAGE_SIZE; | 
|  | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED); | 
|  | s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; | 
|  | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT); | 
|  | s->stat[MCS_PGPGIN] += val; | 
|  | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT); | 
|  | s->stat[MCS_PGPGOUT] += val; | 
|  | if (do_swap_account) { | 
|  | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT); | 
|  | s->stat[MCS_SWAP] += val * PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /* per zone stat */ | 
|  | val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); | 
|  | s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; | 
|  | val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); | 
|  | s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; | 
|  | val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); | 
|  | s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; | 
|  | val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); | 
|  | s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; | 
|  | val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); | 
|  | s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) | 
|  | { | 
|  | mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat); | 
|  | } | 
|  |  | 
|  | static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, | 
|  | struct cgroup_map_cb *cb) | 
|  | { | 
|  | struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); | 
|  | struct mcs_total_stat mystat; | 
|  | int i; | 
|  |  | 
|  | memset(&mystat, 0, sizeof(mystat)); | 
|  | mem_cgroup_get_local_stat(mem_cont, &mystat); | 
|  |  | 
|  | for (i = 0; i < NR_MCS_STAT; i++) { | 
|  | if (i == MCS_SWAP && !do_swap_account) | 
|  | continue; | 
|  | cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); | 
|  | } | 
|  |  | 
|  | /* Hierarchical information */ | 
|  | { | 
|  | unsigned long long limit, memsw_limit; | 
|  | memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); | 
|  | cb->fill(cb, "hierarchical_memory_limit", limit); | 
|  | if (do_swap_account) | 
|  | cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); | 
|  | } | 
|  |  | 
|  | memset(&mystat, 0, sizeof(mystat)); | 
|  | mem_cgroup_get_total_stat(mem_cont, &mystat); | 
|  | for (i = 0; i < NR_MCS_STAT; i++) { | 
|  | if (i == MCS_SWAP && !do_swap_account) | 
|  | continue; | 
|  | cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); | 
|  |  | 
|  | { | 
|  | int nid, zid; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | unsigned long recent_rotated[2] = {0, 0}; | 
|  | unsigned long recent_scanned[2] = {0, 0}; | 
|  |  | 
|  | for_each_online_node(nid) | 
|  | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
|  | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | 
|  |  | 
|  | recent_rotated[0] += | 
|  | mz->reclaim_stat.recent_rotated[0]; | 
|  | recent_rotated[1] += | 
|  | mz->reclaim_stat.recent_rotated[1]; | 
|  | recent_scanned[0] += | 
|  | mz->reclaim_stat.recent_scanned[0]; | 
|  | recent_scanned[1] += | 
|  | mz->reclaim_stat.recent_scanned[1]; | 
|  | } | 
|  | cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); | 
|  | cb->fill(cb, "recent_rotated_file", recent_rotated[1]); | 
|  | cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); | 
|  | cb->fill(cb, "recent_scanned_file", recent_scanned[1]); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
|  |  | 
|  | return get_swappiness(memcg); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, | 
|  | u64 val) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
|  | struct mem_cgroup *parent; | 
|  |  | 
|  | if (val > 100) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (cgrp->parent == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | parent = mem_cgroup_from_cont(cgrp->parent); | 
|  |  | 
|  | cgroup_lock(); | 
|  |  | 
|  | /* If under hierarchy, only empty-root can set this value */ | 
|  | if ((parent->use_hierarchy) || | 
|  | (memcg->use_hierarchy && !list_empty(&cgrp->children))) { | 
|  | cgroup_unlock(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_lock(&memcg->reclaim_param_lock); | 
|  | memcg->swappiness = val; | 
|  | spin_unlock(&memcg->reclaim_param_lock); | 
|  |  | 
|  | cgroup_unlock(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) | 
|  | { | 
|  | struct mem_cgroup_threshold_ary *t; | 
|  | u64 usage; | 
|  | int i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (!swap) | 
|  | t = rcu_dereference(memcg->thresholds.primary); | 
|  | else | 
|  | t = rcu_dereference(memcg->memsw_thresholds.primary); | 
|  |  | 
|  | if (!t) | 
|  | goto unlock; | 
|  |  | 
|  | usage = mem_cgroup_usage(memcg, swap); | 
|  |  | 
|  | /* | 
|  | * current_threshold points to threshold just below usage. | 
|  | * If it's not true, a threshold was crossed after last | 
|  | * call of __mem_cgroup_threshold(). | 
|  | */ | 
|  | i = t->current_threshold; | 
|  |  | 
|  | /* | 
|  | * Iterate backward over array of thresholds starting from | 
|  | * current_threshold and check if a threshold is crossed. | 
|  | * If none of thresholds below usage is crossed, we read | 
|  | * only one element of the array here. | 
|  | */ | 
|  | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | 
|  | eventfd_signal(t->entries[i].eventfd, 1); | 
|  |  | 
|  | /* i = current_threshold + 1 */ | 
|  | i++; | 
|  |  | 
|  | /* | 
|  | * Iterate forward over array of thresholds starting from | 
|  | * current_threshold+1 and check if a threshold is crossed. | 
|  | * If none of thresholds above usage is crossed, we read | 
|  | * only one element of the array here. | 
|  | */ | 
|  | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | 
|  | eventfd_signal(t->entries[i].eventfd, 1); | 
|  |  | 
|  | /* Update current_threshold */ | 
|  | t->current_threshold = i - 1; | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | 
|  | { | 
|  | __mem_cgroup_threshold(memcg, false); | 
|  | if (do_swap_account) | 
|  | __mem_cgroup_threshold(memcg, true); | 
|  | } | 
|  |  | 
|  | static int compare_thresholds(const void *a, const void *b) | 
|  | { | 
|  | const struct mem_cgroup_threshold *_a = a; | 
|  | const struct mem_cgroup_threshold *_b = b; | 
|  |  | 
|  | return _a->threshold - _b->threshold; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data) | 
|  | { | 
|  | struct mem_cgroup_eventfd_list *ev; | 
|  |  | 
|  | list_for_each_entry(ev, &mem->oom_notify, list) | 
|  | eventfd_signal(ev->eventfd, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_oom_notify(struct mem_cgroup *mem) | 
|  | { | 
|  | mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_usage_register_event(struct cgroup *cgrp, | 
|  | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
|  | struct mem_cgroup_thresholds *thresholds; | 
|  | struct mem_cgroup_threshold_ary *new; | 
|  | int type = MEMFILE_TYPE(cft->private); | 
|  | u64 threshold, usage; | 
|  | int i, size, ret; | 
|  |  | 
|  | ret = res_counter_memparse_write_strategy(args, &threshold); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mutex_lock(&memcg->thresholds_lock); | 
|  |  | 
|  | if (type == _MEM) | 
|  | thresholds = &memcg->thresholds; | 
|  | else if (type == _MEMSWAP) | 
|  | thresholds = &memcg->memsw_thresholds; | 
|  | else | 
|  | BUG(); | 
|  |  | 
|  | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); | 
|  |  | 
|  | /* Check if a threshold crossed before adding a new one */ | 
|  | if (thresholds->primary) | 
|  | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
|  |  | 
|  | size = thresholds->primary ? thresholds->primary->size + 1 : 1; | 
|  |  | 
|  | /* Allocate memory for new array of thresholds */ | 
|  | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), | 
|  | GFP_KERNEL); | 
|  | if (!new) { | 
|  | ret = -ENOMEM; | 
|  | goto unlock; | 
|  | } | 
|  | new->size = size; | 
|  |  | 
|  | /* Copy thresholds (if any) to new array */ | 
|  | if (thresholds->primary) { | 
|  | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | 
|  | sizeof(struct mem_cgroup_threshold)); | 
|  | } | 
|  |  | 
|  | /* Add new threshold */ | 
|  | new->entries[size - 1].eventfd = eventfd; | 
|  | new->entries[size - 1].threshold = threshold; | 
|  |  | 
|  | /* Sort thresholds. Registering of new threshold isn't time-critical */ | 
|  | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), | 
|  | compare_thresholds, NULL); | 
|  |  | 
|  | /* Find current threshold */ | 
|  | new->current_threshold = -1; | 
|  | for (i = 0; i < size; i++) { | 
|  | if (new->entries[i].threshold < usage) { | 
|  | /* | 
|  | * new->current_threshold will not be used until | 
|  | * rcu_assign_pointer(), so it's safe to increment | 
|  | * it here. | 
|  | */ | 
|  | ++new->current_threshold; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Free old spare buffer and save old primary buffer as spare */ | 
|  | kfree(thresholds->spare); | 
|  | thresholds->spare = thresholds->primary; | 
|  |  | 
|  | rcu_assign_pointer(thresholds->primary, new); | 
|  |  | 
|  | /* To be sure that nobody uses thresholds */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | unlock: | 
|  | mutex_unlock(&memcg->thresholds_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, | 
|  | struct cftype *cft, struct eventfd_ctx *eventfd) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
|  | struct mem_cgroup_thresholds *thresholds; | 
|  | struct mem_cgroup_threshold_ary *new; | 
|  | int type = MEMFILE_TYPE(cft->private); | 
|  | u64 usage; | 
|  | int i, j, size; | 
|  |  | 
|  | mutex_lock(&memcg->thresholds_lock); | 
|  | if (type == _MEM) | 
|  | thresholds = &memcg->thresholds; | 
|  | else if (type == _MEMSWAP) | 
|  | thresholds = &memcg->memsw_thresholds; | 
|  | else | 
|  | BUG(); | 
|  |  | 
|  | /* | 
|  | * Something went wrong if we trying to unregister a threshold | 
|  | * if we don't have thresholds | 
|  | */ | 
|  | BUG_ON(!thresholds); | 
|  |  | 
|  | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); | 
|  |  | 
|  | /* Check if a threshold crossed before removing */ | 
|  | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
|  |  | 
|  | /* Calculate new number of threshold */ | 
|  | size = 0; | 
|  | for (i = 0; i < thresholds->primary->size; i++) { | 
|  | if (thresholds->primary->entries[i].eventfd != eventfd) | 
|  | size++; | 
|  | } | 
|  |  | 
|  | new = thresholds->spare; | 
|  |  | 
|  | /* Set thresholds array to NULL if we don't have thresholds */ | 
|  | if (!size) { | 
|  | kfree(new); | 
|  | new = NULL; | 
|  | goto swap_buffers; | 
|  | } | 
|  |  | 
|  | new->size = size; | 
|  |  | 
|  | /* Copy thresholds and find current threshold */ | 
|  | new->current_threshold = -1; | 
|  | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | 
|  | if (thresholds->primary->entries[i].eventfd == eventfd) | 
|  | continue; | 
|  |  | 
|  | new->entries[j] = thresholds->primary->entries[i]; | 
|  | if (new->entries[j].threshold < usage) { | 
|  | /* | 
|  | * new->current_threshold will not be used | 
|  | * until rcu_assign_pointer(), so it's safe to increment | 
|  | * it here. | 
|  | */ | 
|  | ++new->current_threshold; | 
|  | } | 
|  | j++; | 
|  | } | 
|  |  | 
|  | swap_buffers: | 
|  | /* Swap primary and spare array */ | 
|  | thresholds->spare = thresholds->primary; | 
|  | rcu_assign_pointer(thresholds->primary, new); | 
|  |  | 
|  | /* To be sure that nobody uses thresholds */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | mutex_unlock(&memcg->thresholds_lock); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_register_event(struct cgroup *cgrp, | 
|  | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
|  | struct mem_cgroup_eventfd_list *event; | 
|  | int type = MEMFILE_TYPE(cft->private); | 
|  |  | 
|  | BUG_ON(type != _OOM_TYPE); | 
|  | event = kmalloc(sizeof(*event),	GFP_KERNEL); | 
|  | if (!event) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mutex_lock(&memcg_oom_mutex); | 
|  |  | 
|  | event->eventfd = eventfd; | 
|  | list_add(&event->list, &memcg->oom_notify); | 
|  |  | 
|  | /* already in OOM ? */ | 
|  | if (atomic_read(&memcg->oom_lock)) | 
|  | eventfd_signal(eventfd, 1); | 
|  | mutex_unlock(&memcg_oom_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, | 
|  | struct cftype *cft, struct eventfd_ctx *eventfd) | 
|  | { | 
|  | struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); | 
|  | struct mem_cgroup_eventfd_list *ev, *tmp; | 
|  | int type = MEMFILE_TYPE(cft->private); | 
|  |  | 
|  | BUG_ON(type != _OOM_TYPE); | 
|  |  | 
|  | mutex_lock(&memcg_oom_mutex); | 
|  |  | 
|  | list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) { | 
|  | if (ev->eventfd == eventfd) { | 
|  | list_del(&ev->list); | 
|  | kfree(ev); | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&memcg_oom_mutex); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_control_read(struct cgroup *cgrp, | 
|  | struct cftype *cft,  struct cgroup_map_cb *cb) | 
|  | { | 
|  | struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); | 
|  |  | 
|  | cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable); | 
|  |  | 
|  | if (atomic_read(&mem->oom_lock)) | 
|  | cb->fill(cb, "under_oom", 1); | 
|  | else | 
|  | cb->fill(cb, "under_oom", 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, | 
|  | struct cftype *cft, u64 val) | 
|  | { | 
|  | struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); | 
|  | struct mem_cgroup *parent; | 
|  |  | 
|  | /* cannot set to root cgroup and only 0 and 1 are allowed */ | 
|  | if (!cgrp->parent || !((val == 0) || (val == 1))) | 
|  | return -EINVAL; | 
|  |  | 
|  | parent = mem_cgroup_from_cont(cgrp->parent); | 
|  |  | 
|  | cgroup_lock(); | 
|  | /* oom-kill-disable is a flag for subhierarchy. */ | 
|  | if ((parent->use_hierarchy) || | 
|  | (mem->use_hierarchy && !list_empty(&cgrp->children))) { | 
|  | cgroup_unlock(); | 
|  | return -EINVAL; | 
|  | } | 
|  | mem->oom_kill_disable = val; | 
|  | if (!val) | 
|  | memcg_oom_recover(mem); | 
|  | cgroup_unlock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cftype mem_cgroup_files[] = { | 
|  | { | 
|  | .name = "usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), | 
|  | .read_u64 = mem_cgroup_read, | 
|  | .register_event = mem_cgroup_usage_register_event, | 
|  | .unregister_event = mem_cgroup_usage_unregister_event, | 
|  | }, | 
|  | { | 
|  | .name = "max_usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), | 
|  | .trigger = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read, | 
|  | }, | 
|  | { | 
|  | .name = "limit_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), | 
|  | .write_string = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read, | 
|  | }, | 
|  | { | 
|  | .name = "soft_limit_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | 
|  | .write_string = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read, | 
|  | }, | 
|  | { | 
|  | .name = "failcnt", | 
|  | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), | 
|  | .trigger = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read, | 
|  | }, | 
|  | { | 
|  | .name = "stat", | 
|  | .read_map = mem_control_stat_show, | 
|  | }, | 
|  | { | 
|  | .name = "force_empty", | 
|  | .trigger = mem_cgroup_force_empty_write, | 
|  | }, | 
|  | { | 
|  | .name = "use_hierarchy", | 
|  | .write_u64 = mem_cgroup_hierarchy_write, | 
|  | .read_u64 = mem_cgroup_hierarchy_read, | 
|  | }, | 
|  | { | 
|  | .name = "swappiness", | 
|  | .read_u64 = mem_cgroup_swappiness_read, | 
|  | .write_u64 = mem_cgroup_swappiness_write, | 
|  | }, | 
|  | { | 
|  | .name = "move_charge_at_immigrate", | 
|  | .read_u64 = mem_cgroup_move_charge_read, | 
|  | .write_u64 = mem_cgroup_move_charge_write, | 
|  | }, | 
|  | { | 
|  | .name = "oom_control", | 
|  | .read_map = mem_cgroup_oom_control_read, | 
|  | .write_u64 = mem_cgroup_oom_control_write, | 
|  | .register_event = mem_cgroup_oom_register_event, | 
|  | .unregister_event = mem_cgroup_oom_unregister_event, | 
|  | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | 
|  | }, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 
|  | static struct cftype memsw_cgroup_files[] = { | 
|  | { | 
|  | .name = "memsw.usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | 
|  | .read_u64 = mem_cgroup_read, | 
|  | .register_event = mem_cgroup_usage_register_event, | 
|  | .unregister_event = mem_cgroup_usage_unregister_event, | 
|  | }, | 
|  | { | 
|  | .name = "memsw.max_usage_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | 
|  | .trigger = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read, | 
|  | }, | 
|  | { | 
|  | .name = "memsw.limit_in_bytes", | 
|  | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | 
|  | .write_string = mem_cgroup_write, | 
|  | .read_u64 = mem_cgroup_read, | 
|  | }, | 
|  | { | 
|  | .name = "memsw.failcnt", | 
|  | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | 
|  | .trigger = mem_cgroup_reset, | 
|  | .read_u64 = mem_cgroup_read, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | 
|  | { | 
|  | if (!do_swap_account) | 
|  | return 0; | 
|  | return cgroup_add_files(cont, ss, memsw_cgroup_files, | 
|  | ARRAY_SIZE(memsw_cgroup_files)); | 
|  | }; | 
|  | #else | 
|  | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | 
|  | { | 
|  | struct mem_cgroup_per_node *pn; | 
|  | struct mem_cgroup_per_zone *mz; | 
|  | enum lru_list l; | 
|  | int zone, tmp = node; | 
|  | /* | 
|  | * This routine is called against possible nodes. | 
|  | * But it's BUG to call kmalloc() against offline node. | 
|  | * | 
|  | * TODO: this routine can waste much memory for nodes which will | 
|  | *       never be onlined. It's better to use memory hotplug callback | 
|  | *       function. | 
|  | */ | 
|  | if (!node_state(node, N_NORMAL_MEMORY)) | 
|  | tmp = -1; | 
|  | pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | 
|  | if (!pn) | 
|  | return 1; | 
|  |  | 
|  | mem->info.nodeinfo[node] = pn; | 
|  | memset(pn, 0, sizeof(*pn)); | 
|  |  | 
|  | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
|  | mz = &pn->zoneinfo[zone]; | 
|  | for_each_lru(l) | 
|  | INIT_LIST_HEAD(&mz->lists[l]); | 
|  | mz->usage_in_excess = 0; | 
|  | mz->on_tree = false; | 
|  | mz->mem = mem; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | 
|  | { | 
|  | kfree(mem->info.nodeinfo[node]); | 
|  | } | 
|  |  | 
|  | static struct mem_cgroup *mem_cgroup_alloc(void) | 
|  | { | 
|  | struct mem_cgroup *mem; | 
|  | int size = sizeof(struct mem_cgroup); | 
|  |  | 
|  | /* Can be very big if MAX_NUMNODES is very big */ | 
|  | if (size < PAGE_SIZE) | 
|  | mem = kmalloc(size, GFP_KERNEL); | 
|  | else | 
|  | mem = vmalloc(size); | 
|  |  | 
|  | if (!mem) | 
|  | return NULL; | 
|  |  | 
|  | memset(mem, 0, size); | 
|  | mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu); | 
|  | if (!mem->stat) { | 
|  | if (size < PAGE_SIZE) | 
|  | kfree(mem); | 
|  | else | 
|  | vfree(mem); | 
|  | mem = NULL; | 
|  | } | 
|  | return mem; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At destroying mem_cgroup, references from swap_cgroup can remain. | 
|  | * (scanning all at force_empty is too costly...) | 
|  | * | 
|  | * Instead of clearing all references at force_empty, we remember | 
|  | * the number of reference from swap_cgroup and free mem_cgroup when | 
|  | * it goes down to 0. | 
|  | * | 
|  | * Removal of cgroup itself succeeds regardless of refs from swap. | 
|  | */ | 
|  |  | 
|  | static void __mem_cgroup_free(struct mem_cgroup *mem) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | mem_cgroup_remove_from_trees(mem); | 
|  | free_css_id(&mem_cgroup_subsys, &mem->css); | 
|  |  | 
|  | for_each_node_state(node, N_POSSIBLE) | 
|  | free_mem_cgroup_per_zone_info(mem, node); | 
|  |  | 
|  | free_percpu(mem->stat); | 
|  | if (sizeof(struct mem_cgroup) < PAGE_SIZE) | 
|  | kfree(mem); | 
|  | else | 
|  | vfree(mem); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_get(struct mem_cgroup *mem) | 
|  | { | 
|  | atomic_inc(&mem->refcnt); | 
|  | } | 
|  |  | 
|  | static void __mem_cgroup_put(struct mem_cgroup *mem, int count) | 
|  | { | 
|  | if (atomic_sub_and_test(count, &mem->refcnt)) { | 
|  | struct mem_cgroup *parent = parent_mem_cgroup(mem); | 
|  | __mem_cgroup_free(mem); | 
|  | if (parent) | 
|  | mem_cgroup_put(parent); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_put(struct mem_cgroup *mem) | 
|  | { | 
|  | __mem_cgroup_put(mem, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. | 
|  | */ | 
|  | static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) | 
|  | { | 
|  | if (!mem->res.parent) | 
|  | return NULL; | 
|  | return mem_cgroup_from_res_counter(mem->res.parent, res); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 
|  | static void __init enable_swap_cgroup(void) | 
|  | { | 
|  | if (!mem_cgroup_disabled() && really_do_swap_account) | 
|  | do_swap_account = 1; | 
|  | } | 
|  | #else | 
|  | static void __init enable_swap_cgroup(void) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int mem_cgroup_soft_limit_tree_init(void) | 
|  | { | 
|  | struct mem_cgroup_tree_per_node *rtpn; | 
|  | struct mem_cgroup_tree_per_zone *rtpz; | 
|  | int tmp, node, zone; | 
|  |  | 
|  | for_each_node_state(node, N_POSSIBLE) { | 
|  | tmp = node; | 
|  | if (!node_state(node, N_NORMAL_MEMORY)) | 
|  | tmp = -1; | 
|  | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); | 
|  | if (!rtpn) | 
|  | return 1; | 
|  |  | 
|  | soft_limit_tree.rb_tree_per_node[node] = rtpn; | 
|  |  | 
|  | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
|  | rtpz = &rtpn->rb_tree_per_zone[zone]; | 
|  | rtpz->rb_root = RB_ROOT; | 
|  | spin_lock_init(&rtpz->lock); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cgroup_subsys_state * __ref | 
|  | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | 
|  | { | 
|  | struct mem_cgroup *mem, *parent; | 
|  | long error = -ENOMEM; | 
|  | int node; | 
|  |  | 
|  | mem = mem_cgroup_alloc(); | 
|  | if (!mem) | 
|  | return ERR_PTR(error); | 
|  |  | 
|  | for_each_node_state(node, N_POSSIBLE) | 
|  | if (alloc_mem_cgroup_per_zone_info(mem, node)) | 
|  | goto free_out; | 
|  |  | 
|  | /* root ? */ | 
|  | if (cont->parent == NULL) { | 
|  | int cpu; | 
|  | enable_swap_cgroup(); | 
|  | parent = NULL; | 
|  | root_mem_cgroup = mem; | 
|  | if (mem_cgroup_soft_limit_tree_init()) | 
|  | goto free_out; | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct memcg_stock_pcp *stock = | 
|  | &per_cpu(memcg_stock, cpu); | 
|  | INIT_WORK(&stock->work, drain_local_stock); | 
|  | } | 
|  | hotcpu_notifier(memcg_stock_cpu_callback, 0); | 
|  | } else { | 
|  | parent = mem_cgroup_from_cont(cont->parent); | 
|  | mem->use_hierarchy = parent->use_hierarchy; | 
|  | mem->oom_kill_disable = parent->oom_kill_disable; | 
|  | } | 
|  |  | 
|  | if (parent && parent->use_hierarchy) { | 
|  | res_counter_init(&mem->res, &parent->res); | 
|  | res_counter_init(&mem->memsw, &parent->memsw); | 
|  | /* | 
|  | * We increment refcnt of the parent to ensure that we can | 
|  | * safely access it on res_counter_charge/uncharge. | 
|  | * This refcnt will be decremented when freeing this | 
|  | * mem_cgroup(see mem_cgroup_put). | 
|  | */ | 
|  | mem_cgroup_get(parent); | 
|  | } else { | 
|  | res_counter_init(&mem->res, NULL); | 
|  | res_counter_init(&mem->memsw, NULL); | 
|  | } | 
|  | mem->last_scanned_child = 0; | 
|  | spin_lock_init(&mem->reclaim_param_lock); | 
|  | INIT_LIST_HEAD(&mem->oom_notify); | 
|  |  | 
|  | if (parent) | 
|  | mem->swappiness = get_swappiness(parent); | 
|  | atomic_set(&mem->refcnt, 1); | 
|  | mem->move_charge_at_immigrate = 0; | 
|  | mutex_init(&mem->thresholds_lock); | 
|  | return &mem->css; | 
|  | free_out: | 
|  | __mem_cgroup_free(mem); | 
|  | root_mem_cgroup = NULL; | 
|  | return ERR_PTR(error); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, | 
|  | struct cgroup *cont) | 
|  | { | 
|  | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 
|  |  | 
|  | return mem_cgroup_force_empty(mem, false); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_destroy(struct cgroup_subsys *ss, | 
|  | struct cgroup *cont) | 
|  | { | 
|  | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 
|  |  | 
|  | mem_cgroup_put(mem); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_populate(struct cgroup_subsys *ss, | 
|  | struct cgroup *cont) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = cgroup_add_files(cont, ss, mem_cgroup_files, | 
|  | ARRAY_SIZE(mem_cgroup_files)); | 
|  |  | 
|  | if (!ret) | 
|  | ret = register_memsw_files(cont, ss); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | /* Handlers for move charge at task migration. */ | 
|  | #define PRECHARGE_COUNT_AT_ONCE	256 | 
|  | static int mem_cgroup_do_precharge(unsigned long count) | 
|  | { | 
|  | int ret = 0; | 
|  | int batch_count = PRECHARGE_COUNT_AT_ONCE; | 
|  | struct mem_cgroup *mem = mc.to; | 
|  |  | 
|  | if (mem_cgroup_is_root(mem)) { | 
|  | mc.precharge += count; | 
|  | /* we don't need css_get for root */ | 
|  | return ret; | 
|  | } | 
|  | /* try to charge at once */ | 
|  | if (count > 1) { | 
|  | struct res_counter *dummy; | 
|  | /* | 
|  | * "mem" cannot be under rmdir() because we've already checked | 
|  | * by cgroup_lock_live_cgroup() that it is not removed and we | 
|  | * are still under the same cgroup_mutex. So we can postpone | 
|  | * css_get(). | 
|  | */ | 
|  | if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy)) | 
|  | goto one_by_one; | 
|  | if (do_swap_account && res_counter_charge(&mem->memsw, | 
|  | PAGE_SIZE * count, &dummy)) { | 
|  | res_counter_uncharge(&mem->res, PAGE_SIZE * count); | 
|  | goto one_by_one; | 
|  | } | 
|  | mc.precharge += count; | 
|  | return ret; | 
|  | } | 
|  | one_by_one: | 
|  | /* fall back to one by one charge */ | 
|  | while (count--) { | 
|  | if (signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  | if (!batch_count--) { | 
|  | batch_count = PRECHARGE_COUNT_AT_ONCE; | 
|  | cond_resched(); | 
|  | } | 
|  | ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false); | 
|  | if (ret || !mem) | 
|  | /* mem_cgroup_clear_mc() will do uncharge later */ | 
|  | return -ENOMEM; | 
|  | mc.precharge++; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * is_target_pte_for_mc - check a pte whether it is valid for move charge | 
|  | * @vma: the vma the pte to be checked belongs | 
|  | * @addr: the address corresponding to the pte to be checked | 
|  | * @ptent: the pte to be checked | 
|  | * @target: the pointer the target page or swap ent will be stored(can be NULL) | 
|  | * | 
|  | * Returns | 
|  | *   0(MC_TARGET_NONE): if the pte is not a target for move charge. | 
|  | *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | 
|  | *     move charge. if @target is not NULL, the page is stored in target->page | 
|  | *     with extra refcnt got(Callers should handle it). | 
|  | *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a | 
|  | *     target for charge migration. if @target is not NULL, the entry is stored | 
|  | *     in target->ent. | 
|  | * | 
|  | * Called with pte lock held. | 
|  | */ | 
|  | union mc_target { | 
|  | struct page	*page; | 
|  | swp_entry_t	ent; | 
|  | }; | 
|  |  | 
|  | enum mc_target_type { | 
|  | MC_TARGET_NONE,	/* not used */ | 
|  | MC_TARGET_PAGE, | 
|  | MC_TARGET_SWAP, | 
|  | }; | 
|  |  | 
|  | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t ptent) | 
|  | { | 
|  | struct page *page = vm_normal_page(vma, addr, ptent); | 
|  |  | 
|  | if (!page || !page_mapped(page)) | 
|  | return NULL; | 
|  | if (PageAnon(page)) { | 
|  | /* we don't move shared anon */ | 
|  | if (!move_anon() || page_mapcount(page) > 2) | 
|  | return NULL; | 
|  | } else if (!move_file()) | 
|  | /* we ignore mapcount for file pages */ | 
|  | return NULL; | 
|  | if (!get_page_unless_zero(page)) | 
|  | return NULL; | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t ptent, swp_entry_t *entry) | 
|  | { | 
|  | int usage_count; | 
|  | struct page *page = NULL; | 
|  | swp_entry_t ent = pte_to_swp_entry(ptent); | 
|  |  | 
|  | if (!move_anon() || non_swap_entry(ent)) | 
|  | return NULL; | 
|  | usage_count = mem_cgroup_count_swap_user(ent, &page); | 
|  | if (usage_count > 1) { /* we don't move shared anon */ | 
|  | if (page) | 
|  | put_page(page); | 
|  | return NULL; | 
|  | } | 
|  | if (do_swap_account) | 
|  | entry->val = ent.val; | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t ptent, swp_entry_t *entry) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | struct inode *inode; | 
|  | struct address_space *mapping; | 
|  | pgoff_t pgoff; | 
|  |  | 
|  | if (!vma->vm_file) /* anonymous vma */ | 
|  | return NULL; | 
|  | if (!move_file()) | 
|  | return NULL; | 
|  |  | 
|  | inode = vma->vm_file->f_path.dentry->d_inode; | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | if (pte_none(ptent)) | 
|  | pgoff = linear_page_index(vma, addr); | 
|  | else /* pte_file(ptent) is true */ | 
|  | pgoff = pte_to_pgoff(ptent); | 
|  |  | 
|  | /* page is moved even if it's not RSS of this task(page-faulted). */ | 
|  | if (!mapping_cap_swap_backed(mapping)) { /* normal file */ | 
|  | page = find_get_page(mapping, pgoff); | 
|  | } else { /* shmem/tmpfs file. we should take account of swap too. */ | 
|  | swp_entry_t ent; | 
|  | mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent); | 
|  | if (do_swap_account) | 
|  | entry->val = ent.val; | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static int is_target_pte_for_mc(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t ptent, union mc_target *target) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | struct page_cgroup *pc; | 
|  | int ret = 0; | 
|  | swp_entry_t ent = { .val = 0 }; | 
|  |  | 
|  | if (pte_present(ptent)) | 
|  | page = mc_handle_present_pte(vma, addr, ptent); | 
|  | else if (is_swap_pte(ptent)) | 
|  | page = mc_handle_swap_pte(vma, addr, ptent, &ent); | 
|  | else if (pte_none(ptent) || pte_file(ptent)) | 
|  | page = mc_handle_file_pte(vma, addr, ptent, &ent); | 
|  |  | 
|  | if (!page && !ent.val) | 
|  | return 0; | 
|  | if (page) { | 
|  | pc = lookup_page_cgroup(page); | 
|  | /* | 
|  | * Do only loose check w/o page_cgroup lock. | 
|  | * mem_cgroup_move_account() checks the pc is valid or not under | 
|  | * the lock. | 
|  | */ | 
|  | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { | 
|  | ret = MC_TARGET_PAGE; | 
|  | if (target) | 
|  | target->page = page; | 
|  | } | 
|  | if (!ret || !target) | 
|  | put_page(page); | 
|  | } | 
|  | /* There is a swap entry and a page doesn't exist or isn't charged */ | 
|  | if (ent.val && !ret && | 
|  | css_id(&mc.from->css) == lookup_swap_cgroup(ent)) { | 
|  | ret = MC_TARGET_SWAP; | 
|  | if (target) | 
|  | target->ent = ent; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct vm_area_struct *vma = walk->private; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
|  | for (; addr != end; pte++, addr += PAGE_SIZE) | 
|  | if (is_target_pte_for_mc(vma, addr, *pte, NULL)) | 
|  | mc.precharge++;	/* increment precharge temporarily */ | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  | cond_resched(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) | 
|  | { | 
|  | unsigned long precharge; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | struct mm_walk mem_cgroup_count_precharge_walk = { | 
|  | .pmd_entry = mem_cgroup_count_precharge_pte_range, | 
|  | .mm = mm, | 
|  | .private = vma, | 
|  | }; | 
|  | if (is_vm_hugetlb_page(vma)) | 
|  | continue; | 
|  | walk_page_range(vma->vm_start, vma->vm_end, | 
|  | &mem_cgroup_count_precharge_walk); | 
|  | } | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | precharge = mc.precharge; | 
|  | mc.precharge = 0; | 
|  |  | 
|  | return precharge; | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_precharge_mc(struct mm_struct *mm) | 
|  | { | 
|  | return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm)); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_clear_mc(void) | 
|  | { | 
|  | struct mem_cgroup *from = mc.from; | 
|  | struct mem_cgroup *to = mc.to; | 
|  |  | 
|  | /* we must uncharge all the leftover precharges from mc.to */ | 
|  | if (mc.precharge) { | 
|  | __mem_cgroup_cancel_charge(mc.to, mc.precharge); | 
|  | mc.precharge = 0; | 
|  | } | 
|  | /* | 
|  | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | 
|  | * we must uncharge here. | 
|  | */ | 
|  | if (mc.moved_charge) { | 
|  | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); | 
|  | mc.moved_charge = 0; | 
|  | } | 
|  | /* we must fixup refcnts and charges */ | 
|  | if (mc.moved_swap) { | 
|  | /* uncharge swap account from the old cgroup */ | 
|  | if (!mem_cgroup_is_root(mc.from)) | 
|  | res_counter_uncharge(&mc.from->memsw, | 
|  | PAGE_SIZE * mc.moved_swap); | 
|  | __mem_cgroup_put(mc.from, mc.moved_swap); | 
|  |  | 
|  | if (!mem_cgroup_is_root(mc.to)) { | 
|  | /* | 
|  | * we charged both to->res and to->memsw, so we should | 
|  | * uncharge to->res. | 
|  | */ | 
|  | res_counter_uncharge(&mc.to->res, | 
|  | PAGE_SIZE * mc.moved_swap); | 
|  | } | 
|  | /* we've already done mem_cgroup_get(mc.to) */ | 
|  |  | 
|  | mc.moved_swap = 0; | 
|  | } | 
|  | spin_lock(&mc.lock); | 
|  | mc.from = NULL; | 
|  | mc.to = NULL; | 
|  | mc.moving_task = NULL; | 
|  | spin_unlock(&mc.lock); | 
|  | memcg_oom_recover(from); | 
|  | memcg_oom_recover(to); | 
|  | wake_up_all(&mc.waitq); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_can_attach(struct cgroup_subsys *ss, | 
|  | struct cgroup *cgroup, | 
|  | struct task_struct *p, | 
|  | bool threadgroup) | 
|  | { | 
|  | int ret = 0; | 
|  | struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup); | 
|  |  | 
|  | if (mem->move_charge_at_immigrate) { | 
|  | struct mm_struct *mm; | 
|  | struct mem_cgroup *from = mem_cgroup_from_task(p); | 
|  |  | 
|  | VM_BUG_ON(from == mem); | 
|  |  | 
|  | mm = get_task_mm(p); | 
|  | if (!mm) | 
|  | return 0; | 
|  | /* We move charges only when we move a owner of the mm */ | 
|  | if (mm->owner == p) { | 
|  | VM_BUG_ON(mc.from); | 
|  | VM_BUG_ON(mc.to); | 
|  | VM_BUG_ON(mc.precharge); | 
|  | VM_BUG_ON(mc.moved_charge); | 
|  | VM_BUG_ON(mc.moved_swap); | 
|  | VM_BUG_ON(mc.moving_task); | 
|  | spin_lock(&mc.lock); | 
|  | mc.from = from; | 
|  | mc.to = mem; | 
|  | mc.precharge = 0; | 
|  | mc.moved_charge = 0; | 
|  | mc.moved_swap = 0; | 
|  | mc.moving_task = current; | 
|  | spin_unlock(&mc.lock); | 
|  |  | 
|  | ret = mem_cgroup_precharge_mc(mm); | 
|  | if (ret) | 
|  | mem_cgroup_clear_mc(); | 
|  | } | 
|  | mmput(mm); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, | 
|  | struct cgroup *cgroup, | 
|  | struct task_struct *p, | 
|  | bool threadgroup) | 
|  | { | 
|  | mem_cgroup_clear_mc(); | 
|  | } | 
|  |  | 
|  | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | int ret = 0; | 
|  | struct vm_area_struct *vma = walk->private; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | retry: | 
|  | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
|  | for (; addr != end; addr += PAGE_SIZE) { | 
|  | pte_t ptent = *(pte++); | 
|  | union mc_target target; | 
|  | int type; | 
|  | struct page *page; | 
|  | struct page_cgroup *pc; | 
|  | swp_entry_t ent; | 
|  |  | 
|  | if (!mc.precharge) | 
|  | break; | 
|  |  | 
|  | type = is_target_pte_for_mc(vma, addr, ptent, &target); | 
|  | switch (type) { | 
|  | case MC_TARGET_PAGE: | 
|  | page = target.page; | 
|  | if (isolate_lru_page(page)) | 
|  | goto put; | 
|  | pc = lookup_page_cgroup(page); | 
|  | if (!mem_cgroup_move_account(pc, | 
|  | mc.from, mc.to, false)) { | 
|  | mc.precharge--; | 
|  | /* we uncharge from mc.from later. */ | 
|  | mc.moved_charge++; | 
|  | } | 
|  | putback_lru_page(page); | 
|  | put:			/* is_target_pte_for_mc() gets the page */ | 
|  | put_page(page); | 
|  | break; | 
|  | case MC_TARGET_SWAP: | 
|  | ent = target.ent; | 
|  | if (!mem_cgroup_move_swap_account(ent, | 
|  | mc.from, mc.to, false)) { | 
|  | mc.precharge--; | 
|  | /* we fixup refcnts and charges later. */ | 
|  | mc.moved_swap++; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  | cond_resched(); | 
|  |  | 
|  | if (addr != end) { | 
|  | /* | 
|  | * We have consumed all precharges we got in can_attach(). | 
|  | * We try charge one by one, but don't do any additional | 
|  | * charges to mc.to if we have failed in charge once in attach() | 
|  | * phase. | 
|  | */ | 
|  | ret = mem_cgroup_do_precharge(1); | 
|  | if (!ret) | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_move_charge(struct mm_struct *mm) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | lru_add_drain_all(); | 
|  | down_read(&mm->mmap_sem); | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | int ret; | 
|  | struct mm_walk mem_cgroup_move_charge_walk = { | 
|  | .pmd_entry = mem_cgroup_move_charge_pte_range, | 
|  | .mm = mm, | 
|  | .private = vma, | 
|  | }; | 
|  | if (is_vm_hugetlb_page(vma)) | 
|  | continue; | 
|  | ret = walk_page_range(vma->vm_start, vma->vm_end, | 
|  | &mem_cgroup_move_charge_walk); | 
|  | if (ret) | 
|  | /* | 
|  | * means we have consumed all precharges and failed in | 
|  | * doing additional charge. Just abandon here. | 
|  | */ | 
|  | break; | 
|  | } | 
|  | up_read(&mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | static void mem_cgroup_move_task(struct cgroup_subsys *ss, | 
|  | struct cgroup *cont, | 
|  | struct cgroup *old_cont, | 
|  | struct task_struct *p, | 
|  | bool threadgroup) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | if (!mc.to) | 
|  | /* no need to move charge */ | 
|  | return; | 
|  |  | 
|  | mm = get_task_mm(p); | 
|  | if (mm) { | 
|  | mem_cgroup_move_charge(mm); | 
|  | mmput(mm); | 
|  | } | 
|  | mem_cgroup_clear_mc(); | 
|  | } | 
|  | #else	/* !CONFIG_MMU */ | 
|  | static int mem_cgroup_can_attach(struct cgroup_subsys *ss, | 
|  | struct cgroup *cgroup, | 
|  | struct task_struct *p, | 
|  | bool threadgroup) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, | 
|  | struct cgroup *cgroup, | 
|  | struct task_struct *p, | 
|  | bool threadgroup) | 
|  | { | 
|  | } | 
|  | static void mem_cgroup_move_task(struct cgroup_subsys *ss, | 
|  | struct cgroup *cont, | 
|  | struct cgroup *old_cont, | 
|  | struct task_struct *p, | 
|  | bool threadgroup) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | struct cgroup_subsys mem_cgroup_subsys = { | 
|  | .name = "memory", | 
|  | .subsys_id = mem_cgroup_subsys_id, | 
|  | .create = mem_cgroup_create, | 
|  | .pre_destroy = mem_cgroup_pre_destroy, | 
|  | .destroy = mem_cgroup_destroy, | 
|  | .populate = mem_cgroup_populate, | 
|  | .can_attach = mem_cgroup_can_attach, | 
|  | .cancel_attach = mem_cgroup_cancel_attach, | 
|  | .attach = mem_cgroup_move_task, | 
|  | .early_init = 0, | 
|  | .use_id = 1, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 
|  |  | 
|  | static int __init disable_swap_account(char *s) | 
|  | { | 
|  | really_do_swap_account = 0; | 
|  | return 1; | 
|  | } | 
|  | __setup("noswapaccount", disable_swap_account); | 
|  | #endif |